
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

4

Advanced Methods for
Botnet Intrusion Detection Systems

Son T. Vuong and Mohammed S. Alam
University of British Columbia

Canada

1. Introduction

Today, our dependence on the internet has grown manifold. So has the need to protect our
vast personal information accessible via web interfaces such as online passwords, corporate
secrets, online banking accounts, and social networking accounts like Facebook. The
appearance of botnets in the internet scene over the last decade, and their ever changing
behavior has caused real challenges that cannot be easily remedied.
According to literature, a botnet is defined to be a set of infected hosts (also called bots or
zombies) that run autonomously and automatically, controlled by a botmaster (bot herder)
who can co-ordinate his/her malicious intentions using the infected bots. Some of the
prominent malicious tasks that can be credited to botnets include DDoS (Distributed denial-
of-service), spam, phishing, ransomwares and identity theft.
In a botnet DDoS attack, the botmaster can command all its bots to attack a particular server
(example: update.microsoft.com) at a particular date, time and for a duration via a malicious
or anonymous proxy used as a stepping-stone to hide the actual commanding node. In a
spam campaign, the nodes that form the bot network are responsible for sending spam by
behaving as spam relay points, delivering spam mails to a list of intended victim email
addresses selected by the botmaster. For example: a node which is part of a spam botnet
could be sent a list of email addresses to spam for the day with a payload of the spam that is
to be mailed. These spam messages could advertise pharmaceutical products and may also
deliver further infection executables via email links or attachments to recruit more bots, as
done by botnets such as Storm and Waledac. In a phishing scam, botnets are responsible for
acting as web proxies or web servers to deliver hoax site content to benign users to gather
their e-banking or credit card credentials. For example, the sites could host content which
looks like a banking site requesting for login details credentials which when entered by the
user, can be used by the botmaster to access legitimate banking sites. Eventually the funds
are transferred to accounts that leave no trails (Nazario & Holz, 2008).
Botnets such as Storm have been known to infect over 2 million hosts while Conficker has
infected over 9 million hosts according to some estimates. As can be seen, the far reaching
effects of malicious intentions of botnets and their masters are a real threat.
This chapter will cover a concise survey of botnet detection systems as well as provide a
novel mobile-agent based method that has been adapted from mobile-agent based intrusion
detection systems, for handling botnets. We provide the necessary background needed to
understand botnets such as the offensive techniques utilized by botnets; the defensive

www.intechopen.com

 Intrusion Detection Systems

56

techniques developed by researchers; and also focus on a mobile agent based technique to
detect infected hosts.

2. Botnet offense

In order to better understand the challenges that the security community faces in order to
dismantle botnets, we first need to understand how botnets function, and the many tools
and techniques employed by them.

2.1 Setting up a command and control server

The first step in creating a botnet is to setup the Command and Control (C&C) server. This
is the location where the infected hosts report to the botmaster, letting it know that a host
has been infected successfully. This is also the location where the infected hosts retrieve the
full list of commands that the infected bot should run. Section 2.3 covers some of the
communication features of a C&C server.

2.2 Bot lifecycle

Unlike the initial advanced botnets such as Agobot which carried a list of exploits to perform

on a vulnerable host and its entire command set at the time of initial infection, every

advanced bot today uses multiple stages in order to form a botnet (Schiller et al., 2007; Gu et

al., 2007). This was mainly done first, to avoid signature detection by network intrusion

detection systems such as snort (Roesch, 1999) and second, to reduce the initial infection size

of the bot binary to make it less traceable while using drive-by-download attacks.

Stage 1 of a bot’s lifecycle is the initial infection/exploit of a host. In this step the bot binary

has to first infect the host by attempting to exploit one or more security vulnerabilities that

might pre-exist on a system. Section 2.4 provides further details on the associated techniques

that botmasters could use in this step. Once infected, stage 2 is the process by which the bot

reports back to the botmaster using the command and control (C&C) channel to inform him

that the host has been successfully compromised. Information related to the host such as

opened backdoors, host operation system settings and network capabilities are just some of

the details that are reported back during this phase. In stage 3 the bot downloads new

executables. This process is also referred to as egg downloading. This could be the component

that detects and disables antivirus software, or could provide potential updates to the bot

malware with its full command list to make it more functional. In stage 4 the downloaded

malware is executed on the bot. The bot at this stage has become fully functional. In stage 5,

the bot starts listening to the command-and-control channel to retrieve payload information

from peers or servers and could execute the commands that are passed on using the

payload. It is not necessary that the channel used in stage 3 is the same channel used in stage

5. In stage 6, the bot could optionally report the results of executing the commands to the

server. This feature is used by many botnets to track the functionality of the bot so that the

botnet could be load-balanced.

2.3 Botnet communication structure

The most important component of a botnet that decides if it can be easily dismantled is its
communication structure which is used to command and control the infected hosts of a
botnet. The type of communication used between a bot client and its command-and-control

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

57

server or between any two bot clients can be differentiated into two types: Push-based
commanding or pull-based commanding. Each method has its own advantages and
disadvantages.
In a push-based communication, the bot master “pushes” the command that the bots are to

run. The advantage of push-based communication lies in the fact that botmasters can

instantaneously ask bots to perform a certain task. This allows for tighter control. However,

the inherent disadvantage of such a method is the amount of traffic that can be observed

leaving the server, or the tight timing correlation between various monitored nodes that are

part of the same botnet, leading to easier detection of infected hosts. This weakness has been

utilized by most botnet detection techniques such as Botsniffer (Gu et al., 2008). An example

of push-based communication is the use of IRC servers for command-and-control.

In a pull-based communication, each bot is allowed to periodically retrieve the next

command to run from a server. This helps not only to avoid flash-crowds at a command-

and-control server, but the injection of random delays in command retrieval from bot to

server makes it more difficult to trace a command-and-control server. This allows the server

to hide behind traditional web traffic. Most existing botnets used for spamming (5 of top 9)

use http protocol, a pull-based communication, to masquerade communication as legitimate

users (Steward, 2009). In addition to the primary channel of communications, bots also have

a secondary communication usually in the form of backdoors created by Trojans/bot

software installed in each infected host. This channel is only used by the botmaster if the

primary communication channel has been compromised.

We now elaborate a little on some of the more common communication structures used by
botnets.

2.3.1 IRC (Internet Relay Chat)

In the beginning, most botnets used a centralized approach for managing botnets (Bacher et

al., 2005). This was done using the IRC (internet relay chat) protocol or modified versions of

the protocol using freely available sources such as UnrealIRCd (unrealircd, 2010). As per

(Schiller et al., 2007), the main reasons for using IRC were its interactive nature for two way

communication between server-client; readily available source code for easy modifications;

ability to control multiple botnets using nicknames for bots and password protected

channels; and redundancy achieved by linking several servers together.

Most IRC servers are modified from the original IRC protocol so that not all clients are
visible to each channel member, or the server only listens to commands entered by the
botmaster. Most bots parse the channel subject to be the command issued by the botmaster
(Bacher et al., 2005). However, since these servers become the single point of failure and are
easily detected, botnets have moved to other decentralized methods of control such as P2P;
use of other less detectable protocols (http web servers); or use of IRC in combination to
DNS fast-flux techniques, as explained in section 2.4.1. This was mainly due to the increased
ability of the research community to reverse engineer the bot binary using tools such as IDA
pro (Hex-rays, 2010) and mimic the behavior of a bot by joining and monitoring a botnet
(Bacher et al., 2005; Rajab et al., 2006).

2.3.2 Web based botnet

The most prominent communication structure for botnets after IRC is the used of web
servers. This is mainly done since most firewalls cannot distinguish between web-based bot

www.intechopen.com

 Intrusion Detection Systems

58

traffic, and legitimate web traffic. The botmaster could be informed via an http request of
the backdoor port to be used for communication along with a password to connect to the bot
in case a secondary channel is required for communication.

2.3.3 P2P (peer-to-peer)

Probably the most complex botnet that had been studied to use a P2P scheme was the

Storm/Zhelatin/Pecomm/Nuwar botnet and its variants. This botnet used a P2P approach to

communicate commands between its bot members (Holz et al., 2008) based on the edonkey

(Overnet protocol based on the Kademlia P2P algorithm) protocol followed by its custom

stormnet (XOR encrypted communications) protocol to communicate. Using an off-the-shelf

protocol that relied on unauthenticated publish-subscribe system allowed researchers to

infiltrate the botnet. The number of botnets that use the P2P approach is less mainly due to

the complicated nature of the C&C structure and due to the fact that once defenders have

control of one infected host, it is easier for them to detect other infected peers connecting to

it. Nugache is another P2P based botnet that uses encrypted peer communications. A

noteworthy feature of Storm is the additional feature of automatically attacking anyone

attempting to track it i.e. any storm infected node that was not behaving appropriately

would be DDoSed by the system. This made it increasingly difficult for researchers to

understand how the botnet functioned (Holz et al., 2008).

2.3.4 Other communication protocols and proposed botnet features

Botnets have also been detected to use one of many other uncommon protocols such as

instant messaging for C&C. Using instant messaging for C&C has the drawback of being

easily tracked and taken down by the instant messaging provider. ftp dropzones for banking

Trojans have also been observed by (Holz et al., 2009). As per the authors, botnets used for

stealing banking credentials submit keylogged data from phishing attacks into dropzones.

