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1. Introduction 

Longitudinal waves are broadly used for the purposes of non-destructive evaluation of 
materials and for generation and sensing of acoustic vibration of surrounding medium by 
means of transducers. Many mathematical models describing longitudinal wave 
propagation in solids have been derived in order to analyse the effects of different materials 
and geometries on vibration characteristics without the need for costly experimental studies. 
The propagation of elastic waves in solids has seen particular interest since the end of the 
19th century. The solution for three dimensional wave propagation in solids was derived 
independently by L. Pochhammer in 1876 and by C. Chree in 1889. The solution describes 
torsional, longitudinal and flexural wave propagation in cylindrical rods of infinite length 
and is known as the Pochhammer-Chree solution (Achenbach, 1999:242-246; Graff, 1991:470-
473). The Pochhammer-Chree solution is valid for an infinite bar with simple cylindrical 
geometry only. For even slightly more complex geometry, such as conical, exponential or 
catenoidal, no exact analytical solution exists. The need for useful analytical results for bars 
with more complex geometries fuelled the development of one dimensional approximate 
theories during the 20th century. The exact Pochhammer-Chree solution has typically been 
used as a reference result in order to make deductions regarding the accuracy of the 
approximate theories and the limits of their application (Fedotov et al., 2009). 
The classical approximate theory of longitudinal vibration of rods was developed during the 
18th century by J. D’Alembert, D. Bernoulli, L. Euler and J. Lagrange. This theory is based 
on the analysis of the one dimensional wave equation and is applicable for long and 
relatively thin rods vibrating at low frequencies. Lateral effects and corresponding lateral 
and axial shear modes are fully neglected in the frames of this theory. The classical theory 
gained universal acceptance due to its simplicity, especially for engineering applications. It 
is broadly used for design of low frequency mechanical waveguides such as ultrasonic 
transducers, mechanical filters, multi-stepped vibrating structures, etc. 
J. Rayleigh was the first who recognised the importance of the lateral effects and analysed 
the influence of the lateral inertia on longitudinal vibration of rods. This result was briefly 
exposed in Rayleigh’s famous book “The Theory of Sound”, first published in 1877 
(Rayleigh, 1945:251-252). A. Love in his “Treatise on the Mathematical Theory of Elasticity”, 
first published in 1892 (Love, 2009:408-409), further developed this theory, which is now 

www.intechopen.com



 Advances in Computer Science and Engineering 

 

188 

referred to as the Rayleigh-Love theory. The lateral inertia effects are important in the case 
of non-thin cross sections of multi-stepped vibrating structures. From the view point of this 
theory the governing equation contains a mixed x - t derivative of fourth order which leads 
to the appearance of a limiting point in the frequency spectrum of the system. Furthermore, 
the boundary and continuity conditions are modified to take into consideration the lateral 
inertia effects. From the view point of engineering applications the Rayleigh-Love theory is 
not difficult and it helps to substantially improve the accuracy of the frequency spectrum 
predictions in comparison with results based on the classical theory. 
R. Bishop (Bishop, 1952) further modified the Rayleigh-Love theory in 1952 by taking into 
account the lateral shear effects. The theory is referred to as the Rayleigh-Bishop theory. The 
governing equation of this theory contains a fourth order x derivative together with a mixed 
fourth order x - t derivative. This eliminates the limiting point of the frequency spectrum of 
the system, but adds an additional boundary condition on shear stress. An interesting aspect 
of the Rayleigh-Bishop theory is that, when applied to multi-stepped structures, it is 
necessary to guarantee zero shear continuity conditions at the junctions of neighbouring 
sections. From the view point of engineering applications this theory is slightly more 
complicated than the Rayleigh-Love theory. This theory predicts better resonance 
frequencies than the classical theory but is also limited by its application to low frequency 
vibrations. 
The classical, Rayleigh-Love and Rayleigh-Bishop theories are based on the fundamental 
assumption of unimodality, which means that the dynamics of the rod is described by a 
single unknown function and hence, a single partial differential equation. Another 
fundamental assumption is that the above mentioned theories are plane cross sectional 
theories, i.e. displacements in the longitudinal direction preserve their plane and are not 
functions of distance from the neutral longitudinal axis of the rod. The boundary conditions 
on the outer cylindrical surface of the rod are fully ignored in the classical theory. In the 
Rayleigh-Love theory these boundary conditions are implicitly taken into consideration 
because the radial component of the surface stress is zero (and moreover it is always zero 
inside the rod) and the shear stress is neglected. In the Rayleigh-Bishop theory the radial 
component of the surface stress is zero inside and on the outer surface of the rod but the 
shear stress is taken to consideration inside the rod and hence, it is non-zero on the outer 
surface of the rod. Therefore these theories are limited to low frequency applications and 
cannot be used for description of high frequency effects such as the propagation of surface 
waves. 
At higher excitation frequencies, the higher order modes of vibration can be activated and 
waves with the same frequencies but different wave number will propagate through the bar. 
The unimodal theories cannot be used to describe this phenomenon, which led to the 
development of the first multimodal theory by R. Mindlin and G. Herrmann in 1950, now 
referred to as the Mindlin-Herrmann theory (Graff, 1991:510-521). The Mindlin-Herrmann 
theory is a two modal plane cross sectional theory, where the lateral displacement mode is 
defined by a function that is independent of the longitudinal displacement mode of the rod. 
The dynamics of a rod modelled by the Mindlin-Herrmann theory is therefore described by 
a system of two coupled partial differential equation. 
Investigation of the Pochhammer-Chree frequency equation shows that the frequency of the 
lateral mode depends on the Poisson ratio η in such a way that the frequency increases with 
increasing η. When η > 0.2833, the frequency of the lateral mode is higher than the frequency 
of the lowest axial shear mode, which is not dependent on η. This means that the Mindlin-
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Herrmann (two mode) theory is not well suited for analysis of higher frequency effects, due 
to the absence of the third (lowest axial shear) mode. This led to the development of a 
multimodal non plane cross sectional theory by R. Mindlin and H. McNiven in 1960, now 
referred to as the Mindlin-McNiven theory (Mindlin & McNiven, 1960). In the Mindlin-
McNiven theory the number of modes is not restricted and every individual mode is 
proportional to a Jacobi function of radius of the rod. Mindlin and McNiven further 
considered a three mode “second order approximation” of their theory, in which the 
coupling of the longitudinal, lateral and lowest axial shear modes was analysed. The 
dependence of the frequency spectrum of the lateral mode on the Poisson ratio was also 
exposed. The main advantage of this approach is in the simplicity of the orthogonality 
conditions. The main drawback of the theory is that the property of the smallness of the 
cross section with respect to the length of the rod could not be explicitly formulated because 
the high order Jacobi functions contain terms linearly proportional to the radius of the rod. 
The trade-off between simplicity of the boundary conditions and clarity of the physical 
formulation of the problem was one of the most important features of the subsequent 
development of the theory of longitudinal vibrations of finite rods. It is important to 
mention that the boundary conditions on the outer cylindrical surface of the rod are ignored 
by both of Mindlin’s theories. 
Modern theory of longitudinal vibration of rods is developing in two different directions. In 
both cases, the displacement fields are expressed as a power series expansion with respect to 
the distance from the neutral longitudinal axis of the rod (the radial coordinate r). 
The first branch is focussed on the development of unimodal non plane cross sectional 
theories where either the radial or shear stress boundary conditions (or both) on the outer 
cylindrical surface are taken into consideration. By equating either the radial or shear stress 
component to zero throughout the entire thickness (and hence, also on the outer surface) of 
the rod, all the lateral and axial shear modes can be defined in terms of the longitudinal 
mode and its derivatives. Hence, the unimodal theories are each described by a single 
partial differential equation in the longitudinal mode. This theory is taken as the basis for 
nonlinear generalisation of the linear effects for analysis of soliton propagation in solid rods 
(Porubov, 2003:66-72). The Rayleigh-Love and Rayleigh-Bishop models are also defined 
within the frames of this theory. 
Second, the theory of longitudinal vibrations of the rod is generalised by means of creation 
of multimodal approaches where the longitudinal, lateral and axial shear modes are 
assumed to be independent of one another, as in the case the Mindlin-McNiven theory. In 
this case, it is possible to take into consideration radial and shear boundary conditions or 
part of them on the outer cylindrical surface of the rod. One of the recent attempts of 
development of this approach was presented as the Zachmanoglou-Volterra theory 
(Grigoljuk & Selezov, 1973: 106-107; Zachmanoglou & Volterra, 1958). This is a four mode 
non plane cross section theory where the fourth mode is specially matched so to satisfy the 
zero radial stress boundary condition on the outer cylindrical surface of the rod (the shear 
stress is non-zero in this theory). Hence, the dynamics of the rod is described by a system of 
three coupled partial differential equations. 
In the above mentioned publications the authors considered mainly longitudinal wave 
propagation in infinite and semi-infinite rods. This paper will focus on the general methods 
of solution of the problem of longitudinal vibration of finite length rods for all of the above 
mentioned theories. The main approach is based on formulation of the equations of motion 
and boundary conditions using energy methods (Hamilton’s principle), finding two 
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orthogonality conditions (Fedotov et al., 2010) and obtaining the general solution of the 
problems in terms of Green functions. Most of the results obtained by the method of two 
orthogonalities for derivation of the Green functions are published in this paper for the first 
time. 
The term multimodal theory has been introduced to describe theories in which the 
longitudinal and lateral displacements described by more than one independent function, 
where the number of modes is equivalent to the number of independent functions. Theories 
in which the longitudinal and lateral displacements are described by a single function have 
been given the term unimode theory. The terms plane cross sectional and non-plane cross 
sectional theories will also be used in this article. A plane cross sectional theory is based on 
the assumption that each point x on the longitudinal axis of the rod represents a plane cross 
section of the bar (orthogonal to the x axis) and that, during deformation, the plane cross 
sections remain plane. This assumption was first made during the derivation of the classical 
wave equation. In a non plane cross sectional theory, axial shear modes are introduced and 
each point x no longer represent a plane cross section of the bar. For example, if the lowest 
axial shear mode is defined by the term r2u(x,t), then a point x, located on the x-axis, no 
longer represents displacement of a plane cross section, but rather that of a circular 
paraboloid section. This concept was first introduced by Mindlin and McNiven (Mindlin & 
McNiven, 1960). 

