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1. Introduction 

The Competitiveness of a company is determined by its ability to adjust its product 
offerings and performance to the changing market needs and its capability to realize the 
existing potentials in purchasing, production and distribution. Therefore, the long-term 
survivability of a company is measured by target values like relative competitive position, 
growth in sales, increase in productivity and the return on equity. At the same time, 
delivery reliability and delivery time have established themselves as equivalent buying 
criteria alongside product quality and price (Enslow, 2006; Hon, 2005; Wildemann, 2007;). 
High delivery reliability and short delivery times for companies demand high schedule 
reliability and short throughput times in production (Kim and Duffie, 2005). In order to 
manufacture efficient under such conditions, it is necessary to generate a high logistic 
performance and to minimise logistic costs simultaneously (figure 1) (Wiendahl, 1997). 
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Fig. 1. Objectives of Production Logistics. 
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The logistic performance is defined by short throughput times and high schedule reliability. 
The logistic costs depend on low WIP levels in production and high utilisation of 
operational resources. 

2. Challenges for production management 

The above mentioned production logistics objectives short throughput times, high schedule 

reliability, low WIP level and high machine utilisation can not be reached simultaneously 

because the objectives show a conflicting orientation (figure 2). This fact is known as the 

scheduling dilemma (Hopp and Spearman, 2000; Gutenberg, 1951). For example, it is not 

possible to maximise the utilisation of a work system and to minimise throughput times 

simultaneously. On the one hand a high utilisation of work systems calls for high WIP levels 

in order to prevent interruptions to the materials flow during production. On the other hand 

high WIP levels lead to long throughput times because of long material queues at work 

station. That means that the aim of high machine utilisation in conjunction with short 

throughput times cannot be achieved. In addition, long throughput times increase the 

likelihood of orders queuing at work systems being swapped around. The result is a 

decrease in the schedule reliability within the production. Several authors have pointed out 

that the challenge for managers therefore is not to “optimise” a certain logistic objective, but 

rather to find a rational trade-off between satisfactory levels of performance of all the 

conflicting objectives (Hopp and Spearman, 2000; Schuh, 2006; Schönsleben, 2004). In order 

to overcome the scheduling dilemma, certain work systems and production areas must be 

positioned in the field of conflict between the production logistics objectives. To do this, it is 

necessary to map the relationships between the effects of these different objectives and to 

describe the behaviour of the logistic system. The Logistic Production Operating Curves 

outlined in figure 2 provide a suitable approach. These curves describe the utilisation and 

the throughput times depending on the WIP level. 
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Fig. 2. Scheduling Dilemma and Logistic Production Operating Curves. 
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Both research and industrial practice use various methods to model the described 

relationships. Popular methods are the queuing theory from the field of operations research, 

simulation and the Theory of Logistic Operating Curves developed at the Institute of 

Production Systems and Logistics (IFA). Figure 3 shows a qualitative comparison of the 

modelling methods by the criteria illustration quality and implementation efforts as well as 

the extension in industrial practice. 
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Fig. 3. Illustration Quality and Implementation Efforts of Different Modelling Methods. 

Both the queuing theory and the Logistic Production Operating Curves require low 

illustration efforts while a high illustration quality can only be provided by the simulation 

and the Logistic Production Operating Curves, which both are widespread in industrial 

practice. Therefore, the queuing theory and simulation are often not entirely suitable for 

modelling logistic relationships, especially for the description of real production contexts 

(Nyhuis et al., 2005). 

3. Derivation of the Logistic Production Operating Curves 

The Logistic Production Operating Curves reduce the complexity and the cost of modelling 

the behaviour of logistic systems. Thus, they create a way of positioning a work system or a 

production area in the field of conflict between the logistic objectives. This chapter shows 

the derivation of the Logistic Production Operating Curves (Nyhuis and Wiendahl, 2009). 

Firstly, equations are developed for assumed ideal production conditions and result in ideal 

Logistic Production Operating Curves. Secondly, the ideal curves are adapted to real 

production processes. Thirdly, the validation of the Logistic Production Operating Curves is 

presented. 
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3.1 Logistic Production Operating Curves 
The development of the ideal Logistic Production Operating Curves requires to define an 
ideal production process. In this process, a single work system is considered. The utilisation 
of this work system is about 100% and the WIP level is at its minimum. This originates in the 
fact that a new order is fed to the work system whenever a completed order leaves it. 
Accordingly, no order has to wait for processing and no interruptions to the materials flow 
occur in the production process. The resulting throughput diagram is shown on the left in 
figure 4. 
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Fig. 4. Ideal Throughput Diagram and Ideal Logistic Production Operating Curves. 