The authors discovered a few authentication free dropzones during their investigations.

Some researchers have also proposed advanced techniques that could be used by botnets in
the future. (Singh et al., 2008) discusses the use of email as C&C by using a combination of
encryption and steganography in email content. The email content could be send to the
user’s inbox or spam folder at the direction of the botmaster by picking the right keywords.
(Bambenek & Klus, 2008) proposed the possibility of using RSS feeds or XML for
communication via websites maintained by botmasters, or public bulletin boards not
controlled by the botmaster. (Hund et al., 2008) proposed a new bot design called Rambot
that uses peer-to-peer technology in addition to using strong cryptography (2048 bit RSA
keys) where the public key of botmaster would be hardcoded into the bot binary. Use of
Diffie-Hellman symmetric key between bot-bot communications was also proposed by the
authors in addition to the possibility of using a credit-point system to build trust among
bots. The authors also discuss about peers only sharing partial peer lists with other bots to
avoid detection of all peers in the botnet. In order to avoid allowing defenders to simulate
multiple nodes on a single host, the authors also discuss about presenting a challenge(5-15
minute task) to any node before it communicates. This however has the drawback of the bot
being detected by regular users. (Wang et al., 2007) proposes concepts similar to (Hund et
al., 2008) in the use of asymmetric keys for bot-botmaster communication, symmetric keys
for bot-bot communication and the use of peer-list exchange where only a partial list of
peers are exchanged only during reinfection attempts. (Vogt et al., 2007) proposes creating

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

59

infections where thousands of smaller botnets are created with each having its own C&C
server. Also all commands require a decryption key based on both the public key of the
botmaster and another key that is partitioned such that each botnet has a partial key Ki.
Defenders would need to infiltrate each separate botnet to gather the entire decryption key.

2.4 Infecting the user

The primary step that creates the botnet is the initial infection of the user which converts a
clean host into a bot. Users can be infected in one of three ways.

Drive-by-downloads

As noted in numerous papers (Provos et al., 2007; Wang et al., 2006; Ikinci et al., 2008; Siefert
et al., 2007; Provos et al., 2008) drive-by-downloads have become an emergent threat that
exploit weaknesses often seen in web browsers and browser plugins.
In this process, the user is infected by a malicious link embedded in the site that based on

the user-agent (browser) starts off a series of attacks (attack vector) to download malware

into the user’s machine without any acceptance by the user other than to have visited the

site. This malicious site could be hosted by a malicious entity; could have 3rd party

advertisement links which load malicious content; or be a legitimate site that has been

infected earlier. 3rd Party advertisements could include the action of syndication (Daswani &

Stoppelman, 2007) by which space on a site is sold for advertisement links to 3rd party sites

that serve the ad content. Legitimate sites could be infected by a SQL injection attack which

would then contain malicious iframe pointers to malicious servers. Unlike network scanning

for vulnerabilities, which are blocked by firewalls and NATs, drive-by-download uses a

pull-based technique that bypasses most filters. (Provos et al., 2008) notes that many of the

infected hosts show connections to IRC servers or HTTP requests soon after infection

confirming the fact that drive-by-downloads lead to creation of botnets. The malware or

malicious iframe pointers are usually obfuscated within the html source. Instead of

reinventing the exploits, these malicious links use ready-made exploit packs such as Mpack,

IcePack or EL Fiesta that contain customized infection vectors. Though (Provos et al., 2008)

mentions scanning well known URLs to check for maliciousness, a URL may seem benign in

the beginning during initial scan, but might start behaving maliciously at a later time. The

authors reported the presence of over 3 million malicious URLs detected over a 10 month

period, and 1.3% of search results returning malicious URLs in Google searches.

Malicious attachments (social engineering)

A few botnets such as Storm & Waledac use social engineering as the attack vector. In this

process, users are emailed a web link, hosted by a node in the bot network that a benign

user would be enticed to visit. Once the URL is visited, the botmaster uses social

engineering such as the need for missing flash plug-in or video codec to entice the user into

downloading an executable and thus infecting the user. The use of custom packers and

added encryption makes it almost impossible for antivirus software to detect maliciousness

of the downloaded binary.

Vulnerable hosts

Most botnet attack vectors still target hosts that have not been fully patched. For example,

some of the initial botnets such as SDBot, Rbot, Agobot, Spybot and Mytob were formed due

to various windows vulnerabilities. Similarly the recent worm having a botnet commanding

www.intechopen.com

 Intrusion Detection Systems

60

structure (Downadup/Conficker/Kido) that exploits MS08-067 spreads primarily due to

inadequate patching. As pointed out by (Brumley et al., 2007; Brumley et al., 2008), attack

vectors for a vulnerability can be created within hours of a patch being made available by a

vendor. The difference between a patched and an unpatched version of the software allows

malware authors to detect the underlying vulnerability that unpatched systems are

vulnerable to.

2.5 Advanced botnet features
2.5.1 Obfuscation

The primary reason for using obfuscation is to make it difficult for botnet defenders to
detect and tear down the inner functioning of a bot malware by simple signature
matching. This is accomplished in many ways. For example, web-based malware (used for
drive-by-downloads) uses JavaScript obfuscation to hide the attack vector. Web based
malware is easier to obfuscate than memory corruption vulnerabilities and cannot be
caught by state of the art polymorphic worm detectors such as Hamsa (Li et al., 2006) and
Polygraph (Newsome et al., 2005). Another method includes the use of packing followed
by encryption of bot binaries that causes bot binaries to go undetected by signature
detectors. For example, storm is packed every minute by a custom packer built into its
code whereby the size and thus MD5 hash no longer match to previous bot binary
samples of the same malware.

2.5.2 Fast-flux

Most advanced botnets (Storm, Waledac) used primarily for phishing and spam use fast-flux
techniques to hide the actual servers responsible for updated copies of the malware. In a
fast-flux technique, the DNS to IP mapping of the download location of the malware
constantly changes such that blocking an IP address does not really help, or correlating
information about a particular infection based on just the IP is no longer useful enough.
Some botnets use double fast flux using multihoming to change both the A record and NS
record of DNS (Holz et al., 2009; Nazario & Holz, 2008; Siefert et al., 2007).

2.5.3 Virtual-machine detection

Quite a few malicious bot applications have inbuilt functionality to check if the host that has
been infected is running in a virtual machine. Some characteristics include registry entries
caused as artifacts of running various virtual machine software; list of running processes
and services; or attempt remote timing attacks (Franklin et al., 2008) where the bot code runs
a set of instructions in a loop leading to difference in results compared to a real system. It
has also been noted by researchers in the virtual machine field that virtual machines will
continue to be detected regardless of hardware support for virtualization (Garfinkel et al.,
2007) mainly due to the difference in goals of the virtualization community.

2.5.4 Rootkits

Most bot code packages such as Rustock, Storm and rxbot uses rootkits to hide its presence to

antivirus and malware detection tools. In these cases the bot binary package contains an

executable which causes inline-function-hooking of important windows kernel dll functions

such as kernel32.dll to hide the actual bot binary files from detection. An example rootkit

used by hackers include Hacker Defender.

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

61

2.5.5 Random generation of domain names

Some newer botnets such as Conficker and Kraken/Bobax use random generation of domain
names in search of the Command and Control servers. While Kraken walked through its
generated list in serial order, Conficker generates a new list every day that has not been
registered yet. Once the first C&C server is connected to, Conficker could activate its botnet
structure (Pierce, 2008). This feature of trying to connect to non-existent servers could act as
a give-away in detecting bot infections.

3. Botnet defense

In trying to keep pace with botnets, defenders have constantly tried to mitigate the harmful
intentions of botnets by coming up with novel solutions, targeted at the core architectural
footprint of botnets. Some of the solutions use static analysis techniques via reverse
engineering the bot binaries using programs such as IDA pro or peryleyez (Holz et al., 2008;
Grizzard et al., 2007; Chiang & Lloyd, 2007). Other approaches have used a dynamic
analysis approach using tools such as cwsandbox (Sunbelt, 2010) or norman sandbox by
performing windows API hooking; or performing system wide dynamic taint tracking
(Tucek et al., 2007; Yin et al., 2007).
Botnet emulation approaches testbeds such as EMUlab/ DETER/ WAIL (Barford &
Blodgett, 2007) have also been used to emulate an entire botnet by setting up command-and-
control servers, infected clients and local DNS resolvers.
Work related to the area of drive-by-downloads has been done by (Provos et al., 2007;
Provos et al., 2008) using honeynets to monitor URLs that might be malicious. These
honeynets browse the URL using internet explorer via client-honeypots and track the
number of new processes created, number of registries modified, and number of files creates
due to visiting a site. The use of honey-clients to monitor changes while visiting URLs such
as the Strider Honey monkey project (Wang et al., 2006), the Monkey spider project (Ikinci
et al., 2008) or the use of behavior analysis tools such as Capture-BAT (Seifert, 2008) fall
under the category of detecting drive-by-downloads. DNS monitor approaches have been
used for lookup behaviors commonly used by bots using active methods such as DNS
hijacking (Dagon et al., 2006) or passive methods such as DNS Black listing (Ramachandran
et al, 2006). We now discuss some of the broader approaches that have been taken for botnet
detection.

