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1. Introduction    

Light detection in the near-infrared (NIR) region is an important issue in long distance 
optical fiber communication systems, local area networks, and optical interconnections in 
high speed computers. In recent years, the development of devices that are compatible with 
silicon electronic-photonic integrated circuits and can be operated at the telecommunication 
wavelengths of 1.3 and 1.55 Ǎm has been the subject of intense research. The majority of 
optical fiber transmission systems operate at these wavelengths in order to take advantage 
of the low loss and low dispersion characteristics of silica-based optical fibers at these 
wavelength windows. Therefore, extraordinary technological innovations are increasingly 
adopted within the telecommunication industry as means of developing optoelectronic 
devices which operate at these wavelengths and are compatible with the current silicon 
technology (Kang et al, 1984; Luray et al, 2003; Masini et al, 2008). The key requirements for 
future integrated optoelectronics are light sources and light detectors that operate at the 
desired wavelength range and are compatible with the current Si technology. 
The iron disilicide phase, β-FeSi2, that can be grown on Si with 2%–5% lattice mismatch, is 
one of the best candidates for NIR photo-detection owing to several merits: (i) a large 
absorption coefficient, which is at least two orders of magnitude greater than that of 
crystalline silicon at 1.5 eV; (ii) a direct band gap of 0.85 eV; (iii) compatibility with Si 
technology; (iv) abundance of its elements (Fe and Si) in earth’s crust; and (v) ecologically 
friendly material due to its non-toxicity. Therefore, β-FeSi2 is a prime candidate material for 
optoelectronic and photovoltaic applications. 
Various deposition methods such as; ion beam synthesis (Leong et al, 1996), reactive 
deposition epitaxy (Suemasu et al, 2000), and molecular beam epitaxy (Mahan et al, 1990) 
have been adapted for the growth of β-FeSi2. However, thermal treatments such as 
annealing at temperatures greater than 800 °C are generally carried out after film deposition. 
This causes an easy condensation of β-FeSi2 due to its high surface energy as compared to 
that of Si, which leads to a discontinuous surface structure. In addition, Fe atoms diffuse 
into Si. Although the solid solubility of Fe in Si is known to be low, for example, 2 ×1015 cm−3 
at 900 °C, the diffusion coefficient is extremely large. This prevents the construction of β-
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FeSi2/Si heterojunctions with sharp interfaces. Fe atoms migrated into a depletion layer 
within Si, thereby producing a leak current. To overcome this problem, the template method 
has been suggested in which a thin template layer is grown at a low temperature before the 
general film fabrication procedure (Liu et al, 2004; Suemasu et al, 1999). We suggest another 
method in which thin films are epitaxially as-grown at a substrate temperature of 600 °C 
without annealing. Both the diffusion coefficient and the solid solubility of Fe in Si at 600 °C 
are a fifth to a tenth of those at 800 °C (Kendall & Devries, 1969). 
Sputtering methods have been applied for a variety of film preparations and is easily 
available for industrial applications. In this study, we have adapted a facing-targets direct-
current sputtering (FTDCS) method, in which a couple of targets are positioned in parallel 
and the substrate is set in the direction perpendicular to the two targets. As compared to the 
ordinary sputtering method, FTDCS has the following features due to a magnetic field 
between the targets: (i) high plasma density, (ii) less damage, (iii) fewer rises in substrate 
temperature, and (iv) lower stoichiometric difference from a target since the substrate is free 
of the plasma. On the other hand, species arriving at the substrate have a kinetic energy of 
several electron-volts; this value is larger than those observed in other preparation methods 
such as molecular beam epitaxy. These are suitable for growing β-FeSi2 directly at low 
substrate temperatures by providing both Fe and Si by using FeSi2 alloy targets. 