2. Derivation of the system of equations of motion 

Consider a solid cylindrical bar with radius R and length l which experiences longitudinal 
vibration along the x-axis and lateral shear vibrations, transverse to the x-axis in the 
direction of the r-axis and in the tangential direction. Consider an axisymmetric problem 
and suppose that the axial and lateral wave displacements can be written as a power series 
expansion in the radial coordinate r of the form 

 2 2
0 2 2( , , ) ( , ) ( , ) ... ( , )m

mu u x r t u x t r u x t r u x t= = + + +  (1) 

and 

 3 2 1
1 3 2 1( , , ) ( , ) ( , ) ... ( , )n

nw w x r t ru x t r u x t r u x t+
+= = + + +  (2) 

respectively. The displacements in the tangential direction are assumed to be negligible 
(v(x,r,φ,t) = 0).  That is, no torsional vibrations are present. The longitudinal and lateral 
displacements defined in (1)-(2) are similar to those proposed by Mindlin and McNiven.  
Mindlin and McNiven, however, represented the expansion of u and w in series of Jacobi 
polynomials in the radial coordinate r (Mindlin & McNiven, 1960). A representation based 
on the power series expansion in (1)-(2) was first introduced by Mindlin and Herrmann in 
1950 to describe their two mode theory (Graff, 1991:510-521), and later by Zachmanoglou 
and Volterra to describe their four mode theory (Grigoljuk & Selezov, 1973: 106-107; 
Zachmanoglou & Volterra, 1958). According to choice of m and n in (1)-(2), different models 
of longitudinal vibration of bars can be obtained, including the well-known models such as 
those of Rayleigh-Love, Rayleigh-Bishop, Mindlin-Hermann and a three-mode model 
analogous to the Mindlin-McNiven “second order approximation”. 
The geometrical characteristics of deformation of the bar are defined by the following linear 
elastic strain tensor field: 
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, , ,

, 0, 0.

xx x rr r

xr r x x x r r

v w w
u w

r r r
u wv

u w v v
r r r

ϕ
ϕϕ

ϕ ϕ
ϕ ϕ

ε ε ε

ε ε ε

∂
= ∂ = ∂ = + =

∂ ∂
= ∂ + ∂ = + ∂ = = ∂ − + =

 (3) 

The compact notation α α
∂
∂∂ =  is used. Due to axial symmetry, it follows that ┝φr = ┝φx = 0. 

The stress tensor due to the isotropic properties of the bar is calculated from Hook's Law as 
follows: 

 

( 2 ) ( ),      

0,

( 2 ) ( ),

,

( 2 ) ( ),

0.

xx xx rr

r r

rr rr xx

xr xr

xx rr

x x

ϕϕ

ϕ ϕ

ϕϕ

ϕϕ ϕϕ

ϕ ϕ

σ λ μ ε λ ε ε

σ με
σ λ μ ε λ ε ε

σ με
σ λ μ ε λ ε ε

σ με

= + + +

= =

= + + +

=
= + + +

= =

 (4) 

┣ and ┤ are Lame's constants, defined as (Fung & Tong, 2001:141) 

  and  ,
2(1 ) (1 2 )(1 )

E Eημ λ
η η η

= =
+ − +

 (5) 

where η and E are the Poisson ratio and Young’s modulus of elasticity respectively. 
The equations of motion (and associated boundary conditions) can be derived using 
Hamilton’s variational principle. The Lagrangian is defined as L = T – P, where 

 ( )2 2

02

l

s
T u w dsdx

ρ
= +∫ ∫ $ $  (6) 

is the kinetic energy of the system, representing the energy yielded (supplied) by the 
displacement of the disturbances (vibrations), 

 ( )
0

1

2

l

xx xx rr rr xr xrs
P dsdxϕϕ ϕϕσ ε σ ε σ ε σ ε= + + +∫ ∫  (7) 

is the strain energy of the system, representing the potential energy stored in the bar by 

elastic straining, 
2 2

0 0

R

s
S ds rdrd R

π
ϕ π= = =∫ ∫ ∫  is the cross sectional area and ρ is the mass 

density of the rod. 
Exact solutions of the boundary value (or mixed) problems resulting from the application of 
Hamilton’s principle can be found using the method of separation of variables, by assuming 
that the solution can be written in the form of a generalised Fourier series 

 
1

( , ) ( ) ( ), 0,1,2, , 1j jm
m

u x t y x t j n
∞

=
= Φ = −∑ …  (8) 

where the set of functions {yjm(x)}, 0,1,2, , 1j n= −…  are the eigenfunctions of the 
corresponding Sturm-Liouville problem and n is the number of independent functions 
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chosen to represent the longitudinal and lateral displacements in (1)-(2). It is possible to 
prove that the eigenfunctions satisfy two orthogonality conditions: 

 ( ) ( )2 2

1 21 2
, and ,m n n nm m n n nmy y y y y yδ δ= =  (9) 

where ym refers to the set of eigenfunctions {yjm(x)}, 0,1,2, , 1j n= −…  corresponding to a 

particular eigenvalue ωm and ├nm is the Kronecker-Delta function. The unkown function in 

time Φ(t) can be found by substituting (8) into the Lagrangian of the system and making use 

of the orthogonality conditions (9). 

3.1 Unimodal theories 

The unimodal theories are derived by establishing a linear dependence of all the 

displacement modes in (1) and (2) on the first longitudinal displacement mode u0(x,t) and its 

derivates. This dependence is obtained by substituting (1) and (2) into the equations for the 

radial and axial shear stress components σrr and σxr and equating all terms at equal powers 

of the radial coordinate r to zero. By introducing these constraints, either the radial stress 

(when an even number of terms are considered) or the axial shear stress (when an uneven 

number of terms are considered) will be equal to zero, not only on the free outer surface, but 

throughout the entire thickness of the rod. That is, at least one of the classical boundary 

conditions for the free outer surface of a multidimensional bar, σrr = 0 and σxr = 0 at r = R, 

will be satisfied. 

It is further possible to artificially ensure that the remaining non-zero boundary condition 

term (σrr for an uneven number of terms and σxr for an even number of terms) is also equal to 

zero throughout the entire thickness of the bar by neglecting its effect (that is, assuming this 

term is zero) when computing the potential energy function (7). This assumption was first 

introduced independently by both Rayleigh and Love in deriving the well known Rayleigh-

Love (two term, unimode) theory. For this reason, all unimode theories where this 

assumption is made will subsequently be referred to as Rayleigh-Love type theories. 

Unimode theories in which this assumption is not made will be referred to as Rayleigh-

Bishop type theories. 

Substituting the resulting kinetic and potential energy functions, given by (6) and (7), into 

the Lagrangian yields 

 ( )( 1) ( )
0 00

, , 1,2, ,
l j jL T P u u dx j n−= − = Λ =∫ $ …  (10) 

where Λ is known as the Lagrangian density and n is number of terms chosen to represent 

longitudinal and lateral displacements in (1)-(2). The upper dot denotes the derivative with 

respect to time t and ( )
0

ju  is the jth derivative of u0(x,t) with respect to the axial coordinate x. 