3.1 Botnet detection using honeypots

The main research methodology to detect and infiltrate botnets in the past few years has
been via the use of honeypots. A honeypot can be loosely defined to be a machine that is
closely monitored to watch for potential infiltration. The honeypot machine could be a real
vulnerable machine but is usually a machine running in a virtual environment. The use of
honeypots lies in the fact that any traffic that tries to penetrate or contact a honeypot can be
considered as inherently malicious since by default, honeypots do not by themselves contact
other hosts unless instructed to do so and hence should not exhibit any network traffic. The
use of more than one honeypot in a network is called a honeynet. The purpose of a honeypot
defines its type. Some of them include (Riden & Seifert, 2008):
Client honeypots: A Client honeypot is a machine that looks for malicious servers, behaving
as a client. Some of the prominent projects in this area includes Strider Honeymonkeys (Wang
et al., 2006), Monkey Spider (Ikinci et al., 2008), Capture HPC (Seifert, 2008), Shelia

www.intechopen.com

 Intrusion Detection Systems

62

(Rocaspana, 2007) and the MITRE Honeyclient (Mitre, 2007). Most of these projects use links
(URL) gathered from spam traps as seed values, and then actively visit the sites using a
virtual machine that contains different levels of patching. This allows the system to detect
the vulnerability attacked, and the configuration of the vulnerable machine.
High Interaction Honeypot: 3rd generation honeywall (‘Roo”) (Roo, 2005) is a high interaction
honeypot that allows the attacker to interact at all levels. The honeywall is placed between a
honeynet and the outside world, collecting data from network. Roo uses snort-inline (snort-
inline, 2005) to block all outgoing attack traffic from the honeynet.
Low Interaction Honeypot: A low interaction honeypot emulates vulnerabilities rather than
hosting an actual vulnerable system. Thus these types of honeypots can be easily detected if
an attacker interacts with this node. These are mainly useful for automated worm like bots
that spread. Some known examples include:

• Nepenthes (Baecher, 2006): Emulates multiple windows vulnerabilities on various
windows ports via stateful finite state machine. It has the ability to emulate 16,000 IP
addresses on a single machine. Meant to collect self replicating malware automatically.
Contains 21 different vulnerability modules. Has a module for parsing shell codes that
are XOR encoded and a module for retrieving binary from remote server obtained by
parsing shell code.

• Honeyd (Provos, 2007b): Implements a small daemon which creates virtual hosts on a
network. Allows one to create a simulated network of over 60,000 hosts on a single host
allowing real hosts to co-exist among virtual hosts, thus making it extremely difficult
for attackers to track down the real hosts in the network. Each host feature can be
configured separately. (Li et al., 2008) used one year worth of honeynet data captured
using half darknet sensors and half honeyd sensors to reach the conclusion that most
botnet nodes scan randomly rather than scanning just a specific local IP range in most
cases.

3.2 Spamming botnet detection

Given that the primary utility of botnets is in sending spam, many researchers have looked

into analyzing botnets that are used exclusively for sending spam such as the Storm, Srizbi

and Rustock botnets. Though the size of spamming botnets has reduced significantly due to

internet service providers blocking C&C servers as well as the domain providers for these

botnets, spamming botnets remain an active threat (Steward, 2009). (Ramachandran et al.,

2008) used a DNS blacklisting technique (DNSBL) where it creates a graph of nodes that are

in any way linked to the known srizbi botnet. If a bot belonging to srizbi queries a large

DNSBL of an internet service provider, correlation of the querying node or the one being

queried with the srizbi list gives a list of new peers who are infected by srizbi. This process

could be repeated multiple rounds to find out all associated bots which send spam.

Spamming botnets have also been detected based on using hotmail spam mail as seed data

and detecting source of the mail using domain-agnostic signature detection (Xie et al., 2008;

Brodsky & Brodsky, 2007).

3.3 Network-based botnet detection

Some botnet detection systems have relied on detecting bot traffic using network level data.

This is mainly done using network sniffing intrusion detection tools such as snort in

addition to other network flow monitors.

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

63

Bothunter (Gu et al., 2007) uses a vertical correlation algorithm which tries to capture the

different steps of a bot life-cycle. The 5 stages of a bot used in Bothunter are Inbound scanning

where network monitoring is done to see if an internal host is scanned for from external

host; Exploit usage where an exploit packet is sent from external to internal host; egg

downloading where a binary of the malware is retrieved by the infected host from the outside

network; Outbound bot coordination dialog where Command and Control traffic is observed;

Outbound attack propagation where the internal host attempts to attack an external host. The

system throws a warning if atleast 2 outbound bot attempt stages are seen or evidence of

localhost infection followed by a single outward communication from infected host is seen.

The authors use a combination of snort and anomaly detection tools called SCADE and

SLADE for detection.

BotSniffer (Gu et al., 2008a) uses network-based anomaly detection approach to detect C&C

channel for IRC in a local area network by implementing modules as snort preprocessors.

Their algorithm is based on the fact that IRC has a tight spatial-temporal correlation on the

size and duration of packet lengths observed during an n-gram (2-gram) analysis for

homogeneity check of communication packets.

BotMiner (Gu et al., 2008b) uses a horizontal correlation algorithm to detect bot traffic which

detects both centralized command-and-control structures and peer-to-peer command-and-

control structures. The authors partition every network flow into an Activity-plane (A-

plane) and a Communication plane (C-plane) based on the type of traffic. A-plane is

monitored by snort and modules from the BotHunter program. C-plane uses binning

technique to read four network quantities such as flows per hour, packets per flow, average

number of bytes per packet and average number of bytes per second. Once flows that have

the same C-plane state are clustered, a cross-correlation plane is calculated to figure out

which nodes are part of the same botnets based on a scoring function.

(Strayer et al., 2008) uses network monitoring to try to correlate traffic in a local area

network to detect bots based on the tight correlation in the timing of IRC-based bot traffic to

the server. The authors used a modified version of the Kaiten bot to connect to their own

internal IRC server (UnrealIRCd) to collect data via TCPdump.

Some IRC-based botnet detection work has also been done by (Karasaridis et al., 2007)
which looks at traffic flows obtained by a Tier-1 ISP and correlates the data to locate the
commanding server and hosts.
Some botnet defense techniques rely on cooperation from every Autonomous System (AS)

which is currently not feasible due to privacy issues. (Liu et al., 2008) proposes the use of

Stop-It servers that are supposed to stop internal nodes from performing denial of service

attacks if reported by another autonomous system. Similarly (Simon et al., 2007) also relies

on setting an evil-bit for traffic arriving from an autonomous system that cannot be trusted.

Overall the system behaves similar to the system proposed by (Liu et al., 2008).

(Stinson & Mitchell, 2008) discusses the evasion techniques that can be used to defeat the

various network based botnet detection approaches used. They come to the conclusion that

network-based botnet detection systems that rely on packet timings and size of packets can

be easily defeated by random modifications to the measured variables associated to a

network packet. Similarly (Cooke et al., 2005) reports that there is no simple connection

based invariant useful for network detection. Their conclusion was based on data collected

from the Internet Motion Sensor project. They measured that the length of the outgoing

connection from bot to botmaster varied from 9 hours to less than a second. Some botnets

www.intechopen.com

 Intrusion Detection Systems

64

had traffic that was encrypted along with random noise insertions to thwart signature

detection.

3.4 Behavior analysis based botnet detection

More recently, researchers have attempted to detect botnets by tracking their network and

host behavior. (Bayer et al., 2009) recently proposed the correlation of behavior analysis of

malware via clustering of behavior of host system calls via their ANUBIS dynamic analysis

tool and the use of Locality Sensitive Hashing (LSH) clustering algorithm. Their tool works

by performing an offline analysis of a malware sample similar to CWSandBox. The authors

mention that capturing behavior at a system call level causes data explosion and increased

false positives and negatives if an adversary has the knowledge that a system is tracked at a

system call level.

(Bailey et al., 2007) uses hierarchical clustering based on measuring normalized compression

distance where distances are measured by computing the zlib compressing of features,

stored in random order. Each feature is represented by registry modifications made,

processes created, file modifications made.

(Rieck et al., 2008) uses support vector machines to calculate which malware group a

malicious executable represents, based on supervised learning using 10-fold cross validation

of certain bot families. They compute feature vectors computed from CWSandbox reports.

(Lee & Mody, 2006) perform k-medoid clustering of events generated by running malicious

executables. Each event is represented by file modifications or registry changes. They use

edit distance of events among executables to cluster. They showed that edit distance

measurements for distance do not work when the number of events goes higher than 500.

Using k-medoid also has the drawback that the actual number of clusters has to be

predetermined. Having a k which is less than the actual number of clusters cause outliers to

be included, thus significantly impacting the cluster features.

(Gao et al., 2005) had proposed the use of applying DNA behavior distance of sequence of

system call subsets by calculating distance between system call phrases of a given process and

its replica. Their approach works by computing the edit distance between any two system

call phrases, where a phrase is a sequence of system calls. However their work has

limitations as the distance between system calls can be artificially increased by malicious

adversaries by making unnecessary system calls.