2. Experimental procedure 

Sputtering has proven to be a successful method of coating a variety of substrates with thin 
films of electrically conductive or non-conductive materials. One of the most striking 
characteristics of sputtering is its universality. Since the coating material is passed into the 
vapor phase by a mechanical rather than a chemical or thermal process, virtually any 
material can be deposited. Generally, direct current (DC) is used to sputter conductive 
materials, while radio frequency (RF) is used for non-conductive materials. 
FTDCS apparatus is configured such that a pair of targets is mounted facing each other 
separated by a prespecified distance away from each other. A magnetic field extending in 
the space between the targets, called a discharge space, from one target to the other is 
provided by two permanent magnets, as shown in Fig. 1(a). The magnetic field flux, which 
has a perpendicular direction to the target surfaces, uniformly surrounds the discharge 
space to confine plasma within this space and to form a film on a substrate disposed at a 
position beside the discharge space under vacuum condition. The DC plasma can be 
adjusted over a wide range to control the deposition rate. The DC power supply supplies 
sputtering power to the apparatus while the shields of the vacuum chamber walls serve as 
an anode (ground) and the targets serve as a cathode (Kadokura, 2005). 
The film preparation chamber is evacuated by means of an evacuation system, consisting of 
turbo-molecular pump connected to a rotary pump. A sputtering gas, such as argon, is 
introduced into the vacuum chamber through a gas inlet by a gas flow rate control system. 
Generally, inert gases are usually employed as the sputtering gas because they tend not to 
react with the target material or combine with any process gases and because they produce 
higher sputtering and deposition rates due to their high molecular weight. The sputtering 
plasma affects sputtering of the targets, thereby forming a thin film with composition 
corresponds to that of the targets on the substrate, as shown in Fig. 1(b). The sputtering 
plasma accelerates ionization of the sputtering gas, thereby increasing the sputtering rate 
and thus forming a film on the substrate at high deposition rates. 
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(a) 

 
(b) 

Fig. 1. Illustrations of; (a) FTDCS configuration, and (b) sputtering mechanism in FTDCS 
apparatus 

The experiment procedure can be summarized as follows: β-FeSi2 thin films of thickness 300 
nm were deposited on Czochralski Si(111) substrates (resistivity: 10 Ω cm) of thickness 100 
Ǎm using FeSi2 targets (purity: 4 N) with atomic ratio of Fe : Si = 1 : 2. The substrates were 
placed in the film preparation chamber after their native oxide layers were etched in dilute 
HF solution (1% HF). The chamber, which was equipped with a turbo-molecular pump, was 
evacuated to a base pressure of less than 1×10−5 Pa. Ar gas (purity: 6 N) was introduced into 
the chamber at a flow rate of 15 SCCM (SCCM denotes standard cubic centimeter per 
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minute). The β-FeSi2 films were deposited at a constant pressure of 1.33×10−1 Pa. The 
operating DC voltage and current were 1 KV and 1.5 mA, respectively. After the β-FeSi2 
films were deposited at the substrate-temperature of 600 °C, they were transferred to a 
radio-frequency magnetron sputtering apparatus where Pd and Al electrodes were 
deposited on the top (Si) and bottom (β-FeSi2) surfaces of the films, respectively. The 
electrodes were deposited at room temperature. The formation of Pd/β-FeSi2 and Al/Si 
ohmic contacts were experimentally confirmed.  
The structural characteristics of the prepared β-FeSi2/Si heterojunctions were investigated 
by x-ray diffraction (XRD) measurements (Rigaku, RINT-2000/PC) and scanning electron 
microscopy (SEM) observations (JEOL, JSM-6340F). The optical properties were measured 
by a spectrometer (JASCO, V-570) with an integrating sphere (JASCO ISN-470) in the 
photon energy range of 0.6–1.2 eV. The current-voltage (I-V) characteristics were measured 
(Keithley, source-meter 2400) in the dark and under illumination by a 6 mW laser diode 
(LD) (Neoark, TC20) at a wavelength of 1.31 Ǎm. The photoresponse properties were 
measured using a Xe lamp (Ushio, UXL-300D) and a monochromator (Oriel 77250) with a 
focal length of 125 mm and a line density of 600 l/mm. The light intensity was calibrated 
using a commercial photodiode (Hamamatsu G8372–1). 

3. β-FeSi2 film characterization 

3.1 Epitaxial growth  

The epitaxial growth of β-FeSi2 films on Si(111) was confirmed on the basis of the following: 
XRD measurements in a 2θ−θ scan mode, grazing incidence method (2θ scan; at a fixed 
incidence angle of 4°), φ-scan and pole figure analysis. Figure 2 shows a typical 2θ−θ XRD 
pattern of β-FeSi2 films. An intense 220/202 peak and a weak 440/404 peak due to β-FeSi2 
were observed near the 111 and 222 peaks of the Si substrate, respectively. No peaks were 
observed in the 2θ-scan measurement, thereby indicating the absence of polycrystalline 
elements in the film. Crystallites comprising the film are predominantly 101-oriented, which 
is similar to the β-FeSi2 film epitaxially grown on Si(111) by chemical vapor deposition 
(CVD) (Akiyama et al, 2001). The full width at half maximum (FWHM) of the rocking curve 
corresponding to the 404 peak was 1.54°, as shown in the inset of Fig. 2. 
The φ-scan measurement was performed in order to confirm the orientation of the 