Hamilton’s Principle shows that the Lagrangian density Λ satisfies a Euler-Lagrange partial 

differential equation (typically) of the form: 

 ( ) ( )1 1

1 ( 1) ( )
1 0 0

1 1 0
j jn

j j

j j j j
j x t xu u

− −
− −

=

⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ⎪ ⎪− + − =⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑ $

 (11) 

where n is the number of dependent terms in (1)-(2). 
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a) The classical theory 

The classical theory is the simplest of the models discussed in this article. The longitudinal 
displacement is represented by 

 0( , ) ( , )u u x t u x t= =  (12) 

and lateral displacements are assumed negligible (w = 0). Since, for the classical model, η = 0 
(a fortiori ┣ = 0) and E = 2┤, the Lagrangian density of the system is given by 

 ( )2 2
0 0 0 0

1
( , )

2
u u Su ESuρ′ ′Λ = −$ $  (13) 

which satisfies the Euler-Lagrange differential equation 

 
0 0

0
t u x u

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ
+ =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠$

 (14) 

The prime denotes the derivate with respect to the axial coordinate x. Substituting (13) into 
(14) leads to the familiar classical wave equation 

 2 2
0 0 0t xu E uρ∂ − ∂ =  (15) 

The associated natural (free end) 0 0,
( , ) 0

x l
u x t =
′ =  or essential (fixed end) 0 0,

( , ) 0
x l

u x t = =  

boundary conditions are derived directly from Hamilton’s principle. 
The eigenfunctions {y0n(x)} of the corresponding Sturm-Liouville problem satisfy the two 
orthogonality conditions (9) where 

 ( ) ( )0 0 0 01 20 0
, ( ) ( ) , , ( ) ( )

l l

m n m n m n m ny y y x y x dx y y y x y x dx′ ′= =∫ ∫  (16) 

b) The Rayleigh-Bishop theory 

In the Rayleigh-Bishop theory, the longitudinal and lateral displacements are represented by 
the two term expansion 

 0

1

( , ) ( , )

( , , ) ( , )

u x t u x t

w x r t ru x t

=
=

 (17) 

Substituting (17) into the equation for the radial stress component σrr and equating all terms 
at r0 to zero yields 1 0( , ) ( , ).u x t u x tη ′= −  That is, the lateral displacement of a particle distant r 
from the axis is assumed to be proportional to the longitudinal strain: 

 0( , , ) ( , ) ( , )xw x r t r u x t ru x tη η ′= − ∂ = −  (18) 

Applying this constraint to the lateral displacement means that σrr = 0 throughout the entire 
thickness of the bar. The Rayleigh-Bishop model is categorised as a unimode, plane cross 
section model, since both longitudinal and lateral displacements are defined in terms of a 
single mode of displacement, u0, and the term 0( , )ru x tη ′−  in (18) implies that lateral 
deformation occurs in plane and hence all plane cross sections remain plane during 
deformation. Substituting (17) and (18) into (6) and (7) results in 
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 ( )2 2
0 2 00

1

2

l
T Su I u dxρ ρη ′= +∫ $ $  (19) 

and 

 ( )2 2 2
0 2 00

1

2

l
P SEu I u dxμη′ ′′= +∫  (20) 

where 
42

2 2s
RI r ds π= =∫  is the polar moment of inertia of the cross section. The Lagrangian 

density of the system is given by 

 ( )2 2 2 2 2
0 0 0 0 0 2 0 0 2 0

1
( , , , )

2
u u u u Su I u SEu I uρ ρη η μ′ ′ ′′ ′ ′ ′′Λ = + − −$ $ $ $  (21) 

which satisfies the Euler-Lagrange differential equation 

 
2 2

2
0 0 0 0

0
t u x u x t u ux

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
+ − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠$ $  (22) 

The Rayleigh-Bishop equation (Gai et al., 2007) is thus obtained 

 ( ) ( )2 2 2 2 2 2
0 0 2 0 0 0t x x t xS u E u I u uρ η ρ μ∂ − ∂ − ∂ ∂ − ∂ =  (23) 

A combination of the natural (free ends) 

 

2 2
0 2 0 2 0

0,

0 0,

( , ) ( , ) ( , ) 0, and

( , ) 0

x l

x l

SEu x t I u x t I u x t

u x t

ρη η μ
=

=

⎡ ⎤′ ′ ′′′+ − =⎣ ⎦
′′ =

$$
 (24) 

or the essential (fixed ends) 

 0 00, 0,
( , ) 0 and ( , ) 0

x l x l
u x t u x t

= =
′= =  (25) 

boundary conditions can be used at the end points x = 0 and x = l. 

It is possible to prove that the eigenfunctions {y0n(x)} of the corresponding Sturm-Liouville 

problem satisfy the two orthogonality conditions (9) where 

 
( )

( )

2
0 0 2 0 01 0

2
0 0 2 0 02 0

, ( ) ( ) ( ) ( )

, ( ) ( ) ( ) ( )

l

m n m n m n

l

m n m n m n

y y Sy x y x I y x y x dx

y y SEy x y x I y x y x dx

η

μη

⎡ ⎤′ ′= +⎣ ⎦

⎡ ⎤′ ′ ′′ ′′= +⎣ ⎦

∫

∫
 (26) 

c) The Rayleigh-Love theory 

As in the case of the Rayleigh-Bishop theory, the longitudinal and lateral displacements for 

the Rayleigh-Love theory are defined by (17) and (18). It is clear that the Rayleigh-Love 

theory is a unimode, plane cross sectional theory, for the same reasons as discussed above 

for the Rayleigh-Bishop case. 
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In contrast to the Rayleigh-Bishop theory, Rayleigh and Love made the additional 

assumption that only the inertial effect of the lateral displacements are taken into 

consideration and the effect of stiffness on shear stress is neglected when computing the 

potential energy function. That is, ┝xr = ∂xw ≠ 0 and σxr ≈ 0. Under these assumptions, the 

kinetic energy function is given by (19) and the potential energy function is reduced to 

 2
00

1

2

l
P SEu dx′= ∫  (27) 

The Langrangian density of the system 

 ( )2 2 2 2
0 0 0 0 2 0 0

1
( , , )

2
u u u Su I u SEuρ ρη′ ′ ′ ′Λ = + −$ $ $ $  (28) 

satisfies the Euler-Lagrange differential equation: 

 
2

0 0 0

0
t u x u x t u

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
+ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠$ $

 (29) 

Substituting (28) into (29) leads to the Rayleigh-Love equation of motion (Fedotov et al., 

2007): 

 ( ) ( )2 2 2 2 2
0 0 2 0 0t x x tS u E u I uρ η ρ∂ − ∂ − ∂ ∂ =  (30) 

A combination of the natural (free ends) 

 2
0 2 0

0,
( , ) ( , ) 0

x l
SEu x t I u x tρη

=
⎡ ⎤′ ′+ =⎣ ⎦$$  (31) 

or the essential (fixed ends) 

 0 0,
( , ) 0

x l
u x t = =  (32) 

boundary conditions can be used at the end points x = 0 and x = l. Neglecting the shear 
stress term σxr in the potential energy function has resulted in the absence of the term with 
fourth order x derivative in (23). This will result in a supremum (limit point) for the set of 
eigenvalues ωn. Note also that, due to the absence of the fourth order x derivative, the 
number of boundary conditions at each end have been reduced from two to only one. 
It is possible to prove that the eigenfunctions {y0n(x)} of the corresponding Sturm-Liouville 
problem satisfy the two orthogonality conditions (9) where 

 
( )

( )

2
0 0 2 0 01 0

0 02 0

, ( ) ( ) ( ) ( )

, ( ) ( )

l

m n m n m n

l

m n m n

y y Sy x y x I y x y x dx

y y y x y x dx

η⎡ ⎤′ ′= +⎣ ⎦

′ ′=

∫

∫
 (33) 

d) Three term Rayleigh-Bishop type theory 

Consider the case where the longitudinal and lateral displacements are defined by the three 
term expansion 
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2

0 2

1

( , , ) ( , ) ( , )

( , , ) ( , )

u x r t u x t r u x t

w x r t ru x t

= +
=

 (34) 

This is a non plane cross sectional theory due to the presence of the axial shear term r2u2(x,t). 
Substituting (34) into the equations for radial and axial shear stress and equating the terms 
at r0 and r1 yields 

 1 0 2 1 0

1
( , ) ( , ) and ( , ) ( , ) ( , )

2 2
u x t u x t u x t u x t u x t

ηη ′ ′ ′′= − = − =  (35) 

It follows that the axial shear stress σxr = 0 throughout the entire thickness of the bar. Making 
use of the relations ┣ + 2┤ -2┣η = E and 2η(┣ + ┤) = ┣, the Lagrangian density of the system 
can be represented as 

 
( )

0 0 0 0 0

2 2
2 2 2 2 2 2
0 2 0 0 4 0 2 0 0 2 0 0 4 0

( , , , , )

1
2

2 4 4

u u u u u

Su I u u I u I u SEu I Eu u I u
η ηρ ρη ρ ρη η λ μ

′ ′ ′′ ′′′Λ = Λ

⎛ ⎞
′′ ′′ ′ ′ ′ ′′′ ′′′= + + + − − − +⎜ ⎟⎜ ⎟

⎝ ⎠

$ $ $

$ $ $ $ $
(36) 

where 
64

4 3s
RI r ds π= =∫  is a property of the cross section of the rod. The Lagrangian 

density (36) satisfies the Euler-Lagrange differential equation 

 
2 3 3

2 3
0 0 0 0 0

0
t u x u x t u u ux t x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
+ − + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠$ $ $

 (37) 

which leads to the equation of motion for the three term Rayleigh-Bishop type model 

 ( ) ( ) ( )
2

2 4 2
0 0 2 0 0 4 0 0 2 02 0

4
x xS u Eu I u Eu I u u I u

ηρ η ρ ρ λ μ ρη′′ ′′ ′′ ′′− + ∂ − + ∂ ⎡ − + ⎤ − =⎣ ⎦$$ $$ $$ $$  (38) 

with the corresponding natural (free ends) 

 

( )

( )

( )

2 2
(v)2

0 2 0 2 0 2 0 4 0 4 0

0,

2 2
(iv)

2 0 4 0 2 0 4 0

0,

2

2 0 4 0

0,

2 0, and
2 4 4

2 0, and
2 4 2 4

2 0.
2 4

x l

x l

x l

SEu I Eu I u I u I u I u

I u I u I Eu I u

I Eu I u

η η ηη ρη ρ ρ λ μ

η η η ηρ ρ λ μ

η η λ μ

=

=

=

⎡ ⎤
′ ′′′ ′ ′ ′′′− − − + + − + =⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
′′ ′′− − + + + =⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
′ ′′′− − + =⎢ ⎥