4. Agent technology

Though various methodologies have existed for botnet detection, the use of agent

technology has been mostly overlooked. Given the distributed nature of botnets, and their

modular structure allowing for constant updates, it is more intuitive to use a similar

technology that is inherently distributed and allows similar kind of code updates for

defensive purposes. The need for a clear understanding of agents is necessitated due to the

fact that the system that we have developed and extended, is layered on top of an agent

platform, Grasshopper (Bäumer & Magedanz, 1999), based on the first mobile agent standard

MASIF (Mobile Agent System Interoperability Facility), an interoperability standard that

allows agents from different mobile agent platforms to interact with each other. Researchers

could use other mobile-agent based platforms such as Aglets that allow for similar

functionality. The term agent or software agent is usually deciphered well in the artificial

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

65

intelligence community, where it stands for a program that can behave autonomously to

perform a multitude of dynamic tasks based on the logistics that have been programmed

into it by a user.

4.1 Agent classification

Based on the mobility of agents, they can be classified into three main types:
Static Agents: The first is the concept of static agents. Static agents are fragments of code that
do not move to different locations, and stay at a constant position throughout its life cycle.
Semi-Mobile Agents: Semi-mobile agents, as the name suggests, have some mobility. They are
in fact an inherent type of mobile agents, which are created at one logical or physical
location, but are moved to another location for its functional life cycle.
Mobile Agents: Mobile agents are a fragment of code, which can move around, from host to
host during its life cycle depending on the runtime task allocated to it. Mobile agents are
based on a terminology, well known in literature as mobile code (Fuggetta et al., 1998). The
term mobile code can be defined as the capability to change the binding between the pieces
of code, and the location where they are executed.
The scope of the advantages or disadvantages of using any of the above mentioned agent
types can vary based on the functionality of the agent based system that is being deployed.
If latency is a big issue in the system, one should opt for static and/or semi-mobile agents.
This is because the greater the mobility of an agent, the higher the latency introduced into
the system caused by the time required to create it at a new location and to transfer the
runtime state of the agent. If the host where the agent runs is very fragile or more prone to
destruction or tampering, it would be best to use a mobile agent rather than a static agent, as
it is easier for mobile agents to find a new location to run at than static agents.

4.2 Advantages and disadvantages of agents

The use of mobile agents offers wide advantages especially in distributed systems that
cannot be overlooked. Some of the advantages offered by agents have been clearly listed in
(Bieszczad et al., 1998). The major categories of these are summarized as follows:
Reduction in Network Traffic: In case of mobile agents, the agents themselves move to data. i.e.
we move the agent code to the data rather than moving the data to the agent code. This
allows for a dramatic reduction in the amount of bandwidth consumed in the log correlation
process (explained in later sections) as data is almost always larger than the few kilobyte
size of agents in general.
Asynchronous autonomous interaction: This is vital in a network where network connections
are volatile, such as wireless networks. In such cases, the agent could migrate to a mobile
device to gather data. Even if the connection breaks, the agent could continue processing
data on the mobile device and report back whenever the connection is reestablished. This
adds to the agent's capability to work in a fault tolerant mode.
Software Upgrades: Usually in order to update software on multiple hosts, an administrator
has to first stop the server functionality, then uninstall the old version of the software, and
then reinstall the new version. The entire software system has to be stopped for upgrades.
The advantage of mobile agents or agents in general in this situation is that if each
component of the upgraded software is managed by an agent, then it is as easy as disabling
the old agent and deploying a new agent which has the required functionality. In this way
one could avoid bringing down the entire system and instead stop just a single agent-based
component.

www.intechopen.com

 Intrusion Detection Systems

66

Functionality in heterogeneous environments: Most agents today can work in heterogeneous
environments. This is due to the fact that these agents are usually written in a language
which is portable to multiple platforms, such as java or perl. Since agents sit on top of an
agent framework, they can easily function regardless of if the host runs a version of Linux or
Windows operating system. The significant reduction in costs of placing agent frameworks
in hosts over the past few years have added to the benefits of running agents.
Just like there are advantages to using agents, there are also drawbacks to using agents. The
applicability of advantages or disadvantages to using agents is based immensely on the
specific user needs or goals that have been put forward. The shortcomings of using a mobile
agent-based system have been clearly summarized by (Vigna, 2004).
Agent Security: The one and only reason that has hindered the wide usage of mobile agents
in the real world has been its security constraints. One of the key problems associated with
mobile agent security is the malicious host problem i.e. how much trust can be placed on a
host where the agent travels to, given that the agent may have valuable data. Other security
concerns that have been mentioned in literature include the concept of malicious agents
(Vigna et al., 2002) where given the availability of an agent platform in a host, how much
trust can be placed on the agent that travels to the host to gather information? This problem
has been solved in the agent-security field by allowing a host to run only certain digitally
signed agents. Last but not the least, agents can be tampered with which means, a legitimate
agent could be brainwashed while traveling from host to host. (Vigna et al., 2002) has
provided a means for auditing an agents trail to detect attacks that modify agents legitimate
access permissions and authorization mechanisms for the aglets mobile agent platform.
Lack of Shared Language: Even though many tasks have been overtaken by FIPA (The
Foundation for Intelligent Physical Agents) to create a standard ACL (Agent communication
language), most agent platforms do not adhere to this language. Hence it is hard for agents
to communicate with each other when they are based on different platforms.
Required Agent Platform: Any piece of agent code available today needs to run on an agent
platform that contributes to the control and deployment of agents. For example, our system
has to use the Grasshopper agent platform to execute its tasks currently. Similarly, to run
java applets, the system has to have a java runtime environment available. The dependence
of mobile agents on an agent platform is an extra requirement that has to be made, without
which they cannot function. The problem is further compounded by the fact that not all
agent platforms follow a given set of rules and procedures thus hindering interoperability
issues even with the existence of standards such as MASIF.

4.3 Intrusion detection system data correlation

Most detection systems today use the process of log correlation, which is a process that takes
the alerts generated by multiple intrusion detection systems and produce a brief report on
the network being protected (Valeur et al., 2004). The advantage of this method is that if
there are multiple intrusion detector sensors deployed in the network, on the occurrence of
an intrusion attack, each of these sensors would generate a report on the intrusion type.
Allowing log correlation of the information generated by all these sensors would provide a
system administrator with a compact but detailed report on the attack allowing him or her
to pinpoint the vulnerability easily.
In the conventional log correlation model, distributed sensors, after gathering the data, send
all the alerts to a centralized location for correlation purposes. But the major disadvantage of
this model is that if the amount of logs generated is large, it would clog the network system

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

67

in a low-bandwidth network. Also a centralized approach would overload a node that
receives too many correlation tasks at a given time, causing system overload and hence
delay in producing the analyzed results.

4.4 Agent based security systems

The earliest relevant work in this area was started by Purdue University's CERIAS (The
Center for Education and Research in Information Assurance and Security) group in 1995
when they put forward a proposal for building an autonomous agent based security model
by using genetic programming (Crosbie & Spafford, 1995). This was followed up by their
work in implementing the earlier proposal (Balasubramaniyan et al., 1998).This system was
called AAFID (Autonomous Agents for Intrusion Detection) written earlier in Perl, Tcl/Tk
and C, and later revised and written in the perl language to make it more portable. (Helmer
et al., 1998) used an anomaly detection technique by using the Ripper algorithm on sendmail
system calls. The architecture mimicked a portion of the Java Agents for Meta-Learning
(JAM) project (Stolfo et al., 1997). A distributed hierarchical IDS was proposed by (Mell &
McLarnon, 1999) that tries to randomize the location of agents and decentralizing directory
services. The system also resurrects agents killed by an intruder as there always exists
multiple copies that track the original agent and vice versa. The Micael IDS was proposed by
(Queiroz et al., 1999). They proposed an additional feature of periodically checking if all
agents are active in the system. Another prominent work that detects intrusions using
mobile agents is the IDA system (Asaka et al., 1999). This system tries to backtrack intrusion
attempts by looking into MLSI (Mark Left by Suspected Intruders) left at each host. They
also emphasize tracking the steps that an attacker takes.
The Sparta system by (Krügel et al., 2001; Krügel & Toth, 2002) is the most extensive work
done till date on using mobile agents and intrusion detection. Sparta, which stands for
Security Policy Adaptation Reinforced Through Agents, is an architecture that is capable of
monitoring a network to detect intrusions and security policy violations by providing a
query like functionality to reconstruct patterns of events across multiple hosts. This is a
network-based IDS that correlates data from multiple sensors located throughout the
network. The authors have created an EQL (Event Query Language) with syntax similar to
SQL (Sequence Query Language) used in databases.
Other mobile agent based IDS's include a P2P based IDS (Ramachandran & Hart, 2004) that
works in a neighborhood watch manner where each agent looks after other agents in its
vicinity by using a voting procedure to take action against a compromised agent; the MA-
IDS system (Li et al., 2004) which uses encrypted communication between the mobile agents
in the system, and use a threshold mechanism to detect the probability for each intrusion
depending on the quantity of each intrusion type obtained allowing it to learn in a one
dimensional method. Some other mobile agent based IDS's include a position paper (Aslam
et al., 2001) that claims to work on D'Agents environment; and work by (Foukia et al., 2001;
Foukia et al., 2003) which uses a social insect metaphor and immune systems to model an
intrusion detection system.