crystalline plane parallel to the substrate plane. The rotation axis was normal to the 

substrate surface, that is, the [111] direction of the Si(111) substrate. The diffraction peaks 

due to the 422 planes for the Si substrate and 313 planes for the β-FeSi2 film were detected in 

this measurement. The φ-scan diffraction patterns are shown in Fig. 3(a). The twin peaks 

due to β-FeSi2-313 were observed between the Si-422 peaks; this indicates that three types of 

epitaxial variants were rotated at an angle of 120° with respect to each other (Akiyama et al, 

2001). The epitaxial relationship is predominantly as follows:  

β(101)/Si(111) with β[101]//Si[0 1 1] , [ 1 01], and [ 1 10]. 

The pole figure, shown in Fig. 3(b), shows existence of the three types of epitaxial variants. 

The azimuth angles of two variants are equal, while the azimuth angle of the third variant is 

slightly shifted, owing to the orthorhombic crystallographic structure of β-FeSi2 (Akiyama et 

al, 2001). It was confirmed that the β-FeSi2 films were epitaxially grown not only in a 

direction perpendicular to but also in-plane with the Si(111) substrate. 
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Fig. 2. X-ray diffraction pattern of the β-FeSi2 thin film measured by a 2θ-θ method. The inset 
is the extension of β-404, 440 peaks. 
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Fig. 3. (a) X-ray diffraction pattern of the β-FeSi2 thin film measured by a φ-scan method; (b) 
pole figure plot of the 440/404 diffraction peak of β-FeSi2 
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3.2 Optical characterization 

The absorption coefficient is a strong function of the wavelength or photon energy. Near the 

absorption edge, the absorption coefficient for direct bandgap transitions can be expressed 

as; 

 

1/2( )ghv Eα ∝ −  

 
where hǎ is the photon energy and Eg is the value of the bandgap. The absorption coefficient 

of β-FeSi2 thin film, with thickness of 200 nm, was measured to be ~ 7×104 cm−1 at 1 eV. The 

interpolated indirect and direct optical band gaps were ~ 0.74 and 0.86 eV, respectively 

(Yoshitake et al, 2006). These values are in good agreement with those of the single 

crystalline bulk (Udono et al 2004). The absorption coefficient exceeds of 104 cm–1 for 

energies above 0.78 eV, which is close to the indirect optical bandgap of β-FeSi2. From this 

measurement, the corresponding cut-off wavelength (ǌc) of photodiode devices with β-FeSi2 

thin film is expected to be ~1.55 Ǎm. 

Figure 4(a) shows the photoelectron spectrum of a β-FeSi2 film. The threshold of the incident 

photon energy, which corresponds to the ionization potential of β-FeSi2 (qVip), was 

measured to be 4.71 eV. From this value and the well-known parameters of Si and β-FeSi2, 

the energy band diagram of the n-type β-FeSi2/p-type Si heterostructure was derived, as 

shown in Fig. 4(b). Here, the Fermi level of β-FeSi2 was assumed to be close to the 

conduction band because its high carrier density ranged from 1017 to 1018 cm−3 and its donor 

level was located only 20 meV below the conduction band (Yoshitake et al, 2006). The built-

in potential (qVip) of the heterojunction was estimated to be ~ 0.9 eV. This value is 

sufficiently large for efficient photogenerated carrier collection in the heterojunction. 

3.3 Electrical characterization 

Figure 5 shows the temperature dependence of the electric conductivity of the film. The 

activation energy above 400 K was estimated to be around 0.41 eV, which corresponds to 

approximately half the optical band gaps. The Hall coefficient was negative, indicating n-

type conduction. The activation energy between 280 and 320 K was estimated to be 0.02 eV. 