In the ideal process, the mean WIP level at the work system is governed exclusively by the 
work content (order times) and their scatter. This is called the ideal minimum WIP level:  

 WIPImin = WCm ·(1+WCv2). (1) 

WIPImin  ideal minimum WIP level [hrs] 

WCm  mean work content [hrs] 

WCv  variation coefficient for work content [-] 

[Note: hrs = hours] 

The upper limit to the output rate of the work system is defined by the maximum possible 

output rate. This is described by the restrictive capacity factors operational and personnel 

resources: 

 ROUTmax = min (CAPmc, CAPop) (2) 

ROUTmax maximum possible output rate [hrs/SCD] 

CAPmc  available machine capacity [hrs/SCD] 

CAPop  available operator capacity [hrs/SCD] 

[Note: SCD = shop calendar day] 

The ratio of mean WIP level to mean output rate corresponds to the mean range of the WIP 

level. This relationship is designated the funnel equation: 

 Rm = WIPm / ROUTm (3) 
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Rm  mean range [SCD] 
WIPm  mean WIP level [hrs] 
ROUTm  mean output rate [hrs/SCD] 
The ideal Production Operating Curves, shown on the right in figure 4, can be derived from 
the ideal minimum WIP level and the maximum possible output rate. The Logistic 
Operating Curve of the output rate of a work system describes how the mean output rate 
varies with respect to the mean WIP level. In the ideal process, full utilisation of the work 
system and hence also the maximum possible output rate is achieved with the ideal 
minimum WIP level. A further increase in the WIP level does not bring about any increase 
in the output rate. And below the ideal minimum WIP level, the output rate drops in 
proportion to the WIP level until both values reach zero. The Logistic Operating Curve of 
the range can be calculated from the output rate operating curve with the help of the funnel 
equation. Above the ideal minimum WIP level, the range increases in proportion to the WIP 
level. Below the ideal minimum WIP level, the mean range corresponds to the minimum 
range which is due to mean order work content. 

3.2 Real Production Operating Curves 

Ideal process conditions do not occur in practice. However, a simulation carried out at the 
IFA showed that although the ideal Logistic Production Operating Curves do not represent 
real process conditions they provide a suitable framework. The simulation covered eight 
simulation experiments with the mean WIP level as the only changing variable (figure 5).  
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Fig. 5. Simulated Logistic Production Operating Curves. 

The simulated operating states show clearly that the Logistic Production Operating Curves 
do not exhibit a defined break point under real process conditions. Instead, we see a smooth 
transition from the full machine utilisation zone of the operating curve (stable output, in this 
case WIP level approximately 5000 h) to the under-utilised zone. 
In order to be able to model real process conditions with minimum effort but adequate 
accuracy, we require a mathematical description of the real Logistic Production Operating 
Curves. An approximation equation was developed for the mathematical description based 
on an approximation of the parameterised CNorm function:  
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 x = x(t) = t and y = y(t) = - (1 - tc)1/c (4) 

x  variable [-] 
t  running variable [-] 
y  variable [-] 
C  CNorm parameter [-] 
The parameterised CNorm function has been transformed into the approximation equation in 
four steps. The four transformation steps required are shown in figure 6. Firstly, the set of 
equations (see formula 4) is translated by the value one in the positive y-direction. The 
second transformation step stretches the set of equations in the y-direction such that the 
maximum value y1 of the curve corresponds to the maximum possible output rate. The third 
transformation step shears the set of equations in the x direction. 
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Fig. 6. Transformation of the CNorm Function. 