5. Agent-based botnet detection

Based on our previous experience on mobile agent based intrusion detection systems (Alam
et al., 2005; Alam & Vuong, 2007), and an in-depth understanding of the behavior of botnets,
we believe the appropriate approach to defend against botnets is to adapt a mobile-agent

www.intechopen.com

 Intrusion Detection Systems

68

based paradigm in combination with current host monitoring techniques, to detect bot
infected hosts based on bot behavior analysis.
Our proposed approach predominantly would work for a local or remote environment with
a single administrative entity with access to network level data of monitored hosts and
optionally, access to the host machine via mobile-agent middleware if host-based bot
behavior features are need. We use network and host behavior monitoring of hosts to detect
bot infections based on calculating feature vectors stored as a bot DNA.
As mentioned in previous sections, each botnet exhibits certain traits/features. For example,
the storm botnet used technique of fast-flux; used a peer-to-peer modeling based on edonkey
(kademlia) protocol; used rootkits; certain variants exhibited detection of virtual machines;
and infected bots either are used to DDoS, send phishing emails, or advertisements. We
believe that each of these attributes could be considered a feature of the botnet. Some of the
features describe the communication methods of a botnet while others describe their activity
(Gu et al., 2008). Some of these can be detected using network monitoring while others by
monitoring host changes. Each variant of a bot over time modifies some of its functionality
(features), but the change is subtle from variant to variant in most cases. There are certain
exceptions, such as Conficker.C which retains only 15 percent of its code intact from Conficker.B
(Porras et al., 2009) and extensively modifies both its network and host behavior.
With our primary goals to:
1. detect hosts that exhibit botnet traits with a certain confidence level, and
2. detect which bot an infected host behaves like,
we believe that our first goal can be captured by calculating an infection score based on
weighted botnet features exhibited by a host. The weights could be calculated based on using
machine learning methods such as support vector machines (SVM) on predominant bot
families. Our second goal can be accomplished by first learning the behavior of botnet
infected hosts by capturing host and network behavior of known bot infections. This is
followed by converting the behavior to a set of features represented as a vector stored in
synthetic DNA format, allowing application of clustering or hashing algorithms as
discussed in section 3.4.

5.1 Mapping bot feature vector

In order to apply the botnet detection problem to DNA, we map labeled buckets
representing the range of values exhibited per bot feature/attribute. The purpose of using
marked bins is to emphasize the more bot-like feature a host exhibits.

Fig. 1. Assigning labels to botnet attributes

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

69

For example, if an infected node exhibits fast-flux, we only need two possible attribute
states: yes or no. But measuring features such as the rate of outgoing connection, or average
packet sizes cannot be captured by a yes/no solution. This can be solved to an extent by using
a bucket/binning technique by partitioning such numbers into multiple marked bins.
Whereas there exists a small number (4) of allowed variations in DNA nucleotides, it
reduces the ability to measure accuracy in case of botnet detection. An example labeling is
shown in Fig. 1. One also has to assign appropriate bin ranges that distinguish benign traffic
from bot-like traffic. These are some of the challenges we are trying to solve based on
measuring current bot features.

5.2 Sequencing of hosts

A system administrator would keep multiple DNA sequences of each host in its network: a
set of sequences representing network-based DNA and a set representing host-based DNA.
We partition the space into two since there might be cases when only one set of sequences
are available. For example cellular devices using local wifi access cannot contribute to a
host-based sequencing due to the absence of host-monitoring applications on the device in
some cases. Fig. 2 shows an example DNA of a host as maintained by the administrator.
Two hosts that exhibit similar DNA sequences behave similarly. Thus if a host shows DNA
sequencing similar to a bot DNA sequence with subtle mutations, we know the type of
infection and can mark the infected host. Similarly if a host exhibits DNA sequences similar
to innocuous DNA, we know it is clean.

Fig. 2. An example of the DNA structure maintained per host basis

5.3 Capturing the attributes
The effectiveness of our solution is based on selecting the appropriate network or host
attributes exhibited by botnets. These lists of attributes are based on the behavior depicted
by various botnets over time as discussed in sections earlier. One or more of the attributes
requires maintaining some sort of state information. Table 1 provides some of the higher
layer network features that are currently tracked.

Fast-flux TTL, Rate of failed connections to ip, Rate of failed connection to dns, IRC,
(Incoming http request, Outgoing http response, Outgoing http request, (Failed
http response, Successful http response)), Incoming network scanning, (Outgoing
network scanning, (Outgoing network scanning, Rate of Scanning)), (Retrieve
Binary, (Binary MD5 match, Size of Binary)), (P2P traffic, Active connection rates,
P2p active connections), Source IP spoofing, Outgoing SMTP traffic

Table 1. Network features tracked

www.intechopen.com

 Intrusion Detection Systems

70

5.4 Depth of attributes

As shown in Fig. 3, the depth at which a collected attribute resides, decides the length of the

feature vector, and associated runtime and memory costs. The depth of the feature also

decides if a bot can be appropriately distinguished or categorized under a known botnet.

This is a trade-off that has to be kept into consideration. If the features vector comprises a

sequence of system call API, this would cause a feature vector explosion (Bayer et al., 2009).

In order to tackle this issue, some have abstracted system call objects (Bayer et al., 2009) , or

created feature vector generated from system registry changes, file read/write and

processes created for host-based attributes (Bailey et al., 2007; Rieck et al., 2008; Lee & Mody,

2006).

The attribute collection strategy regarding host-based behavior is based on the decisions of

the researcher designing the agents. We envision having a multi-tiered strategy for host-

based attributes where some attributes are collected at a higher layer than others depending

on required time sensitivity.

Fig. 3. Feature vector size vs. level of abstraction

5.5 Network attributes

A network-based DNA could be computed by capturing network packets by network-based

packet filters such as snort-inline by monitoring all network connections between internal

hosts and the external network. The primary advantage of snort-inline is that it allows active

dropping of network packets if needed based on snort rules triggered.

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

71

We envision that one would need two sets of network attributes. Those that can be

computed based on just packet header traces, and those that can be computed via deep

packet inspection. The difficulty in capturing the later is the amount of encrypted channels

used by botnets today. Due to the extensive obfuscation technology and encryption used,

we have to take into account that some of the attributes that requires deep packet inspection

will not be able to detect some bot traffic, and thus should be weighed differently.

5.6 Host attributes

Host-based attributes need to be captured using multiple methods. We could run host

monitoring tools such as Sebek (Sebek, 2010) in a host that provide some of the host-based

DNA, for example: list of dll and system files created, registry entries modifies, their

modification dates, running processes, etc. This information and the analysis code that

computes the host DNA could reside on the host. But there is an inherent problem in

capturing host infections.

No data obtained using analysis tools already present on a host once it has been infected can
be trusted. Moreover, the infected host could modify results sent by the infected host. For
example most bots such as storm, rxbot and rustock use rootkits to modify results obtained
using windows system API to hide monitoring of processes, network connections, file
visibility and file sizes. Similarly Conficker (Porras et al., 2009) modifies in memory versions
of windows system API leaving the actual dll file on disk untouched. This leads us to the
case for using mobile agents.

5.7 The case for mobile agents

The main reason why using a mobile agent based approach is viable in host-based
behavior detection is the fact that if our evidence gathering code is already available on an
infected node, we cannot trust its result. Thus in order to analyze a host, our evidence
gathering code has to travel to the host being analyzed. This could be the code which
computes an MD5 hash of some important system files, or retrieve analysis data stored in
a pseudo random file stored on the host in an encrypted format to hide from the infection
code, or the code that detects the presence of rootkitted files similar to Rootkit Revealer or
Rootkit Unhooker. Similarly, if more than one host exhibits similar malicious activities, or if
multiple network sensors are deployed, mobile agents would allow processing of multiple
hosts in a parallel manner, minimizing the time to detect infections. Mobile agents would
allow us to replace outdated monitoring agents, with new agent code that has updated
tracking abilities.

5.8 Protecting the agent and the infected host

An approach that can be taken to protect the infected host from malicious agent is the use of

strong asymmetric cryptography. Some mobile agent platforms such as Grasshopper and

Aglets allow only agent code signed and verified to run on a given host with access control

policies. Using strong asymmetric key to sign the agent and its verification by the infected

host environment would protect the host.

Similarly, once the agent performs its analysis task, the mobile agent would travel back to
the analyzing host where it would be marked as tainted. The analyzing host could perform a
check such as performing an MD5 hash on the agent to see that the agent code has not been
modified before its results are processed.

www.intechopen.com

 Intrusion Detection Systems

72

Any agent travelling to an infected host also has to verify that the agent middleware has not
been compromised in any way before starting its processing. The absence of an agent
middleware that is supposed to exist could act as a sign of maliciousness. Using Aglets
agent middleware has the added advantage of us being able to add functionality to the
agent middleware as required since it is open-sourced.

5.9 Feature extraction (infection score)

Though we rely on measuring the various network and host-based attributes, not all
attributes have equal weight in detecting botnet communication or activity. Moreover
certain botnet families exhibit higher frequency of a certain attribute versus others. For
example, certain attributes such as the use of fast-flux for communication or a user machine
exhibiting SMTP traffic are symtoms of botnet behavior in case of botnets such as Storm and
Waledac, but these features may not be utilized by IRC based bots such as Agobot. Thus, we
see that not all attributes should be weighed equally for all botnets.
One approach would be to partition the features into multiple sets each assigned to a weight
category, or each feature assigned an individual appropriate weight. This would constitute a
part of feature extraction, where certain features are brought into focus while other probably
noise given less emphasis. Whereas taking the first approach is easier, it is also prone to
more inaccuracy. The second approach is more accurate but harder to compute.