Since this corresponds to the energies between the donor level of Co and the bottom level of 

the conduction band (Tani et al, 1998), we believe that Co, which is a dominant impurity in 

the FeSi2 target, are incorporated from the FeSi2 target into the film. Although the carrier 

concentration was estimated to be approximately 1017 cm−3 at 300 K from the measured Hall 

coefficient and electric conductivity, the influence of the substrate on the electric 

conductivity of the film is not completely negligible. The carrier concentration might 

approximately lie between 1017 and 1018 cm−3 at 300 K (Yoshitake et al, 2006). It was 

confirmed that the deposited β-FeSi2 was n-type since the heterojunction with p-type Si 

exhibited rectification current that is typically observed in a p-n junction. The conduction 

type of β-FeSi2 is known to be dependent on the stoichiometry between Fe and Si. In this 

study, since the stoichiometric change from the targets to the film was estimated to be at a 

maximum of 1%, we believe that the Co incorporation from the targets is the primary reason 

for n-type conduction. 
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Fig. 4. (a) Photoelectron spectrum of a β-FeSi2 film, wherein the threshold value of the 
photon energy corresponds to the ionization potential and (b) the energy band diagram of 
n-type β-FeSi2/p-type Si heterojunction. 
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Fig. 5. Temperature dependence of the electric conductivity of the β-FeSi2 film. 

4. Device characterization 

The fabricated device is a simple p–n heterostructure grown without annealing or 

passivation. Figure 6(a) illustrates a cross section schematic diagram of n-β-FeSi2/p-Si 

heterojunction photodiode. The light is irradiated from front side of the Si substrate, which 

acts as the window material and helps in the epitaxial growth of crystalline β-FeSi2. In this 

experiment we used Si substrates with thicknesses of 100 Ǎm, however any smaller 

thickness can be used without affecting the device performance. Figure 6(b) shows a cross 

section SEM image in which a continuous and uniform β-FeSi2 film without cracks was 

observed. In addition, the interface between the film and the substrate was extremely sharp 

which is essential to obtain good junction quality. 

4.1 Current-voltage characteristics 

Figure 7 shows the device characteristics measured in the dark and under the illumination 
of the 1.31 Ǎm LD. The device exhibited good rectifying properties similar to those of 
conventional p-n junctions. The forward current was approximately two orders of 
magnitude greater than the reverse current. The dark leakage current at a reverse bias of –1 
V was 5 ǍA, and this value increased to 20 ǍA at –5 V. The main source of the leakage 
current might be due to the Fe atoms that diffused from the β-FeSi2 film to the Si substrate 
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during the film deposition process. The diffused atoms result in leakage centers and trap 
centers for the photogenerated carriers in addition to interface defects.  
The measured photocurrent at zero bias was ~ 20 ǍA, and this value increased to 70 ǍA at –5 

V. The ratio of the photocurrent to the dark leakage current at –1 V was approximately one 

order of magnitude. The current responsivity at zero bias was estimated to be ~ 3.3 mA/W. 

The inset of Fig. 3 shows the dynamic resistance deduced from the dark I-V characteristics. 

Because the major noise component at zero bias is mainly the Johnson noise, the device 

detectivity was estimated from the values of dynamic resistance and responsivity at zero 

bias. The shunt resistance, which corresponds to the dynamic resistance at zero bias, can be 

estimated to be approximately 50 kΩ from the inset. The detectivity at room temperature for 

the 1.31 Ǎm illumination was estimated to be 1.5 ×109 cm √Hz W (Shaban et al, 2009a). This 

value is the largest in the previous β-FeSi2 reports. 

 

Pd ohmic contact

Al ohmic contact

Incident light

100 μm

300 nm

p-type Si Substrate

n-type β-FeSi2

500 nm

β-FeSi2

Si(111)

(a)

(b)

 

Fig. 6. (a) Schematic illustration of an n-type β-FeSi2 (300 nm)/p-type Si (100 Ǎm) 
heterojunction photodiode with Pd and Al electrodes on top (Si) and bottom (β-FeSi2) 
surfaces, respectively. (b) Cross-sectional SEM image of β-FeSi2 film deposited on Si(111) 
substrate. 
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Fig. 7. I-V characteristics measured in the dark and under illumination with a 6 mW, 1.31 
Ǎm LD at room temperature. The inset shows the dynamic junction resistances deduced 
from the I-V characteristics. 

4.2 Photoresponse spectrum 

Figure 8 illustrates the photoresponse spectrum measured in the NIR range at zero bias and 

room temperature. The device evidently exhibited photoresponse beyond the Si cut-off 

wavelength up to the wavelength (approximately 1.5 Ǎm) corresponding to the bandgap of 

β-FeSi2. The inset of Fig. 4 shows the external quantum efficiency as a function of the reverse 

bias at 1.31 Ǎm. The efficiency increased from 0.32% to 1.07% with an increase in the reverse 

bias from zero to –5 V. The reduction in the efficiency is attributed to light reflection and 

photocarrier recombination at the β-FeSi2/Si interface. Further improvement in the device 

performance is expected to be achieved by reducing the surface reflection and passivation of 

the heterojunction interfaces in addition to suppressing the leakage current. 
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Fig. 8. Photoresponse spectrum of β-FeSi2/Si heterojunction photodiode measured in the 
NIR range at zero bias and room temperature. 