The ideal Logistic Operating Curve of the output rate characterised by the ideal minimum 
WIP level now forms the system of coordinates for the real Production Operating Curves. 
The fourth transformation step stretches the curve by the stretch factor α1 in the x direction. 
Replacing the variables x and y by the mean WIP level and the mean output rate 
respectively as well as the variables x1 and y1 by the ideal minimum WIP level and the 
maximum output rate respectively enables the transformed set of equations to be converted 
into the following set of equations. This describes the real Logistic Production Operating 
Curves of the output rate:  

 c 1/
m min minWIP (t) WIPI (1 (1 t ) WIPI 1 tc= ⋅ − − + ⋅α ⋅  (5) 
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 c 1/c
m maxROUT (t)=ROUT (1 (1 t )⋅ − −  (6) 

WIPm (t)  mean WIP level (as a function of t) [hrs] 
t  running variable [-] 
WIPImin  ideal minimum WIP level [hrs] 

C  CNorm value [-] (default value C = 0,25) 

α1  stretch factor [-] (default value α1 = 10) 
ROUTm (t) mean output rate (as a function of t) [hrs/SCD] 
ROUTmax maximum output rate [hrs/SCD] 
A pair of values for the mean WIP level and the mean output rate can be calculated for a 

given ideal minimum WIP level and maximum possible output rate for every value of t (0 ≥ 
t ≥ 1). The combination of several such pairs of values results in the Logistic Operating 
Curve of the output rate. This curve can now be converted into the Logistic Production 

Operating Curve of the range with the help of the funnel equation (see formula 3).  
The parameters of the approximation equations deduced, which describe the Logistic 
Production Operating Curves, take into account a series of production logistics factors 
(figure 7). These are included in the parameters for ideal minimum WIP level, maximum 

possible output rate and stretch factor α1. The batch size of the orders, the individual 
processing times for the products and the setup time necessary for the work systems are 
included in the calculation of the ideal minimum WIP level. In addition, by extending the 
scope of the study we can also include transport times and minimum inter-operation times 

(e.g. due to technological restrictions). The maximum possible output rate is mainly limited 
by the capacity of the work system. Furthermore, faults that reduce capacity, the level of 
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Fig. 7. Parameters of Logistic Production Operating Curves. 
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performance and, lastly, the number of work systems determine the maximum possible 

output rate. The stretch factor α1, which until now could only be calculated empirically, is 
essentially determined by the capacity flexibility available on the one hand and the scatter of 
the workload on the other. 

3.3 Validating the Real Production Operating Curves 

The Logistic Production Operating Curves describe the relationships between the effects of 
the logistic performance measures of a work system for constant order time and capacity 
structures. As different WIP levels for a work system are hardly feasible in practice for 
identical order time and capacity structures, the real Production Operating Curves are 
validated by means of simulations (fig. 8).  
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Fig. 8. Simulation based Validation of Logistic Production Operating Curves. 

The results of the simulation work carried out at the IFA reveal a high correlation between 
the result of the simulation and the Logistic Production Operating Curves calculated. 
Analyses of the deviation resulted in an average divergence of less than 2% between the 
calculated and the simulated operating conditions. The simulations prove that the 
mathematical model describes the behaviour of the simulated work system with sufficient 
accuracy. 
The mathematical model of the Logistic Production Operating Curves was developed for 
practical applications and therefore additional validation under industrial operating 
conditions was necessary. The practical trials carried out exhibit a high correlation with the 
findings of the model. Therefore, the mathematical model of the Logistic Production 
Operating Curves has been proved as suitable for practical application. The procedure for 
validating the model by means of practical trials is as follows. 
Feedback data from a work system was evaluated within the scope of the analyses of 
throughput time and WIP level. The operating condition of the work system is given by the 
analysis, and this result is subsequently compared with a calculated Logistic Production 

Operating Curve which initially uses a default value (α1 = 10) for the stretch factor α1. If a 
comparison of the operating condition and the calculated Production Operating Curve does 
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not reveal any significant differences with respect to possible machine utilisation losses due 
to WIP level, the parameterising of the model can be regarded as suitable. If this is not the 

case, the stretch factor α1 must be modified. Only in those cases with very high WIP levels it 
is impossible to check the parameters in this way. However, this limitation does not usually 
represent a problem in practice because in these cases the options for reducing the WIP level 
are obvious. 

3.4 Normalized Logistic Production Operating Curves 

For a number of problems it is helpful to normalize reference parameters in order to be able 

to draw conclusions that are independent of the system specific conditions or to compare 

different work systems with the help of the Logistic Production Operating Curves. In order 

to do so it is necessary to determine appropriate reference values for such normalisations. It 

seems obvious that for the output rate and WIP level they can be based on the ideal 

operating state and thus expressed as a relative parameter. 

In our discussion about Output Rate Operating Curves we already conducted a similar type 

of normalization, using the definition of the mean WIP dependent utilization Um as a ratio 

of ROUTm to ROUTmax. In order to describe a relative WIP level, the mean WIP is set in 

relation to WIPImin.  