Fig. 4. Computing an infection score for a botnet infected host

The second approach could be accomplished by using Support Vector Machine (SVM), a
supervised machine learning approach which is less prone to noise in the data sample.
Creating an SVM for each bot family, and comparing the host DNA to each bot family SVM
would allow us to measure which bot a host behaves like. The purpose of an SVM is to
compute an optimal hyperplane that separates one class of n-dimensional points from
another class (Rieck et al., 2008). Thus the main reason for using SVM in our case would be
to compute actual weight assignments. This allows us to compute the infection score as
shown in figure 4 where SN(h) is the computed infection score.

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

73

A host that exhibits a higher infection score, and if the infection score exceeds a threshold

score set by an administrator, would automatically trigger a correlation requirement of host

and network features exhibited and a further analysis.

Similarly, if the host or network DNA exhibits similar patterns to a known infection (based

on distance measurement) after clustering bot behavior, it would also trigger a DNA-based

correlation.

5.10 Scenario of use

In this section we describe the scenario of use of our approach.
A system administrator will receive continuous updating of the DNA sequencing of a given

host and its probability of infection. The network-based DNA of a host will be updated

based on the network traffic seen by the snort-inline processor. The host-based DNA will be

reported periodically by individual hosts within the local network.

If the probability of the host being infected crosses a certain threshold based on the infection

score, or a host approaches a DNA match close to a botnet, a bot correlation trigger flag will

be raised.

Based on the infection model seen, a mobile agent would be created with the required host-

detection functionality.

The agent would be deployed to the infected host, where it would perform analysis tasks as

described in earlier sections. If the infected host denies a real agent to run, this could be a

sign of maliciousness.

The agent could return with advanced-detailed results such as an encrypted list of

rootkitted processes/files, or just the host-based DNA results. The agent is placed in the

tainted bin, to verify the integrity of the agent, since it had travelled to a probable infected

host. If the agent has retained its integrity its results are measured to be valid.

Based on both the host and network-based results, the node could block all

incoming/outgoing network traffic by automatically modifying snort-inline for the given

host. It could also provide details such as if the infection matches a known botnet, or is a

new botnet pattern. It would also allow us to correlate hosts that have exhibited similar bot

behavior pattern.

6. Conclusion

In this chapter, we have primarily focused on the various mechanisms utilized by botnet

owners to maintain and protect their botnets; and the defensive mechanisms designed by

researchers to study, detect and dismantle the malicious botnets. As can be understood,

botnets utilize multiple advanced technologies that are constantly updated. Hence we have

proposed the use of mobile agents which too can be constantly updated to defend against

the ever changing behavior of bot binaries.

7. References

Alam, M.; Gupta, A.; Wires, J. & Vuong, S. (2005). APHIDS++: Evolution of a Programmable
Hybrid Intrusion Detection System, Proceedings of Mobility Aware Technologies and
Applications, pp. 22-31, Volume 3744/2005, Montreal, January, 2007, SpringerLink.

www.intechopen.com

 Intrusion Detection Systems

74

Alam, M. & Vuong, S. (2007). APHIDS++ : A Mobile Agent Based Intrusion Detection
System, Proceedings of 2nd International conference on Communication Systems Software
and Middleware, pp. 1-6, ISBN 1-4244-0613-7, Bangalore, January, 2007.

Asaka, M.; Taquchi, A. & Goto, S. (1999). The Implementation of IDA: An Intrusion
Detection Agent System. Proceedings of the 11th conference on Forum of Incident
Response and Security Teams. Brisbane Australia, July, 2007.

Aslam, J.; Cremonini, M.; Kotz, D. & Rus, D. (2001). Using Mobile Agents for Analyzing
Intrusion in Computer Networks. Proceedings of the Workshop on Mobile Object
Systems at ECOOP 2001. Budapest, Hungary, June, 2001.

Bacher, P. ; Holz, T. ; Kotter, M. & Wicherski, G. (2005). Know your Enemy : Tracking
Botnets using Honeynets to learn more about bots. Honeynet Project, [online]
Available at: http://www.honeynet.org/papers/bots, [Accessed 10 September
2010].

Baecher, P; Koetter, M;Dornseif, M. & Freiling, F. (2006). The nepenthes platform: An
efficient approach to collect malware. Proceedings of the 9th International Symposium
on Recent Advances in Intrusion Detection, pp. 165-184, Springer Link, Hamburg,
Germany, September, 2006.

Bailey, M.; Oberheide, J.; Andersen, J.; Mao, Z. M.; Jahanian, F. & Nazario, J. (2007).
Automated classification and analysis of internet malware. Proceedings of the 10th
international Conference on Recent Advances in intrusion Detection (Gold Goast,
Australia, September 05 - 07, 2007, pp 178-197 C. Kruegel, R. Lippmann, and A.
Clark, Eds. Lecture Notes In Computer Science. Springer-Verlag, Berlin,
Heidelberg.

Balasubramaniyan, J. S., Garcia-Fernandez, J. O., Isacoff, D., Spafford, E. & Zamboni, D.
(1998). An Architecture for Intrusion Detection Using Autonomous Agents,
Proceedings of the 14th Annual Computer Security Applications Conference (ACSAC),
ISBN 8186-8789-4, IEEE Computer Society, Washington, DC, December, 1998.

Bambenek, J. & Klus, A. (2008). Botnets and proactive system defense. Botnet Detection:
Countering the Largest Security Threat, edited by Wenke Lee, Cliff Wang, and
David Dagon, ISBN 978-0-387-68766-7, Springer-Verlag, 2008.

Barford, P. & Blodgett, M. (2007). Toward botnet mesocosms. Proceedings of the First
Conference on First Workshop on Hot Topics in Understanding Botnets, Cambridge, MA,
April, 2007, USENIX Association, Berkeley, CA.

Bäumer, C. & Magedanz, T. (1999). The Grasshopper Mobile Agent Platform Enabling
Shortterm Active Broadband Intelligent Network Implementation. Proceedings of the
First international Working Conference on Active Networks S. Covaci, pp 109-116, Ed.
Lecture Notes In Computer Science, vol. 1653. Springer-Verlag, London.

Bayer, U; Comparetti, P; Hlauschek, C; Kruegel, C & Kirda, E. (2009). Scalable Behavior-
based Malware Custering. Proceedings of the 16th Annual Network and Distributed
System Security Symposium, ISOC, SanDiego, CA, February, 2009.

Bieszczad, A; White, T & Pagurek, B. (1998). Mobile Agents for Network Management,
Proceedings of IEEE Communications Surveys, September 1998.

Brodsky, A. & Brodsky, D. (2007). A distributed content independent method for spam
detection. Proceedings of the First Conference on First Workshop on Hot Topics in
Understanding Botnets, Cambridge, MA, April, 2007, USENIX Association, Berkeley,
CA.

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

75

Brumley, D.; Caballero, J.; Liang, Z.; Newsome, J. & Song, D. (2007). Towards automatic
discovery of deviations in binary implementations with applications to error
detection and fingerprint generation, Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium, pp. 1-16, Boston, MA, N. Provos, Ed.
USENIX Association, Berkeley, CA.

Brumley, D.; Poosankam, P.; Song, D. & Zheng, J. (2008). Automatic Patch-Based Exploit
Generation is Possible: Techniques and Implications. Proceedings of the 2008 IEEE
Symposium on Security and Privacy, pp. 143-157, SP. IEEE Computer Society,
Washington, DC, May, 2008.

Chiang, K. & Lloyd, L. (2007). A case study of the rustock rootkit and spam bot. Proceedings
of the First Conference on First Workshop on Hot Topics in Understanding
Botnets, Cambridge, MA, April, 2007, USENIX Association, Berkeley, CA

Cooke, E.; Jahanian, F., & McPherson, D. (2005). The Zombie roundup: understanding,
detecting, and disrupting botnets. Proceedings of the Steps To Reducing Unwanted
Traffic on the internet on Steps To Reducing Unwanted Traffic on the internet
Workshop, Cambridge, MA, July, 2005, USENIX Association, Berkeley, CA.

Crosbie, M. & Sapfford, G. (1995). Defending a Computer System using Autonomous
Agents. Proceedings of the 8th National Information Systems Security Conference.

Dagon, D ;Zou, C & Lee, W. (2006). Modelling Botnet Propagation using time zones.
Proceedings of The 13th Annual Network and Distributed System Security Symposium
(NDSS 2006), San Diego, CA, February 2006, ISOC.

Daswani, N. & Stoppelman, M. (2007). The anatomy of Clickbot.A. Proceedings of the First
Conference on First Workshop on Hot Topics in Understanding Botnets, Cambridge, MA,
April 2007, USENIX Association, Berkeley, CA.

Foukia, N.; Billard, D. & Harms, J. (2001). Computer System Immunity using Mobile Agents.
Proceedings of HP Openview University Association 8th Annual Workshop. 2001.