4.3 β-FeSi2/Si photodiode with leakage-blocking layer 

In order to improve the device performance, the leakage current should be reduced. This 
was achieved by inserting intrinsic-Si (i-Si) layer between the β-FeSi2 film and Si substrate. 
Therefore, thin intrinsic-Si layers (thickness: 300 nm) were homoepitaxially grown on 
Czochralski-Si(111) substrates (resistivity: 10 Ω cm) at a substrate temperature of 700 °C. β-
FeSi2 layers (thickness: 300 nm) were successively grown on the Si layers at a substrate 
temperature of 600 °C by the FTDCS method. After that, the samples were transferred to a 
radio-frequency magnetron sputtering apparatus for depositing electrodes. 
Figure 10(a) shows the I-V characteristics of the n-type β-FeSi2/intrinsic-Si/p-type Si 

photodiodes, with an area of 3 mm2, measured in the dark and under the illumination of the 

6-mW 1.31 Ǎm laser. The device exhibited good rectifying behavior with a rectifying ratio of 

greater than two orders of magnitude (Shaban et al, 2009b). The leakage current did not 

saturate and increased monotonously with the reverse voltage until the device experienced 

a thermal breakdown. Owing to the i-Si layer, the leakage current measured in this device 

was less than that measured in n-type β-FeSi2 /p-type Si photodiodes (Shaban et al, 2009a).  
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Fig. 9. Quantum efficiency and current responsivity of β-FeSi2/Si heterojunction photodiode 
plotted against reverse bias under illumination with a 6 mW, 1.31 Ǎm. 

The photocurrent, resulted from the 1.31-Ǎm illumination, increased from 40 to 840 ǍA with 
an increase in the reverse voltage from 0 to 5 V. The ratio of the photocurrent to the dark 
leakage current over the entire measured range of reverse voltages was approximately two 
orders of magnitude (Shaban et al, 2009b). The current responsivity increased from 6.6 to 
140 mA/W with the increase in the reverse voltage from 0 to 5 V, as shown in Fig. 10(b). The 
Johnson-noise limited detectivity, which was measured at 1.31 Ǎm and 300 K, was deduced 
to be 2.8×109 cm√Hz/W. This indicated the ability of the diode to detect light in the NIR 
region at room temperature. 
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Fig. 10. (a) I-V characteristics of a heterojunction measured in the dark and under the 
illumination of a 6-mW 1.31 Ǎm laser at 300 K. (b) External quantum efficiency vs reverse 
voltage measured under illumination at a wavelength of 1.31 Ǎm. 
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5. Conclusions 

A FTDCS method using FeSi2 alloy targets, in which Fe and Si atoms are provided on the 
substrate at a low deposition rate comparable with that of molecular beam epitaxy, is a 
simple and successful method for the direct epitaxial growth of β-FeSi2 thin films. The 
deposited β-FeSi2 thin films show nearly the same optical and electric properties as the 
single crystalline bulk.  
n-type β-FeSi2/p-type Si heterojunctions in which the β-FeSi2 layers were heteroepitaxially 
grown on Si(111) substrates with sharp interfaces were fabricated by FTDCS without 
carrying out postannealing. The band diagram of the heterostructure was derived, and the 
built-in potential was measured to be~ 0.9 V. 
The I-V characteristics showed good rectifying properties with a shunt resistance of 
approximately 50 kΩ. The photoresponsivity under illumination at 1.31 Ǎm was 
approximately 3.3 mA/W at room temperature. The specific detectivity was estimated to be 
1.5×109 cm√HzW and the quantum efficiency, estimated at –5 V, was ~ 1.07%. 
In order to improve the device performance, a leakage-blocking (i-Si layer) layer was 
suggested. The n-Type β-FeSi2/i-Si/p-type Si heterojunction photodiodes showed an 
improved performance. They exhibited a current responsivity of 140 mA/W and quantum 
efficiency of 13% at –5 V. 
The results suggest that these devices can operate efficiently at room temperature in the 
photoconductive mode and therefore they are promising candidates for NIR detectors that 
are compatible with Si. 
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