⎢ ⎥⎣ ⎦

$$ $$ $$

$$ $$  (39) 

or essential (fixed ends) 

 0 0 00, 0, 0,
0 and 0 and 0

x l x l x l
u u u= = =

′ ′′= = =  (40) 

boundary conditions at the end points x = 0 and x = l. 
It is possible to prove that the eigenfunctions {y0n(x)} of the corresponding Sturm-Liouville 
problem satisfy the two orthogonality conditions (9) where 
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( )

( ) ( )

2
2

2 2 4 21 0

2

2 2 42 0

,
2 2 4

, 2
2 2 4

l

m n n m n m n m n m n m

l

m n n m n m n m n m

y y Sy y I y y I y y I y y I y y dx

y y SEy y I Ey y I Ey y I y y dx

η η η η

η η η λ μ

⎛ ⎞
′′ ′′ ′′ ′′ ′ ′= + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

′ ′ ′′′ ′ ′ ′′′ ′′′ ′′′= + + + +⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫
 (41) 

e) Three term Rayleigh-Love type theory 

As in the case of the three term Rayleigh-Bishop type theory, the longitudinal and lateral 

displacements for the three term Rayleigh-Love type theory are given by (34) and (35). In 

this theory, an additional Rayleigh-Love type assumption is made to neglect the radial stress 

component, which is non-zero in this case, when calculating the potential energy of the 

system.  That is, ┝rr = ∂rw ≠ 0 and σrr ≈ 0. Under these assumptions, the Lagrangian density of 

the system becomes 

 

( )

0 0 0 0 0

2 2
2 2 2 2 2
0 2 0 2 0 0 4 0 0 2 0 0 2 0 0

2
2

4 0

( , , , , )

1

2 4 2

2
4

u u u u u

Su I u I u u I u SEu I Eu u I u u

I u

η ηρ ρη ρη ρ η λ

η λ μ

′ ′ ′′ ′′′Λ = Λ

⎡
′ ′′ ′′ ′ ′ ′′′ ′ ′′′= + + + − − − −⎢

⎢⎣
⎤

′′′− + ⎥
⎥⎦

$ $ $

$ $ $ $ $  (42) 

The Lagrangian density (42) satisfies the Euler-Lagrange differential equation 

 
2 3 3

2 3
0 0 0 0 0

0
t u x u x t u u ux t x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
+ − + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠$ $ $

 (43) 

which leads to the equation of motion for the three term Rayleigh-Love type model: 

( ) ( ) ( ) ( )
2 2

2 4 2 4
0 0 2 0 0 4 0 0 2 0 2 02 0

4 2
x x xS u Eu I u Eu I u u I u I u

η ηρ η ρ ρ λ μ ρη λ′′ ′′ ′′ ′′− + ∂ − + ∂ ⎡ − + ⎤ − − ∂ =⎣ ⎦$$ $$ $$ $$  (44) 

with the corresponding natural (free ends) 

( )

( )

( )

2 2 2
(v)2

0 2 0 2 0 2 0 2 0 4 0 4 0

0,

2 2 2
(iv)

2 0 4 0 2 0 4 2 00

0,

2

2 0 4

2 0, and
2 2 4 4

2 0, and
2 4 2 4 4

2
2 4

x l

x l

SEu I Eu I u I u I u I u I u

I u I u I Eu I u I u

I Eu I u

η η η ηη λ ρη ρ ρ λ μ

η η η η ηρ ρ λ μ λ

η η λ μ

=

=

⎡ ⎤
′ ′′′ ′′′ ′ ′ ′′′− − − − + + − + =⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
′′ ′′ ′′− − + + + + =⎢ ⎥

⎢ ⎥⎣ ⎦

′ ′′′− − +

$$ $$ $$

$$ $$

2

0 2 0

0,

0.
4

x l

I u
η λ

=

⎡ ⎤
′− =⎢ ⎥

⎢ ⎥⎣ ⎦

(45) 

or the essential (fixed ends) 

 0 0 00, 0, 0,
0 and 0 and 0

x l x l x l
u u u= = =

′ ′′= = =  (46) 

boundary conditions at the end points x = 0 and x = l. It should be noted that in this case, the 

Rayleigh-Love type assumption that σrr = 0 did not result in a simplification of the equation 
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of motion or boundary conditions as was the case in the two term theories discussed above. 

This is true for all unimode theories in which an uneven number of terms have been 

considered to represent longitudinal and lateral displacements. 

It is possible to prove that the eigenfunctions {y0n(x)} of the corresponding Sturm-Liouville 

problem satisfy the two orthogonality conditions (9) where 

 

( )

( ) ( )

2
2

2 2 4 21 0

2

2 2 42 0

2 2

2 2

,
2 2 4

, 2
2 2 4

    
4 4

l

m n n m n m n m n m n m

l

m n n m n m n m n

n m n m

y y Sy y I y y I y y I y y I y y dx

y y SEy y I Ey y I Ey y I y y

I y y I y y dx

η η η η

η η η λ μ

η ηλ λ

⎧ ⎫⎪ ⎪′′ ′′ ′′ ′′ ′ ′= + + + +⎨ ⎬
⎪ ⎪⎩ ⎭
⎧⎪ ′ ′ ′′′ ′ ′ ′′′ ′′′ ′′′= + + + + +⎨
⎪⎩

⎫⎪′′′ ′ ′ ′′′+ + ⎬
⎪⎭

∫

∫  (47) 

f) Four term Rayleigh-Bishop type theory 

Consider the case where the longitudinal and lateral displacements are defined by the three 

term expansion 

 
2

0 2

3
1 3

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

u x r t u x t r u x t

w x r t ru x t r u x t

= +

= +
 (48) 

Substituting (48) into the equations for radial and axial shear stress and equating the terms 

at r0, r1 and r2 yields 

 
2

1 0 2 1 0 3 2 0

1
, and

2 2 3 2 2(3 2 )
u u u u u u u u

η η ηη
η η

′ ′ ′′ ′ ′′′= − = − = = − = −
− −

 (49) 

It follows that the radial stress σrr is zero throughout the entire thickness of the bar. Making 

use of the relations ┣ + 2┤ -2┣η = E, 2η(┣ + ┤) = ┣ and 2┤η = ┣(1 -2η), the Lagrangian density 

of the system can be given by 

( )
( )

( ) ( )

( )

2 3 4
2 2 2 2 2
0 2 0 0 4 0 2 0 4 0 0 6 02

2 4 32(iv)2 2 2
0 2 0 0 4 0 6 4 002

4
2

4 02

1

2 4 (3 2 ) 4(3 2 )

    2
4 3 24 3 2

    
3 2

Su I u u I u I u I u u I u

SEu I Eu u I u I u I u

I u

η η ηρ ρη ρ ρη ρ ρ
η η

η η ηη λ μ μ λ
ηη

η μ
η

⎡
′′ ′′ ′ ′ ′′′ ′′′Λ = + + + + + −⎢

− −⎢⎣

′ ′ ′′′ ′′′ ′′′− − − + − + +
−−

⎤
′′′ ⎥+
⎥− ⎦

$ $ $ $ $ $ $ $

 (50) 

where 
86

6 4s
RI r ds π= =∫  is a property of the cross section of the rod. The Langrangian 

density of the system satisfies the Euler-Lagrange partial differential equation 

2 3 3 4 4

2 3 3 4 (iv)
0 0 0 0 0 0 0

0
t u x u x t u u u ux t x x t x u

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
+ − + + − − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′ ′′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠$ $ $ $

 (51) 
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which leads to the equation of motion for the four term Rayleigh-Bishop type model 

( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )
( )

( )

2 4
2 4 6

0 0 2 0 0 4 0 0 6 0 02

3 3 4
2 4 6 6

2 0 4 0 4 0 4 02

2
4 4 3 2

    0
3 2 3 2 3 2

x x x

x x x

S u Eu I u Eu I u u I u u

I u I u I u I u

η ηρ η ρ ρ λ μ ρ μ
η

η η ηρη ρ λ μ
η η η

′′ ′′ ′′ ′′− + ∂ − + ∂ ⎡ − + ⎤ − ∂ − −⎣ ⎦
−

′′− − ∂ + ∂ + ∂ =
− − −

$$ $$ $$ $$

$$ $$

 (52) 

with the corresponding natural (free ends) 

 

2 2 3 3

2 2 3 (iv)
0 0 0 0 0 0 0,

2 2

2
0 0 0

0     and

x l
u t u x t u u ux x t x u

t u x u x t u x

=

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
− + + − − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′ ′′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
− − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′ ′′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

$ $ $

$ $ (iv)
0 0,

(iv)
0 0 0 0,

(iv)
0 0,

0     and

0     and

0            

x l

x l

x l

u

u t u x u

u

=

=

=

⎡ ⎤⎛ ⎞
=⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞∂Λ ∂ ∂Λ ∂ ∂Λ
− − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟′′′ ′′′∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤∂Λ
=⎢ ⎥

∂⎢ ⎥⎣ ⎦

$

 (53) 

or essential (fixed ends) 

 0 0 0 00, 0, 0, 0,
0 and 0 and 0 and 0

x l x l x l x l
u u u u

= = = =
′ ′′ ′′′= = = =  (54) 

boundary conditions at the end points x = 0 and x = l. The explicit form of the boundary 
conditions (53) can be determined using the Lagrangian density (50). 