Foukia, N.; Hassan, S.; Fenet, S. & Albequerque, P. (2003). Combining Immune System and
Social Insect Metaphors: A Paradimg for Intrusion detection and response system.
Proceedings of the 5th International Workshop for Mobile Agents for Telecommunication
Applications, Marakech, Morocco, October, 2003, Lecture Notes in Computer
Science, Springer.

Franklin, J.; Luk, M.; McCune, J.M.; Seshadri, A.; Perrig, A., & van Doorn, L. (2008). Towards
Sound Detection of Virtual Machines, Botnet Detection: Countering the Largest
Security Threat, edited by by Wenke Lee, Cliff Wang, and David Dagon, ISBN 978-0-
387-68766-7, Springer-Verlag, 2008.

Fuggetta, A.; Picco, G.& Vigna, G. (1998). Understanding Code Mobility, Proceedings of IEEE
Transactions on Software Engineering, pp. 342-361, May, 1998

Gao, D.; Reiter, M. & Song, D. (2005). Behavioral Distance for Intrusion Detection.
Proceedings of the 8th International Symposium on Recent Advances in Intrusion
Detection, pp. 63-81, Seattle, Washington, September 2005, Springer.

Garfinkel, T.; Adams, K.; Warfield, A.; & Franklin, J. (2007). Compatibility is not
transparency: VMM detection myths and realities. Proceedings of the 11th USENIX
Workshop on Hot Topics in Operating Systems, pp. 1-6, San Diego, CA, May, 2007, G.
Hunt, Ed. USENIX Association, Berkeley, CA.

Grizzard, J. B.; Sharma, V.; Nunnery, C.; Kang, B. B. & Dagon, D. (2007). Peer-to-peer
botnets: overview and case study. Proceedings of the First Conference on First

www.intechopen.com

 Intrusion Detection Systems

76

Workshop on Hot Topics in Understanding Botnets, Cambridge, MA, USENIX
Association, Berkeley, CA.

Gu, G.; Porras, P.; Yegneswaran, V.; Fong, M. & Lee, W. (2007). BotHunter: detecting
malware infection through IDS-driven dialog correlation. Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, pp. 1-16, Boston, MA,
August 2007, N. Provos, Ed. USENIX Association, Berkeley, CA.

Gu, G.; Zhang, J.; Lee, W. (2008). BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic. Proceedings of The 15th Annual Network and Distributed
System Security Symposium (NDSS 2008), San Diego, CA, February 2008, ISOC.

Gu, G.; Perdisci, R.; Zhang, J. & Lee, W. (2008). BotMiner: clustering analysis of network
traffic for protocol- and structure-independent botnet detection. Proceedings of the
17th Conference on Security Symposium , pp. 139-154, San Jose, CA, July 28 - August
01, 2008, USENIX Association, Berkeley, CA.

Helmer, G.; Wong, J.S.K.; Honavar, V. & Miller, L. (1998). Intelligent agents for intrusion
detection. Proceedings of IEEE Information Technology Conference, pp. 121-124,
Syracuse, NY, USA, September 1998.

Holz, T.; Steiner, M.; Dahl, F.; Biersack, E. & Freiling, F. (2008). Measurements and
mitigation of peer-to-peer-based botnets: a case study on storm worm. Proceedings
of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats, pp. 1-9, San
Francisco, California, April 2008, F. Monrose, Ed. USENIX Association, Berkeley,
CA.

Holz, T.; Engelberth, M. & Freiling, F. (2009). Learning more about the underground
economy: a case-study of keyloggers and dropzones. Proceedings of the 14th
European Conference on Research in Computer Security, pp. 1-18, Saint-Malo, France,
September 21 - 23, 2009, M. Backes and P. Ning, Eds. Lecture Notes In Computer
Science. Springer-Verlag, Berlin, Heidelberg.

Hund, R.; Hamann, M. & Holz, T. (2008). Towards Next-Generation Botnets. Proceedings of
the 2008 European Conference on Computer Network Defense , pp. 33-40, Dublin,
Ireland, December 11 - 12, 2008, EC2ND, IEEE Computer Society, Washington, DC.

Hex-rays. (2010). IDA Pro. [Online] Available at: http://www.hex-rays.com/idapro/
Ikinci, A.; Holz, T. & Freiling, F. (2008). Monkey-Spider: Detecting Malicious Websites with

Low-Interaction Honeyclients. Proceedings of Sicherheit, Schutz und Zuverlssigkeit, pp.
407-421, April 2008, Germany.

Jansen, W & Karigiannis, T. (1999). Mobile Agent Security. NIST Special Publications,
Computer Security Resource Center. [Online] Available at:
http://csrc.nist.gov/publications/nistpubs/800-19/sp800-19.pdf [Accessed 12
September 2010]

Karasaridis, A.; Rexroad, B. & Hoeflin, D. (2007). Wide-scale botnet detection and
characterization. Proceedings of the First Conference on First Workshop on Hot Topics in
Understanding Botnets , Cambridge, MA, April 2007, USENIX Association, Berkeley,
CA.

Lee, T. & Mody, J. (2006). Behavioral classification. Proceedings of European Expert Group For
IT-Security, EICAR 2006, Hamburg, Germany, May 2006.

Li, Z.; Goyal, A. & Chen, Y. Honeynet-based Botnet Scan Traffic Analysis. (2008). Botnet
Detection: Countering the Largest Security Threat, pp. 25-44, ISBN 978-0-387-68766-7,
edited by Wenke Lee, Cliff Wang, and David Dagon, Springer-Verlag.

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

77

Krügel, C.; Toth, T. & Kirda, E. (2001). SPARTA, a Mobile Agent Based Instrusion Detection
System. Proceedings of the IFIP Tc11 Wg11.4 First Annual Working Conference on
Network Security: Advances in Network and Distributed Systems Security, pp. 187-200,
Belgium, November 26 - 27, 2001, B. D. Decker, F. Piessens, J. Smits, and E. V.
Herreweghen, Eds. IFIP Conference Proceedings, vol. 206. Kluwer B.V., Deventer,
The Netherlands.

Krügel, C.& Toth, T;. (2002).Flexible, Mobile Agent based Intrusion Detection for Dynamic
Network. Proceedings of the European Wireless. February 2002.

Li, C.; Song, Q.; Zhang, C. (2004). MA-IDS Architecture for Distributed Intrusion Detection
using Mobile Agents. Proceedings of the 2nd International Conference on Information
Technology for Application (ICITA 2004).

Li, Z.; Sanghi, M.; Chen, Y.; Kao, M. & Chavez, B. (2006). Hamsa: Fast Signature Generation
for Zero-day PolymorphicWorms with Provable Attack Resilience. Proceedings of the
2006 IEEE Symposium on Security and Privacy , pp. 32-47, Oakland, CA, May 21 - 24,
2006. SP. IEEE Computer Society, Washington, DC.

Liu, X.; Yang, X. & Lu, Y. (2008). To filter or to authorize: network-layer DoS defense against
multimillion-node botnets. Proceedings of the ACM SIGCOMM 2008 Conference on
Data Communication, pp. 195-206, Seattle, WA, USA, August 17 - 22, 2008.
SIGCOMM '08. ACM, New York, NY.

Mell, P. & McLarnon, M. (1999). Mobile Agent Attack Resistant Distributed Hierarchical
Intrusion Detection Systems. Proceedings of the Second International Workshop on
Recent Advances in Intrusion Detection. Purdue, IN, USA, September 1999, [Online]
Available at: http://www.raid-symposium.org/raid99/

MITRE Honey Client Project. (2007). [Online] Available at:
http://www.honeyclient.org/trac

Queiroz, J.; Carmo, L. & Pirmez, L. (1999). Micael: An autonomous mobile agent system to
protect new generation networked applications. Proceedings of the Second
International Workshop on Recent Advances in Intrusion Detection. Purdue, IN, USA,
September 1999, [Online] Available at: http://www.raid-symposium.org/raid99/

Nazario, J. & Holz T. (2008). As the net churns : fast-flux Botnet Observations. Proceedings of
3rd International Conference on Malicious and Unwanted Software, Virginia, October
2008, IEEE.

Newsome, J.; Karp, B. & Song, D. (2005). Polygraph: automatically generating signatures for
polymorphic worms, In Proceedings of IEEE Symposium on Security and Privacy, 2005,
pp. 226- 241, Oakland, CA, 8-11 May 2005. IEEE.

Pierce, C. (2008). Owning Kraken Zombies, A detailed Dissection. [Online] Available at:
http://dvlabs.tippingpoint.com/blog/2008/04/28/owning-kraken-zombies . Last
accessed: 12th September, 2010.

Porras, P.; Saidi, H. & Yegneswaran, V. (2009). Conficker C Analysis. [Online] Available at:
http://mtc.sri.com/Conficker/addendumC/ , Last Updated: 4 April, 2009.

Provos, N.; McNamee, D.; Mavrommatis, P.; Wang, K. & Modadugu, N. (2007). The ghost in
the browser analysis of web-based malware. Proceedings of the First Conference on
First Workshop on Hot Topics in Understanding Botnets, Cambridge, MA, April 2007,
USENIX Association, Berkeley, CA.