Fig. 9 shows the normalized Logistic Production Operating Curves, where α1 = 10. The 

graph describes how a change in the WIP impacts the utilization of the workstation, 

independent of the existing work content structures and the workstation’s capacity. It 

shows, for example, that the WIP dependent loss of utilization is approximately 17% when 

the mean WIP corresponds to WIPmin. If the WIP is tripled the loss of utilization is reduced 

to approximately 1%. 
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Fig. 9. Normalised Logistic Production Operating Curves. 
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A relative measure of the throughput time is the flow rate. If, in analogy to the Funnel 
Formula the relative WIP is set in relation to the utilization we obtain the mean weighted 
flow rate as a normalized parameter for the range. This can also be calculated through the 
ratio of range to minimum range. 

4. Practical Applications of Logistic Production Operating Curves 

Logistic Production Operating Curves enable the logistic controlling of production 
processes. They are applicable in different industries. Specially developed control methods 
such as the Bottleneck Oriented Logistic Analysis make it possible to evaluate and improve 
existing production processes by describing them qualitatively and quantitatively, from a 
logistic perspective (Nyhuis and Wiendahl, 2009; Nyhuis and Penz, 1995). The specific 
causes of problems can then be localised and presented in the form of cause-and-effect 
relationships. Furthermore, the existing logistic potentials for improvement as well as the 
possible measures for developing them can be demonstrated and evaluated. 
The basis of production control is the structured analysis of production processing data. The 
logistic analysis of this data is based on a well delineated, but complex problem. ‘Well 
delineated’ means here that there is enough data to extensively document the problem. The 
problem’s complexity is for example due to the interactions between the workstations or 
because a number of related but partially contradicting objectives have to be simultaneously 
considered. The production processing data can be aggregated into key figures, such as a 
workstations mean WIP or output rate. They thus first provide information about the 
workstation’s logistic behaviour. 
Demonstrating the practical applications of the Logistic Production Operating Curves an 
excerpt of a Bottle-neck Oriented Logistic Analysis accomplished at a manufacturer of 
printed circuit boards is given. The target of the analysis was on the one hand a reduction of 
the order throughput times and on the other hand a reduction of the WIP. The left side of 
figure 10 shows a section of the material flow diagram for the observed manufacturer. Here, 
we can see that the workstation “resist coating” is a key station, because most of the material 
flow lines pass this workstation. 
The right side of figure 10 shows a logistic portfolio. It illustrates that on the one hand the 
workstation “resist coating” runs at a very high WIP level. This comparison is made by the 
use of the normalised Logistic Production Operating Curves. On the other hand this 
workstation shows an outstanding throughput time proportion. The throughput time 
proportion is the ratio of the sum of the workstation´s throughput times to the sum of the 
through times of the production analysed. So the workstation “resist coating” has the 
highest influence on the production’s throughput times. Therefore, this workstation is 
examined in detail. 
Firstly, the order’s processing behaviour on the workstation “resist coating” is determined 
and visualized using a throughput diagram (figure 11). The output curve shows the 
outgoing orders’ accumulated work content during the investigation period. It has a 
constant slope. Therefore, the workstation’s output rate reveals no significant fluctuations. 
The input curve visualises the accumulated work content of the incoming orders. The input 
curve’s slope indicates certain fluctuations, which can be traced back to the workstation’s 
varying load. The WIP level on the workstation therefore also oscillates, because it results 
from the difference between the in- and output. By using the previously determined key 
figures together with the throughput diagram the behaviour of the workstation’s logistic 
system can be evaluated. 
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Fig. 10. Material Flow Diagram and Logistic Portfolio. 
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Fig. 11. Throughput Diagram of the Work Station Resist. 