g) Four term Rayleigh-Love type theory 

As in the case of the three term Rayleigh-Bishop type theory, the longitudinal and lateral 
displacements for this theory are given by (48) and (49). The constraints (49) result in σrr = 0 
and σxr ≠ 0 throughout the entire thickness of the bar. An additional Rayleigh-Love type 
assumption is made to neglect the axial shear stress component when calculating the 
potential energy of the system. Under these assumptions, the Lagrangian density of the 
system reduces to 

( ) ( ) ( )

2 3 4
2 2 2 2 2
0 2 0 0 4 0 2 0 4 0 0 6 02

2 3 4
2 2 2 2

0 2 0 0 4 0 4 0 4 02

1

2 4 (3 2 ) 4(3 2 )

    2
4 3 2 3 2

Su I u u I u I u I u u I u

SEu I Eu u I u I u I u

η η ηρ ρη ρ ρη ρ ρ
η η

η η ηη λ μ λ μ
η η

⎡
′′ ′′ ′ ′ ′′′ ′′′Λ = + + + + + −⎢

− −⎢⎣
⎤

′ ′ ′′′ ′′′ ′′′ ′′′ ⎥− − − + + +
− ⎥− ⎦

$ $ $ $ $ $ $ $

 (55) 

The Langrangian density of the system satisfies the Euler-Lagrange differential equation 

 
2 3 3 4

2 3 3
0 0 0 0 0 0

0
t u x u x t u u u ux t x x t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
+ − + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′ ′′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠$ $ $ $

 (56) 
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which leads to the equation of motion for the three mode Rayleigh-Love type model: 

( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )
( )

( )

2 4
2 4 6

0 0 2 0 0 4 0 0 6 02

3 3 4
2 4 6 6

2 0 4 0 4 0 4 02

2
4 4 3 2

    0
3 2 3 2 3 2

x x x

x x x

S u Eu I u Eu I u u I u

I u I u I u I u

η ηρ η ρ ρ λ μ ρ
η

η η ηρη ρ λ μ
η η η

′′ ′′ ′′− + ∂ − + ∂ ⎡ − + ⎤ − ∂ −⎣ ⎦
−

′′− − ∂ + ∂ + ∂ =
− − −

$$ $$ $$ $$

$$ $$

 (57) 

A combination of the natural (free ends) 

 

2 2 3

2 2
0 0 0 0 0 0,

2

0 0 0 0,

0

0 and

0 and

x l

x l

u t u x t u u ux x t

t u x u x t u

u t

=

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
− + + − =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′ ′′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
− − + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′ ′′′ ′′′∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∂Λ ∂ ∂Λ
−

′′′ ′′′∂ ∂ ∂

$ $ $

$ $

$0 0,

0

x l
u

=

⎡ ⎤⎛ ⎞
=⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

 (58) 

or the essential (fixed ends) 

 0 0 00, 0, 0,
0,   and  0,   and  0.

x l x l x l
u u u

= = =
′ ′′= = =  (59) 

boundary conditions can be used at the end points x = 0 and x = l. The explicit form of the 

boundary conditions (58) can be determined from the Lagrangian density (55). Once again, 

neglecting the shear stress term σxr in the potential energy function has simplified the 

equation of motion and boundary conditions. The highest order x derivative (in this case, 

eighth order) does not appear in the equation of motion (57) and the number of boundary 

conditions at each end has been reduced from four to three. The absence of the eighth order 

x derivative, together with the presence of the mixed eighth order x-t derivate will also 

result in a limit point for the set of eigenvalues ωn. This simplification of the equation of 

motion and boundary conditions is true for all unimode theories in which an even number 

of terms have been considered to represent longitudinal and lateral displacements. 

3.2 Multimodal theories 

The multimodal theories are derived from the representation of longitudinal and lateral 

displacements (1)-(2), where all the terms are assumed to be independent of one another. 

Substituting the resulting kinetic and potential energy functions, given by (6) and (7), into 

the Lagrangian yields 

 ( )
0

, ,
l

j j jL T P u u u dx′= − = Λ∫ $  (60) 

where j depends on the choice of n and m in (1)-(2). Hamilton’s Principle shows that the 

Lagrangian density Λ satisfies a system of Euler-Lagrange differential equations (typically) 

of the form: 
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0 0

0

0, 1,2, , 1
j j j

t u x u

j n
t u x u u

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ
+ =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂Λ
⎜ ⎟ ⎜ ⎟+ − = = −
⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

$

…
$

 (61) 

where n is the number of displacement modes (independent functions) chosen in (1)-(2). The 
upper dot and prime denote derivatives with respect to time t and axial coordinate x 
respectively. 

a) Two mode (Mindlin-Herrmann) theory 

In the case of the Mindlin-Herrmann theory, the longitudinal and lateral wave 
displacements are defined as 

 0

1

( , ) ( , )

( , , ) ( , )

u x t u x t

w x r t ru x t

=
=

 (62) 

The Mindlin-Herrmann theory is the first (and the simplest) of the “multimode” theories, 

since two independent modes of displacement, u0(x,t) and u1(x,t), have been considered. The 

Mindlin-Herrmann theory is also a plane cross section theory, since the term ru1(x,t) in (62) 

implies that all plane cross sections remain plane during lateral (and longitudinal) 

deformation. It should be noted that both the Rayleigh-Love and Rayleigh-Bishop theories 

are special cases of the Mindlin-Herrmann theory and can be obtained from the Mindlin-

Herrmann theory by introducing a constraint of the form 1 0 0u uη ′+ =  (that is, a constrained 

extremum). 
Substituting (62) into (6) and (7) results in the following Lagrangian density of the system 

 
( )

( ) ( )

0 1 0 1 1

2 2 2 2 2
0 2 1 0 0 1 1 2 1

, , , ,

1
   2 4 4

2

u u u u u

Su I u S u S u u S u I uρ ρ λ μ λ λ μ μ

′ ′Λ = Λ

⎡ ⎤′ ′ ′= + − + − − + −⎣ ⎦

$ $

$ $
 (63) 

which satisfies the following system of Euler-Lagrange differential equations: 

 
0 0

1 1 1

0

0

t u x u

t u x u u

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ
+ =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂Λ
+ − =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

$

$

 (64) 

Substituting (63) into (64) leads to the system of equations of motion: 

 
( )

( ) ( )

2 2
0 0 1

2 2
0 2 1 1 1

2 2 0

2 4 0

t x x

x t x

S u u S u

S u I u u S u

ρ λ μ λ

λ ρ μ λ μ

⎡ ⎤∂ − + ∂ − ∂ =⎣ ⎦

∂ + ∂ − ∂ + + =
 (65) 

A combination of the natural 

 [ ]0 1 1 0,0,
( 2 ) ( , ) 2 ( , ) 0, and ( , ) 0

x lx l
u x t u x t u x tλ μ λ ==
′ ′+ + = =  (66) 
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or the essential 

 0 1 0,0,
( , ) 0 and ( , ) 0

x lx l
u x t u x t == = =  (67) 

boundary conditions can be used at the end points x = 0 and x = l. 
It is possible to prove that the eigenfunctions {y0n(x)} and {y1n(x)} of the corresponding 
Sturm-Liouville problem satisfy the two orthogonality conditions (9) where 

 

( ) [ ]

( ) ( ) ( )
( )

0 0 2 1 11 0

1 1 0 02 0

2 1 1 0 1 0 1

, ( ) ( ) ( ) ( )

, 4 ( ) ( ) 2 ( ) ( )

                     ( ) ( ) 2 ( ) ( ) ( ) ( )

l

m n m n m n

l

m n m n m n

m n m n n m

y y Sy x y x I y x y x dx

y y S y x y x S y x y x

I y x y x S y x y x y x y x dx

λ μ λ μ

μ λ

= +

′ ′= ⎡ + + + +⎣

′ ′ ′ ′ ⎤+ + + ⎦

∫
∫  (68) 

b) Three mode theory 

Consider the case where the longitudinal and lateral displacements are defined by three 
modes of displacement as follows: 

 
2

0 2

1

( , , ) ( , ) ( , )

( , , ) ( , )

u x r t u x t r u x t

w x r t ru x t

= +
=

 (69) 

The longitudinal and lateral displacements defined in (69) are similar to those proposed by 
Mindlin and McNiven as a “second approximation” of their general theory. 
The Lagrangian density of the system is given by 

    

( )

( ) ( ) ( )

( ) ( )

0 1 2 0 1 2 1 2

2 2 2 2 2 2
0 2 0 2 2 1 4 2 0 2 1 4 2

2 2
0 1 2 1 2 2 0 2 2 2 1 1 2 2

, , , , , , ,

1
   2 2 2

2

       4 4 2 2 4 4 4

u u u u u u u u

S u I u u I u I u Su I u I u

Su u I u u I u u I u u Su I u

ρ ρ ρ ρ λ μ μ λ μ

λ μ λ μ λ λ μ μ

′ ′ ′Λ = Λ

⎡ ′ ′ ′= + + + − + − − + −⎣

⎤′ ′ ′ ′ ′− − − + − − + − ⎦

$ $ $

$ $ $ $ $    (70) 

which satisfies the following system of Euler-Lagrange differential equations 

 

0 0

1 1 1

2 2 2

0

0

0

t u x u

t u x u u

t u x u u

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ
+ =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂Λ
+ − =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂Λ
+ − =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