Provos, N. (2007). HoneyD. [Online] Available at: http://www.honeyd.org. Last accessed:
7th September 2010.

www.intechopen.com

 Intrusion Detection Systems

78

Provos, N.; Mavrommatis, P., Rajab, M. A., & Monrose, F. (2008). All your iFRAMEs point to
Us. Proceedings of the 17th Conference on Security Symposium, pp. 1-15, San Jose, CA,
July 28 - August 01, 2008. USENIX Association, Berkeley, CA.

Rajab, M.; Zarfoss, J.; Monrose, F. & Terzis, A. (2006). A multifaceted approach to
understanding the botnet phenomenon. Proceedings of the 6th ACM SIGCOMM
Conference on internet Measurement, pp. 41-52, Rio de Janeriro, Brazil, October 25 -
27, 2006, ACM, New York, NY.

Ramachandran, A.; Feamster, N. & Dagon, D. (2006). Revealing botnet membership using
DNSBL counter-intelligence. Proceedings of the 2nd Conference on Steps To Reducing
Unwanted Traffic on the internet - Volume 2, pp. 49-54, San Jose, CA, July, 2006,
USENIX Association, Berkeley, CA.

Ramachandran, G. & Hart, D. (2004). A P2P intrusion detection system based on mobile
agents. Proceedings of the 42nd Annual Southeast Regional Conference, pp. 185-190,
Huntsville, Alabama, April 02 - 03, 2004. ACM-SE 42. ACM, New York, NY.

Riden, J. & Seifert, C. (2008). A guide to different kinds of honeypots. [Online] Available at:
http://www.symantec.com/connect/articles/guide-different-kinds-honeypots,
February 2008, Symantec.

Rieck, K.; Holz, T.; Willems, C.; Düssel, P. & Laskov, P. (2008). Learning and Classification of
Malware Behavior. Proceedings of the 5th international Conference on Detection of
intrusions and Malware, and Vulnerability Assessment, pp. 108-125, Paris, France, July
10 - 11, 2008, D. Zamboni, Ed. Lecture Notes In Computer Science, vol. 5137.
Springer-Verlag, Berlin, Heidelberg.

Rocaspana, J. (2007). Shelia: a client-side honeypot for attach detection. [Online] Available
at: http://www.cs.vu.nl/~herbertb/misc/shelia/. Last accessed: 10 September,
2010.

Roesch, M. (1999). Snort – lightweight intrusion detection system for networks. Proceedings of
USENIX LISA’99. Seattle, Washington, November 1999.

Roo. (2005). Honeywall. The Honeynet Project. [Online] Available at:
https://projects.honeynet.org/honeywall/

Sebek. (2010). Sebek. The Honeynet Project. [Online] Available at:
https://projects.honeynet.org/sebek/

Schiller, C. ; Binkley J.; Evron G. ; Willems, C ; Bradley, T. ; Harley D. ; Cross M. (2007).
Botnets : The Killer Web Application, ISBN 1597491357, Syngress.

Siefert, C; Steenson, R.; Holz, T.; Davis, M. (2007). Know Your Enemy: Behind the scenes of
Malicious WebServers. Honeynet.org. Nov 2007, [Online]: Available at:
http://www.honeynet.org/papers/mws. Last Accessed: 12 September, 2010.

Siefert. C. (2008). Capture-HPC Client Honeypot. [Online] Available at:
 https://projects.honeynet.org/capture-hpc . Last Accessed: 12 September, 2010.
Simon, D. R.; Agarwal, S. & Maltz, D. A. (2007). AS-based accountability as a cost-effective

DDoS defense. Proceedings of the First Conference on First Workshop on Hot Topics in
Understanding Botnets, Cambridge, MA, April 2007, USENIX Association, Berkeley,
CA.

Singh, K.; Srivastava, A.; Giffin, J.& Lee, W. (2008). Evaluating Email’s Feasibility for Botnet
Command and Control. Proceedings of the 38th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Anchorage, Alaska, USA, June, 2008, IEEE.

Snort-inline. (2005). [Online] Available at: http://snort-inline.sourceforge.net/

www.intechopen.com

Advanced Methods for Botnet Intrusion Detection Systems

79

Steward, J. (2009). Spam Botnets to Watch 2009. [Online] Available at:
http://www.secureworks.com/research/threats/botnets2009/. Secureworks,
January, 2009.

Stinson, E. & Mitchell, J. C. (2008). Towards systematic evaluation of the evadability of
bot/botnet detection methods. Proceedings of the 2nd Conference on USENIX
Workshop on offensive Technologies, pp. 1-9, San Jose, CA, USENIX Association,
Berkeley, CA.

Stolfo, S.; Prodromidis, A.; Tselepis, S.; Lee, W.; Fan, D. & Chan P. (1997). JAM: Java Agents
for Meta-Learning over Distributed Databases. Proceedings of the third
international conference on Knowledge Discovery and Data mining, pp. 74-81,
Newport Beach, CA, USA, August, 1997, ISBN 1-57735-027-8, AAAI Press.

Strayer, W.; Lapsely, D; Walsh, R & Livadas, C. (2008). Botnet Detection Based on Network
Behavior. Botnet Detection: Countering the Largest Security Threat, pp. 1-24, edited by
Wenke Lee, Cliff Wang, and David Dagon, ISBN 978-0-387-68766-7, Springer-
Verlag, 2008.

Sunbelt. (2010). CWSandbox. [Online] Available at:
http://www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/Sunbelt-
CWSandbox.

Tucek, J.; Newsome, J.; Lu, S.; Huang, C.; Xanthos, S.; Brumley, D.; Zhou, Y. & Song, D.
(2007). Sweeper: a lightweight end-to-end system for defending against fast
worms. Proceedings of Special Interest Group on Operating Systems Operating Systems
Review, pp. 115-128, Volume 41, No. 3, June 2007, ACM, Newyork, NY, USA.

Unrealircd. (2010). [Online] Available at: http://www.unrealircd.com/. Last accessed: 12
September, 2010.

Valeur, F.; Vigna, G.; Kruegel, C. & Kemmerer, R. A. (2004). A Comprehensive Approach to
Intrusion Detection Alert Correlation. Proceedings of IEEE Transactions on
Dependable and Secure Computing, pp. 146-169, Volume 1, No. 3, July 2004, IEEE.

Vigna, G. (2004). Mobile agents: ten reasons for failure. Proceedings of the IEEE International
Conference on Mobile Data Management (MDM '04), pp. 298-299, Berkeley, CA. IEEE.

Vigna, G.; Cassell, B. & Fayram, D. (2002). An Intrusion Detection System for Aglets.
Proceedings of the 6th international Conference on Mobile Agents, pp. 64-77, Barcelona,
Spain, October 22 - 25, 2002, N. Suri, Ed. Lecture Notes In Computer Science, vol.
2535, ISBN 3-540-00085-2, Springer-Verlag, London.

Vogt, R.; Aycock, J. & Jacobson Jr, M. (2007). Army of Botnets. Proceedings of the Network and
Distributed System Security Symposium, NDSS 2007, San Diego, California, USA, 28th
February - 2nd March 2007, ISOC.

Wang, P.; Sparks, S. & Zou, C. (2007). An advanced hybrid peer-to-peer botnet. Proceedings
of the First Conference on First Workshop on Hot Topics in Understanding Botnets,
Cambridge, MA, April 2007, USENIX Association, Berkeley, CA.

Wang, Y.; Beck, D; Jiang, X.; Roussev, R.; Verbowski, C.; Chen, X. & King, S. (2006).
Automated Web Patrol with Strider HoneyMonkeys: Finding web sites that exploit
Browser vulnerabilities. Proceedings of the Network and Distributed System Security
Symposium, NDSS 2006, San Diego, California, USA, February 2006, ISBN 1-891562-
22-3, ISOC

 Xie, Y.; Yu, F.; Achan, K.; Panigrahy, R.; Hulten, G., & Osipkov, I. (2008). Spamming
botnets: signatures and characteristics. Proceedings of SIGCOMM Computer

www.intechopen.com

 Intrusion Detection Systems

80

Communication Review, pp. 171-182, Volume 38,No. 4, October 2008, ACM, Newy
York, NY, USA.

Yin, H.; Song, D.; Egele, M.; Kruegel, C. & Kirda, E. (2007). Panorama: capturing system-
wide information flow for malware detection and analysis. Proceedings of the 14th
ACM Conference on Computer and Communications Security, pp. 116-127, Alexandria,
Virginia, USA, October 28 - 31, 2007, ACM, New York, NY.

www.intechopen.com

Intrusion Detection Systems

Edited by Dr. Pawel Skrobanek

ISBN 978-953-307-167-1

Hard cover, 324 pages

Publisher InTech

Published online 22, March, 2011

Published in print edition March, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The current structure of the chapters reflects the key aspects discussed in the papers but the papers

themselves contain more additional interesting information: examples of a practical application and results

obtained for existing networks as well as results of experiments confirming efficacy of a synergistic analysis of

anomaly detection and signature detection, and application of interesting solutions, such as an analysis of the

anomalies of user behaviors and many others.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Son T. Vuong and Mohammed S. Alam (2011). Advanced Methods for Botnet Intrusion Detection Systems,

Intrusion Detection Systems, Dr. Pawel Skrobanek (Ed.), ISBN: 978-953-307-167-1, InTech, Available from:

http://www.intechopen.com/books/intrusion-detection-systems/advanced-methods-for-botnet-intrusion-

detection-systems

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