To identify logistic potential for improvement the relationships between the logistic 
objectives must be described. Therefore, the Logistic Production Operating Curves are used 
(figure 12). The calculated operating point is located well into the overload operating state 
and the WIP level on the workstation is very high. The output rate is therefore high, but 
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there are also long throughput times. Reducing the WIP by approximately 22 hours would 
make it possible to reduce the throughput time by ca. 75% (from 2 SCD down to 0.5 SCD), 
without notable output rate losses. 
As can be seen in figure 10, due to the workstation’s central role reducing the WIP and 
therefore also the throughput time would affect the entire manufacturing process. In order 
to reduce the WIP of the workstation, the company could introduce measures that 
temporarily increase the output rate either through over-time or additional shifts. In total 
the capacity needs to be increased by 20 hours. This would be possible because the resist 
coating workstation had worked up until now with an output rate of 13.4 hours per shop 
calendar day. This however influences the work-stations downstream, which then have to 
ensure that the resulting additional load is processed through capacitive measures. 
Otherwise, the WIP problem is only transferred to the following workstations (Nyhuis and 
Penz, 1995).  
Another approach to lowering the WIP on the resist coating workstation is to limit the load 
by temporarily restricting the order input. This has to be controlled through the order 
release. Here, it has to be considered that the disruption of the material flow at the input 
could lead to a loss of output on the workstations located upstream the resist coating 
station. 
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Fig. 12. Logistic Production Operating Curves of the Work Station Resist Coating. 

5. Derivation of the Schedule Adherence Operating Curve 

The measures described above will reduce the production´s throughput times as well as the 
scatter of the throughput times. To be able to estimate the impact on the schedule adherence 
of production analysed which directly determines the delivery reliability, the Schedule 
Adherence Operating Curve was developed at the Institute of Production Systems and 
Logistics recently. To clarify the derivation of this model figure 13 illustrates a simulated 
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histogram of a production´s output date deviation which is weighed with the order value 
during a reference period of one year.  
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Fig. 13. Typical Distribution of a Production´s Date Deviation. 

The classes of the date deviations are plotted on the x-axis. The y-axis reflects the order 
value of a class. It is typical for such a distribution to be similar to a normal distribution. The 
weighted average is just under 5 SCD and a standard deviation is about 20 SCD. The grey 
striped bars on the left and right edge of the histogram represent all orders with a date 
deviation of less than 40 SCD and more than 75 SCD, respectively. As a result, there is an 
intolerable date situation as a result of the broad scattering of date deviation and the high 
number of orders delayed. This has a significant impact on the supply of internal and 
external customers and thus the delivery reliability. Overall, only about one-third of the 
orders are completed on time. The other orders leave production stage late. A higher 
schedule adherence can be achieved with an increased stock of finished orders. To 
determine this stock and to explain the connection between the mean weighted schedule 
adherence and the stock of finished orders depending on the distribution of the date 
deviation, the distribution of figure 13 should be considered in more detail. Therefore, the 
value weighted distribution of the date deviation is illustrated in the upper part of figure 14 
again. This illustrates that a delivery time buffer, which is defined as a buffer time between 
the target finishing date and the target delivering date of the orders to the customer, is a key 
control variable in the field of tension between a high schedule adherence and a low level of 
stock of finished orders. 
In the lower part of figure 14, the order values of the individual date deviation classes of the 
upper part are cumulated in a graph. It shows the part of orders which will be finished on 
time (before or on the target finishing date plus a defined delivery time buffer). This value 
corresponds to the weighted schedule adherence. In the case of a buffer with an assumed 
time of 0 SCD, the weighted schedule adherence is 35%. But orders which are completed on 
time generate stock, because the majority of them are finished before the target finishing 
date (dark grey bars in histogram). In order to weight this stock with the time period of 
early completion, the stock area of the finished orders will be determined by calculating the 
integral below the curve of the cumulated value from negative infinity to a determined 
delivery time buffer of 0 BKT. In case a, the stock area of the finished orders has a value of 
1,700 million € · SCD.  

www.intechopen.com



 Advances in Computer Science and Engineering 

 

384 

date deviation [SCD]

value [€]

date deviation [SCD]

case a: delivery time buffer 0 SCD case b: delivery time buffer 10SCD

value [€]

0

to lateto early

0

To lateto early

LZP [BKT]80604020-20-40 0

cumulated value [€]

cumulated value

Fall a:

dtb = 0 SCD
saw = 35 %

SAO = 1.700 Mio. €·SCD

case b:

dtb = 10 SCD
saw = 70 %

SAO = 3.400 Mio. €·SCD

100 %

70 %

35 %

saw : weighted schedule adherence [%]

SCD : shop calendar days [-]

dtb : delivery time buffer [SCD]

SAO : stock area of finished orders [€·SCD]

350 Mio. €

stock area of finished orders case b

dtb

stock area of finished orders case a

 

Fig. 14. Delivery Time Buffer as a Key Control Variable. 