$

$

$

 (71) 

Substituting (70) into (71) yields the system of equations of motion: 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
0 0 1 2 2 2

2 2
0 2 1 1 1 2 2

2 2 2 2
2 0 0 2 1 4 2 2 2 2

2 2 2 0

2 4 2 0

2 2 2 4 0

t x x t x

x t x x

t x x t x

S u u S u I u u

S u I u u S u I u

I u u I u I u u I u

ρ λ μ λ ρ λ μ

λ ρ μ λ μ λ μ

ρ λ μ λ μ ρ λ μ μ

⎡ ⎤ ⎡ ⎤∂ − + ∂ − ∂ + ∂ − + ∂ =⎣ ⎦ ⎣ ⎦

∂ + ∂ − ∂ + + + − ∂ =

⎡ ⎤ ⎡ ⎤∂ − + ∂ − − ∂ + ∂ − + ∂ + =⎣ ⎦ ⎣ ⎦

  (72) 
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A combination of the natural 

 

[ ]
[ ]

[ ]

0 1 2 2 0,

2 1 2 2 0,

2 0 2 1 4 2 0,

( 2 ) ( , ) 2 ( , ) ( 2 ) ( , ) 0, and

( , ) 2 ( , ) 0 and

( 2 ) ( , ) 2 ( , ) ( 2 ) ( , ) 0

x l

x l

x l

S u x t S u x t I u x t

I u x t I u x t

I u x t I u x t I u x t

λ μ λ λ μ

μ μ

λ μ λ λ μ

=

=

=

′ ′+ + + + =

′ + =

′ ′+ + + + =

 (73) 

or essential 

 0 1 20, 0,0,
( , ) 0 and ( , ) 0 and ( , ) 0

x l x lx l
u x t u x t u x t= ==

= = =  (74) 

boundary conditions can be used at the end points x = 0 and x = l. 

It is possible to prove that the eigenfunctions {y0n(x)}, {y1n(x)} and {y2n(x)} of the 

corresponding Sturm-Liouville problem satisfy the two orthogonality conditions (9) where 

( ) [
( )

( ) ( ) ( )
( )

0 0 2 1 1 4 2 21 0

2 0 2 0 2

1 1 2 2 2 0 02 0

2 1 1 4 2 2

, ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

, 4 ( ) ( ) 4 ( ) ( ) 2 ( ) ( )

    ( ) ( ) 2 ( ) ( )

l

m n m n m n m n

m n n m

l

m n m n m n m n

m n m n

y y Sy x y x I y x y x I y x y x

I y x y x y x y x dx

y y S y x y x I y x y x S y x y x

I y x y x I y x y x

λ μ μ λ μ

μ λ μ

= + + +

⎤+ + ⎦

′ ′= ⎡ + + + + +⎣
′ ′ ′ ′+ + +

∫

∫

( ) ( )( )
( ) ( )

0 1 0 1 2 0 2 0 2

2 1 2 1 2 2 1 2 1 2

    2 ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

    2 ( ) ( ) ( ) ( ) +2 ( ) ( ) ( ) ( )

m n n m m n n m

m n n m m n n m

S y x y x y x y x I y x y x y x y x

I y x y x y x y x I y x y x y x y x dx

λ λ μ

λ μ

+
′ ′ ′ ′ ′ ′+ + + + + +

′ ′ ′ ′ ⎤+ + + ⎦

 (75) 

c) Four mode theory 

Consider the case where the longitudinal and lateral displacements are defined by four 

modes of displacement as follows 

 
2

0 2

3
1 3

( , , ) ( , ) ( , )

( , , ) ( , )  ( , )

u x r t u x t r u x t

w x r t ru x t r u x t

= +

= +
 (76) 

In a similar fashion as was described for the three mode theory above, the system of 

equations resulting from (76) may be written as 

 

( ) ( )

( ) ( )
( ) ( )

2 2 2 2
0 0 12 1 2 2 2 14 3

2 2 2 2
12 0 2 1 1 22 1 23 2 4 3 3 24 3

2 2 2 2
2 0 0 23 1 4 2 2 33 2 34 3

2 2
14 0 4 1

2 2 0

0

2 2 0

t x t x

t x t x

t x t x

t x

S u u d u I u u d u

d u I u u b u d u I u u b u

I u u d u I u u b u d u

d u I u u

ρ λ μ ρ λ μ

ρ μ ρ μ

ρ λ μ ρ λ μ

ρ μ

⎡ ⎤ ⎡ ⎤∂ − + ∂ − + ∂ − + ∂ − =⎣ ⎦ ⎣ ⎦

+ ∂ − ∂ + + + ∂ − ∂ + =

⎡ ⎤ ⎡ ⎤∂ − + ∂ − + ∂ − + ∂ + − =⎣ ⎦ ⎣ ⎦

+ ∂ − ∂( ) ( )2 2
1 24 1 34 2 6 3 3 44 3 0t xb u d u I u u b uρ μ+ + + ∂ − ∂ + =

 (77) 

where d12 = 2┣∂Sx, d14 = 4┣I2∂x, d23 = 2I2(┣ - ┤)∂x and d34 = 2I4(2┣ – ┤)∂x are first order 

differential operators and b22 = 4S(┣ + ┤), b33 = 4I2┤, b24 = 8I2(┣ + ┤) and b44 = 4I4(4┣ + 5┤) are 

numbers depending on ┣, ┤, S, I2 and I4. 

A combination of the natural 
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[ ]
[ ]

[ ]

0 1 2 2 2 3 0,

2 1 2 2 4 3 0,

2 0 2 1 4 2 4 3 0,

4 1 4 2

( 2 ) ( , ) 2 ( , ) ( 2 ) ( , ) 4 ( , ) 0, and

( , ) 2 ( , ) ( , ) 0, and

( 2 ) ( , ) 2 ( , ) ( 2 ) ( , ) 4 ( , ) 0, and

( , ) 2 (

x l

x l

x l

S u x t S u x t I u x t I u x t

I u x t I u x t I u x t

I u x t I u x t I u x t I u x t

I u x t I u x

λ μ λ λ μ λ

μ μ μ

λ μ λ λ μ λ

μ μ

=

=

=

′ ′+ + + + + =

′ ′+ + =

′ ′+ + + + + =

′ +[ ]6 3 0,
, ) ( , ) 0,

x l
t I u x tμ

=
′+ =

 (78) 

or essential 

 0 1 2 30, 0,0, 0,
( , ) 0 and ( , ) 0 and ( , ) 0 and ( , ) 0

x l x lx l x l
u x t u x t u x t u x t= == == = = =  (79) 

boundary conditions can be used at the end points x = 0 and x = l. 

d) Zachmanoglou-Volterra theory 

In the Zachmanoglou-Volterra theory, the longitudinal and lateral displacements are 

defined by four modes of displacement as 

 2
0 2( , ) ( , )u u x t r u x t= +  (80) 

and 

 3
1 3( , ) ( , )w ru x t r u x t= +  (81) 

 

Zachmanoglou and Volterra also considered the additional condition that the radial stress 

component must be zero on the outer cylindrical surface of the bar, σrr = 0 at r = R. From this 

condition, it follows that 

 
( ) ( )2

3 1 0 22

1
( , ) ( , )

2 3
u x t u x t u R u

R
η

η
⎡ ⎤′ ′= + +⎣ ⎦−

 (82) 

That is, u3(x,t) is defined in terms of u0(x,t), u1(x,t) and u2(x,t), and so the number of 

independent modes describing the vibration dynamics for the Zachmanoglou-Volterra 

theory has been reduced from four to three. The reduction of independent displacement 

modes results in a simplification of the four mode theory, without having an impact on 

model accuracy. The Lagrangian density of the system is given by 
 

 

( ) ( )

( )
( )

0 1 2 0 2 0 1 2 0 2 1 2

2 2 2 2 24
0 2 1 2 0 2 4 2 1 0 1 1 22

2 2 2 2 2 2 4 2 26
1 0 1 0 1 2 0 2 224

( , , , , , , , , , , , )

1 2
2

2 2 3

2 2 2
2 3

u u u u u u u u u u u u

I
S u I u I u u I u u u u R u u

R

I
u u u u R u u R u u R u

R

ρρ ρ ρ ρ η η
η

ρ η η η η η
η

′ ′ ′ ′ ′ ′′ ′′Λ = Λ

⎧⎪ ′ ′= + + + + + + +⎨
−⎪⎩

′ ′ ′ ′ ′ ′+ + + + + +
−

$ $ $ $ $

$ $ $ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $ $

( ) ( ) ( )
( ) (

)
( )

(

2 2 2 24
0 2 1 2 0 2 4 2 12

2 2 2 2 26
0 1 1 2 1 0 1 0 1 224

2
2 2 2 2

2 3

2 2
2 3

I
S u I u I u u I u u

R

I
u u R u u u u u u R u u

R

λ μ μ λ μ λ μ μ
η

ημ ημ μ ημ η μ ημ
η

−

′ ′ ′ ′ ′ ′− + − − + − + − +
−

′′ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′′+ + − + + + +
−

 (83a) 

www.intechopen.com



Longitudinal Vibration of Isotropic Solid Rods: From Classical to Modern Theories   

 

205 

 

) ( )

( )
( )

( )
( ) ( )

2 2 4 2 2 2 2
0 2 2 1 0 1 2 2 2 1 2

2 2 22
2 1 2 1 0 0 1 0 22

2 2 2 24
1 2 0 1 0 1 224

2 2 4
0 2

2 4 4 4 4

4 16 8 16 8
2 3

8 8 4 5 4 4 5 8
2 3

8 4

R u u R u S u S u u I u I u u

I
I u u u u u u R u u

R

I
R u u u u u R u u

R

R u u R

η μ η μ λ μ λ μ λ

μ λ μ ηλ λ ηλ
η

λ η λ μ η λ μ ημ
η

η μ

′′ ′′ ′′ ′ ′+ + − + − − − −

⎡′ ′ ′ ′ ′− − + + + + +⎣−

⎤ ⎡′ ′ ′ ′+ − + + + − −⎦ ⎣−

′ ′− + ( ) ( )

( ) ( )

2 2 2
2 1

2 2 24
2 0 2 2 2 1 22

4 5 4 4 5

8 4 4 4
2 3

u u

I
R u u u R u u u u

R

η λ μ λ μ

ηλ ημ ημ μ
η

⎤′+ + + −⎦
⎫⎪′ ′′ ′′ ′− + + + ⎬

− ⎪⎭

 (83b) 

The Lagrangian density satisfies the system of three Euler-Lagrange differential equations 

 

2 2

2
0 0 0 0

1 1 1

2 2

2
2 2 2 2 2

0

0

0

t u x u x t u ux

t u x u u

t u x u x t u u ux

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ
+ − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂Λ
+ − =⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂ ∂Λ ∂Λ
+ − − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

$ $

$

$ $

 (84) 

with the corresponding the natural 

 

0 0 0 0 0,0,

1 0,

2 2 2 2 0,0,

0, and 0, and

0, and

0, and 0

x lx l

x l

x lx l

u t u x u u

u

u t u x u u

==

=

==

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂Λ ∂ ∂Λ ∂ ∂Λ ∂Λ
− − − = =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥′ ′ ′′ ′′∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

⎡ ⎤∂Λ
=⎢ ⎥′∂⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂Λ ∂ ∂Λ ∂ ∂Λ ∂Λ
− − − = =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥′ ′ ′′ ′′∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

$

$

 (85) 

or essential 

0 0 1 2 20, 0, 0,0, 0,
0 and 0 and 0 and 0 and 0

x l x l x lx l x l
u u u u u= = == =

′ ′= = = = =  (86) 

boundary conditions at the end points x = 0 and x = l. The explicit form of the equations of 
motion and boundary conditions (84)-(85) can be determined from the Lagrangian density 
(83). 

4. Exact solution of the two mode (Mindlin-Herrmann) problem 

In what follows, the solution of one of the models considered in this article, namely that of 
the mixed Mindlin-Herrmann problem (65), (66), with initial conditions given by 

 
( ) ( )
( ) ( )

0 00 0

1 10 0

( , ) ,    ( , )

( , ) ,    ( , )

t t

t t

u x t g x u x t h x

u x t x u x t q xϕ
= =

= =

= =

= =

$

$
 (87) 
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is presented. Note that the boundary conditions (66) represent a bar with both ends free 

(natural boundary conditions). 

Applying the method of eigenfunction orthogonalities for vibration problems (Fedotov et 

al., 2010) to problem (65), (66), (87), two types of orthogonality conditions are proved for the 

eigenfunctions.  Assume the solution of the system (65) is of the form 

 0 0 1 1( , ) ( ) ( , ) ( )iwt iwtu x t y x e u x t y x e= =  (88) 
 

where i2 = – 1. After substituting (88) into (65) and the boundary conditions (66) the 

following Sturm-Liouville problem is obtained 
 

 

( )

( )

2
2

0 0 12

2
2

0 2 1 1 12

2 2 0

2 4 0

d d
S y y S y

dxdx

d d
S y I y y S y

dx dx

ω ρ λ μ λ

λ ω ρ μ λ μ

⎡ ⎤
− − + − =⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞
+ − − + + =⎜ ⎟⎜ ⎟

⎝ ⎠

 (89) 

with the corresponding boundary conditions. Let {y0m(x)} and {y1m(x)} be the eigenfunctions 

of the Sturm-Liouville problem (89), which satisfy the two orthogonality conditions given by 

(9) and (68). The solution of the problem (65), (66), (87) can therefore be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
0 1 2 20 0

, , , ,
( , ) , , , ,

l lG x ξ t G x ξ t
u x t S g ξ h ξ G x ξ t dξ I φ ξ q ξ G x ξ t dξ

t t

⎡ ∂ ⎤ ⎡ ∂ ⎤
= + + +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∫ ∫

 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 4
1 3 2 40 0

, , , ,
( , ) , , , ,

l lG x t G x t
u x t S g h G x t d I q G x t d

t t

ξ ξ
ξ ξ ξ ξ ϕ ξ ξ ξ ξ

⎡ ∂ ⎤ ⎡ ∂ ⎤
= + + +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∫ ∫  

where 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 1
1 22 2

1 1
1 1

1 0 1 1
3 42 2

1 1
1 1

sin sin
, , , ,

sin sin
, , , ,

n n n n n n

n nn n n n

n n n n n n

n nn n n n

y x y t y x y t
G x t G x t

y y

y x y t y x y t
G x t G x t

y y

ξ ω ξ ω
ξ ξ

ω ω

ξ ω ξ ω
ξ ξ

ω ω

∞ ∞

= =

∞ ∞

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
 (90) 

are the Green functions, and 

 2

1

, 1,2,
n

n
n

y
n

y
ω

ρ
= = …  (91) 

are the eigenvalues (eigenfrequencies) of the problem. The solution of all other problems 

presented in this article can be obtained in a similar manner. The solution of the three mode 

problem, for example, can be obtained with six Green functions. 
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5. Predicting the accuracy of the approximate theories 

Two forms of graphical display are typically used to analyse the factors governing wave 
propagation for mathematical models describing the vibration of continuous systems. These 
are called the frequency spectrum and phase velocity dispersion curves and are obtained 
from the so-called frequency equation (Achenbach, 2005:206, 217-218; Graff, 1991:54), which 
shows the relation between frequency ω, wave number k and phase velocity c for a 
particular model. In the “k - ω” plane the frequency equation for each model yields a 
number of continuous curves, called branches. The number of branches corresponds to the 
number of independent functions chosen to represent u and w in (1)-(2). Each branch shows 
the relationship between frequency ω and wave number k for a particular mode of 
propagation. The collection of branches plotted in the “k - ω” plane is called the frequency 
spectrum of the system. Dispersion curves represent phase velocity c versus wave number k 
and can be obtained from the frequency equation by using the relation ω = ck. 
The different approximate models of longitudinal vibrations of rods can be analysed and 
deductions can be made regarding their accuracy by plotting their frequency spectra (or 
dispersion curves) and comparing them with the frequency spectrum (or dispersion curve) 
of the exact Pochhammer-Chree frequency equation for the axisymmetric problem of a 
cylindrical rod with free outer surface (longitudinal modes of vibration). 

In order to find the frequency equation, it is assumed that each independent function can be 

represented as ( )( , )
i kx t

j ju x t U e
ω−= , where j = 0,1,2...n – 1 and n corresponds to the number 

of independent functions chosen in (1)-(2). These representations for uj(x,t) are substituted 

into the equation(s) of motion, yielding the frequency equation. The frequency equation 

thus obtained for the classical theory is given by 

 2 2 2
0 0,c kω− + =  (92) 

which gives a single straight line with gradient 0 ,Ec ρ=  the speed of propagation of waves 

in an infinite rod described by the classical wave equation. The frequency equations for the 
Rayleigh-Love and Rayleigh-Bishop theories are given by 

 2 2 2 2 2 2
0 2 0S k c S k Iω ω η− + − =  (93) 

and 

 2 2 2 2 2 2 4 2 2
0 2 2 2 0S k c S k I k I cω ω η η− + − + =  (94) 

respectively, where 2c μ
ρ=  is the speed of propagation of shear waves in an infinite rod. 

Since the classical, Rayleigh-Love and Rayleigh-Bishop theories are unimodal theories, their 
frequency equations yield a single branch in the “k - ω” domain That is, the frequency 
equations (92), (93) and (94) have a single solution for positive ω. The Rayleigh-Love and 
Rayleigh-Bishop theories, however, do not yield straight lines as in the classical theory. That 
is, the Rayleigh-Love and Rayleigh-Bishop theories represent dispersive systems (the phase 
velocity c depends on the wave number k). For the multimodal theories, the substitution 
results in a system of equations with unknowns Uj. The frequency equation is found by 
equating the determinant of the coefficient matrix to zero. The frequency equation for the 
Mindlin-Herrmann (two mode) theory, for example, can be thus obtained as 
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 ( ) ( )( )4 2 2 2 2 2 2 2 2 2 4 2 2
2 2 1 2 0 1 2 1 2 24 0,I k I c c S c k c c k c c Iω ω ω− + − − − + =  (95) 

where ( 2 )
1c λ μ

ρ
+=  is the speed of propagation of pressure (dilatational) waves in an 

infinite rod. The well known Pochhammer-Chree frequency equation (Achenbach, 2005:242-
246; Graff, 1991:464-473) is given by 

 ( ) ( )2 2 2 2 2
1 1 0 1 1 1

2
( ) ( ) ( ) ( ) 4 ( ) ( ) 0k J R J R k J R J R k J R J R

R

α β α β β α β αβ α β+ − − − =  (96) 

where Jn(x) is the Bessel function of the first kind of order n, 

 
2 2

2 2 2 2
2 2
1 2

, ,k k
c c

ω ωα β= − = −  (97) 

and R is the outer radius of the cylinder. The Pochhammer-Chree frequency equation yields 
infinitely many branches the “k - ω” and “k - c” planes. 
The figures that follow in this section have been generated for a cylindrical rod made from 
an Aluminium alloy with Young’s modulus E = 70 GPa, mass density ρ = 2700 kg.m-3, and 
Poisson ratio η = 0.33. It is not necessary to define the radius R of the cylinder, since all 
frequency spectra and dispersion curves have been generated using the normalized, 
dimensionless parameters 

 
2 0

, ,
R c kR

c
c c

ω ξ
π π

Ω = = =  (98) 

that are independent of the choice of R. 
Figure 1a shows the frequency spectra for the classical, Rayleigh-Love and Rayleigh-Bishop 
theories, as well as the first branch of the two mode theory and the first branch of the exact 
Pochhammer-Chree frequency spectrum. 
 