In case b, a delivery time buffer of 10 BKT is set exemplarily. The corresponding histogram 

in the upper part represents that a lot more orders leave the production stage without delay 

using the delivery time buffer (dark grey bars). The curve of the cumulated value in the 

lower part of figure 14 shows a weighted schedule adherence of 70%. The stock area of 

finished orders is approximately 3,400 million € · SCD.  

However, the stock area of finished orders is not sufficient to compare different schedule 

adherence scenarios with a similar order structure in terms of their values and their date 

deviations, because the stock area of finished orders depends on the selected reference 

period. Therefore, the mean stock level of finished orders can be calculated by dividing the 

stock area of finished orders by the selected reference period. To develop this knowledge 

into an effect model the upper part of figure 15 shows three curves of the cumulated value 

with different delivery time buffers and corresponding stock areas. 

Case a shows an assumed delivery time buffer of 0 SCD. The result is a low schedule 

adherence and a small stock area of finished orders. Case b represents a larger delivery time 

buffer. Accordingly, we find the values of the schedule adherence and the stock area of 

finished orders in a middle range. In case c, the delivery time buffer is adopted generously. 

The schedule adherence is close to 100%, which is the result of a large stock area of finished 

orders. 
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Fig. 15. Qualitative Derivation of the Schedule Adherence Operating Curve. 

The respective stock level of finished orders is calculated for the cases a, b and c. In the 
lower part of figure 15 the case-specific schedule adherence is confronted with the 
corresponding mean stock level of finished orders and illustrated in one chart. The grey 
rimmed points with white filling present generic operating points which might be generated 
by a modification of the delivery time buffer. If a large number of such pairs of values is 
plotted in a graph, the result is the Schedule Adherence Operating Curve. 
This kind of modelling ensures the independence of the Schedule Adherence Operating 
Curve from the kind of statistic distribution of the date deviation. Now, it is possible to 
position a production stage in the field of tension between high schedule adherence and a 
low stock level of finished goods. Figure 16 shows this exemplarily. It is possible to calculate 
the stock of finished orders which is needed to ensure a target schedule adherence. The 
Schedule Adherence Operating Curve shows that an assumed schedule adherence of 95% 
can be achieved by a mean stock level of finished goods of S1. To position the production 
stage on this operating point, the delivery time buffer is the key control variable. This 
variable has to be considered critically because in practice, a delivery time buffer is 
connected with an earlier release of production orders. Thus, in principle, the planned 
throughput time will be increased which directly extends the delivery time to the customer. 
It is also possible that the so-called vicious cycle of production planning and control is 
triggered (Plossl 1973; Wiendahl 2008). 
The Schedule Adherence Operating Curve can be used to determine potentials which result 
from structural changes. For this purpose a mathematical description of this Operating 
Curve is required. The formula is based on an approximate equation. It is assumed that the 
distribution of order values over the output date deviation after the implementation of 
measures that cause the structural changes especially regarding the throughput times is 
similar to a normal distribution. This function is determined by the mean value and the 
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standard deviation of the distribution as well as by the variable date deviation (Kühlmeyer 
2001). 
 

100

0

20

40

60

80

S2

mean schedule adherence [%]

mean stock level of finished orders [€]S1

structural measrures

operating point

calculated with modified parameters

generated by production data

logistic positioning

 

Fig. 16. Schedule Adherence Operating Curve. 
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vo(dd;μ;σ) value of orders with a specific date deviation [€] 

dd  date deviation [SCD] 

μ  mean value of the date deviation [SCD] 

σ  standard deviation of the date deviation [SCD] 

OUT  output in the reference period [€] 

The integral of this function from negative infinity up to the assumed delivery time buffer 

allows the estimation of the value of orders which leave the production stage on time. 
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voo(dtb;μ;σ) value of orders finished on time [€] 

dtb  delivery time buffer [SCD] 

The mean weighted schedule adherence is calculated by dividing this value by the output in 

the reference period. 
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samw(dd;μ;σ) mean weighted schedule adherence [-] 
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Calculating the integral of equation 8 again determines the stock area of finished orders. The 

mean stock level of finished orders is the result of the division of the stock area of finished 

orders by the reference period. 
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−∞ −∞
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∏ ∫ ∫  (10) 

sfom(dd;μ;σ) mean stock level of finished orders [€] 

rp  reference period [SCD] 

The Schedule Adherence Operating Curve can be described in parameterized form by 

equations 9 and 10. Mainly, the calculated Schedule Adherence Operating Curve is applied 

to represent potentials, which result from structural changes within the production stage 

and lead to a change of the behaviour of the throughout times and consequently the date 

deviation. 