 

Fig. 1. Comparison of a) frequency spectra and b) dispersion curves of the classical, 
Rayleigh-Love, Rayleigh-Bishop, two mode (first branch) and exact (first branch) theories. 
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All the theories (including classical theory) approximately describe the first branch of the 
exact solution in a restricted “k - ω” domain. The Rayleigh-Love approximation is initially 
more accurate than the Rayleigh-Bishop and Mindlin-Herrmann approximations, but the 
values fall away rapidly for values of ξ greater than 2 (approximately). The Rayleigh-Bishop 
and Mindlin-Herrmann approximations are reasonably accurate over a larger “k - ω”- 
domain, but the branches asymptotically tend toward the shear wave solution, while the 
exact solution tends to the (Rayleigh) surface waves mode. The shear wave mode is given by 
the straight line ω(k) = c2k and the surface wave mode is given by the straight line ω(k) = cRk, 
where cR ≈ 0.9320c2 is the speed of propagation of surface waves in the rod. The factor 0.9320 
is dependent on the Poisson ratio η = 0.33 (Achenbach, 2005:187-194; Graff, 1991:323-328). 
The phenomenon described above is illustrated in figure 1b, which shows the phase velocity 
dispersion curves for the first branches of the exact solution and the Mindlin-Herrmann 
approximation, as well as the phase velocity dispersion curves for the Rayleigh-Love and 
Rayleigh-Bishop approximations. 
The frequency spectra for some of the higher order unimode theories are given in figures 2a 
(Rayleigh-Bishop type theories) and 2b (Rayleigh-Love type theories), together with the first 
branch of the exact Pochhammer-Chree frequency equation.  
 

 

Fig. 2. Frequency spectra of a) three term and b) four term R-L and R-B type theories. 

The frequency spectra of the higher order unimode theories show unusual behaviour in the 
“k – ω” plane, due to the introduction of the higher order x and mixed x-t derivative terms. 
The three term Rayleigh-Love and Rayleigh-Bishop type theories both tend towards the 
pressure waves mode ω(k) = c1k. The dispersion curve for this theory will show that 

c initially decreases with increasing ξ, but will then increase asymptotically to the velocity 

of pressure waves in an infinite bar. This is a property of all unimode theories where an 
uneven number of terms have been considered. The four term Rayleigh-Bishop type theory 
tends towards the shear wave solution. It is evident from the shape of the frequency 

spectrum that c will initially decrease with increasing ξ, but will then increase again before 

decreasing to the horizontal asymptote c2/c0. All Rayleigh-Bishop type theories where an 
even number of terms has been considered will tend towards the shear waves mode. The 
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four term Rayleigh-Love type model, as discussed in section  3.1g above, has a limit point in 
its frequency spectrum, and the phase velocities of waves described by this theory will tend 
to zero as ξ → ∞. The higher order unimode theories have been applied successfully in the 
analysis of propagation of solitons (solitary waves) in non-linear elastic solids. However, 
since the higher order theories are substantially more complicated than the (two term) 
Rayleigh-Love and Rayleigh-Bishop theories and due to the lack of physical clarity of the 
higher order derivative terms present in the equations of motion and boundary conditions, 
these theories are of little value for analysis of wave propagation in linear elastic solids. 
Frequency spectra for a selection of multimode theories are presented in figures 3 through 7. 
The exact Pochhammer-Chree frequency spectrum is shown by dashed lines on all the 
frequency spectrum plots shown for the multimode models. The imaginary branches 
(imaginary ξ) represent evanescent waves and describe exponential decay with respect to 
wave number. Figure 3 shows the frequency spectrum of the two mode (Mindlin-
Herrmann) theory described in section 3.2a. 
 

 

Fig. 3. Frequency spectrum of a two mode model (solid line), exact solution (dashed line). 

Figure 4 shows the frequency spectrum of the three mode theory discussed in section 3.2b. 
Figure 5 shows the frequency spectrum of the four mode theory discussed in section 3.2c. 
Figure 6 shows the frequency spectrum of a five mode theory with three longitudinal and 
two lateral modes. Figure 7 shows the frequency spectrum of the Zachmanoglou-Volterra 
three mode theory discussed in section 3.2d. 
It is apparent from analysis of the curves that the branches of the multimode theories 
approach those of the exact solution with increasing number of modes. That is, the higher 
the order of the multimode approximation (the greater the number of independent 
functions) the broader is the “k - ω”- domain in which the effects of longitudinal vibrations 
of the rods could be analysed. To offset the error introduced by the omission of the higher 
order modes, Mindlin & McNiven (1960) modified the kinetic and potential energy 
functions (in their three mode “second order approximation”) by introducing four 
compensating factors that were chosen in such a way as to match the behaviour of the first 
three branches of the Pochhammer-Chree frequency spectrum at long wavelengths. This 
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methodology could also be applied to the models presented here to obtain similar results. It 
should be noted that, regardless of the number of independent functions chosen, some of 
the branches will tend towards the shear wave solution ω(k) = c2k, while the remaining 
branches will tend towards the pressure wave solution ω(k) = c1k as k → ∞. None of the 
branches will tend towards the surface waves mode. This is because all the approximate 
theories discussed in this article are one dimensional theories (since uk = uk(x,t)), and can 
therefore not predict the effect of vibration on the outer cylindrical surface of the rod. 
 

 

Fig. 4. Frequency spectrum of a three mode model (solid line), exact solution (dashed line). 

 

 

Fig. 5. Frequency spectrum of a three mode model (solid line), exact solution (dashed line). 

Comparison of the frequency spectrum shown in figure 6 with figure 4 shows that the 
accuracy of the three branches in the Zachmanoglou-Volterra theory matches that of the first 
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three branches of the four mode theory. That is, Zachmanoglou and Volterra simplified the 
four mode theory by reducing the number of partial differential equations and boundary 
conditions and the simplification did not have a negative impact on accuracy. 
 

 

Fig. 6. Frequency spectrum of a five mode model (solid line), exact solution (dashed line). 

The nature of the first branches of the multimode theories with increasing number of modes 
is of particular interest in the design of low frequency ultrasonic transducers and 
waveguides. 
 

 

Fig. 7. Frequency spectrum of the Zachmanoglou-Volterra model (solid line), exact solution 
(dashed line). 

Figure 8 shows the first branches of the spectral curves for the two mode, three mode and 
four mode models, together with the first branch of the exact Pochhammer-Chree solution. 
It is clear from this figure that the first branch of the approximate multimode theories 
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approaches that of the exact Pochhammer-Chree solution with an increasing number of 
modes. The first branch of the five mode theory has not been included in figure 8 because it 
is too close to that of the four mode theory them to be easily distinguished from each other 
in the selected region for ξ.  
 

 

Fig. 8. First branches of the two, three, four mode models, and the exact solution. 

6. Conclusion 

In this article, a generalised theory for the derivation of approximate theories describing the 
longitudinal vibration of elastic bars has been proposed. The models outlined in this article 
represent a family of one dimensional hyperbolic differential equations, since all uk = uk(x,t). 
An infinite number of these approximate theories have been introduced and the general 
procedure for derivation of the differential equations and boundary conditions for all the 
models considered has been exposed. 
The approximate theories have been categorised as “unimode” or “multimode”, and “plane 
cross sectional” or “non plane cross sectional” theories, based on the representation for 
longitudinal and lateral displacements (1)-(2). The classical, Rayleigh-Love and Rayleigh-
Bishop models are all “unimode”, “plane cross sectional” theories.  Both the Mindlin-
Hermann and the three mode models are “multimode” theories.  The Mindlin-Hermann 
model is a “plane cross sectional” theory, whereas the three-mode model is a “non plane 
cross sectional” theory.  All models subsequent to the three-mode model (four-mode, five-
mode, etc) are also “multimode”, “non plane cross sectional” theories. 
The orthogonality conditions have been found for the corresponding multimodal models 
which substantially simplify construction of the solution in terms of Green functions. The 
solution procedure for the Mindlin-Herrmann model has been presented, using the Fourier 
method.  Using the method of two orthogonalities (presented here), it is possible to obtain 
the solution for all models considered in this article. 
Finally, it has been shown that the accuracy of the approximate models discussed in this article 
approach that of the exact theory with increasing number of modes, based on a comparison of 
the frequency spectra with that of the exact Pochhammer-Chree frequency equation. 
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