Next to the generated curve, figure 16 represents a Schedule Adherence Operating Curve 

which is calculated according to equation 9 and 10. A changed behaviour of the date 

deviation has a direct effect on the parameters of the Operating Curve (mean value and 

standard deviation of date deviation). If the company is able to realise measures in a way to 

reduce the scatter of the output date deviation, the form of the Schedule Adherence 

Operating Curve is influenced directly. Consequently, this opens new potentials to be 

realized. Figure 16 shows that now, in order to realise the target schedule adherence of 95% 

only the mean stock level of finished orders S2 is required. This stock level can be adjusted 

by a corresponding lower delivery time buffer. 

Only few data is necessary to establish the Schedule Adherence Operating Curve: the order 

number, the output date deviation of the order and a weighted value. An evaluation of the 

order with their monetary values seems to be the most meaningful evaluation parameter, 

because the stock cost caused can be estimated directly through it. In principle, other 

parameters like weight could also be considered. The Schedule Adherence Operating Curve 

provides a simple possibility to estimate potentials regarding the stock of finished orders 

and the mean weighted schedule adherence, which affects directly the logistical 

performance towards the customer.  

6. Practical Alication of the Sedule Aerence Operating Curve  

To discuss the practical Application of the Schedule Adherence Operating Curve we 

concentrate on the analysed production stage of the manufacturer of printed circuit boards 

again (see chapter 4). Figure 17 shows the output date deviation of the production stage. 

The mean delay is 4.5 SCD and the scatter of the date deviation is close to 10 SCD. The result 

is low schedule adherence. This can also be seen in figure 18. The actual operating point 

shows a date adherence of 34% with a delivery time buffer of 0 SCD causing a mean stock 

level of finished orders of 59.100 €. 

To reach the target date adherence of 95% by increasing the delivery time buffer up to 15 
SCD a mean stock level of 590,000  € is required (measure 1). If the scatter of the output date 
deviation can be reduced to about 5 SCD by measures described in chapter 4 it is possible to 
realise the target date adherence with a delivery time buffer of 5 SCD. This will lead to a 
mean stock level of finished orders of 240,000 €.  
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Fig. 17. Output Date Deviation of the Productions Stage. 
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Fig. 18. Output Date Deviation of the Productions Stage. 

7. Conclusions 

A main challenge of production management is the logistic positioning in the field of 
tension between the logistic objectives utilization, throughput time, delivery reliability and 
WIP. These contradicting logistic objectives form what is commonly known as the ‘Dilemma 
of Operations Planning’. In order to make the Dilemma of Operations Planning controllable, 
it is necessary to position the target operating points amidst the ‘field of tension’ created by 
these competing logistic objectives. This is possible with the help of the Logistic Operating 
Curves. Therefore, this paper showed the derivation of the Logistic Production Operating 
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Curves and the Schedule Adherence Operating Curve. These models are thus an ideal 
foundation for supporting and monitoring a company’s processing reliability and capability 
and can be drawn upon when evaluating the process during production controls. 
An example of a practical application of the Logistic Operating Curves was given in the 

paper. The industrial application was conducted in a printed circuit boards manufacturing. 

For this manufacturing potentials were shown on the one hand of reducing throughput 

times and WIP without a significant loss of output rate and on the other hand of increasing 

the date adherence with a tolerable mean stock level of finished orders. Further practical 

applications are summarized by Nyhuis (Nyhuis, 2007). 

The principle of mapping the relationships of the effects between the production logistics 

performance measures by means of the Logistic Operating Curves technique was 

transferred to other areas of industrial production. For example the Logistic Operating 

Curves for inventory processes map the mean stock holding time and the mean delivery 

delay for a product or group of products in relation to the mean inventory level (Lutz, 2002; 

Gläßner, 1995; Schmidt and Wriggers, 2008).  

Altogether the IFA wants to establish a comprehensive Logistic Operating Curves Theory 

which enables a model-based description of all production logistics performance measures. 

This theory provides an easy-to-use method for companies with any type of manufacturing 

organisation.  
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