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Computer Aided Diagnosis of Glandular 
Tumours for Internet-Based Telemedicine 

Toshiyuki Tanaka 
Keio University 

Japan 

1. Introduction 

In developing countries and isolated islands, lack of medical staff is a major problem. When 

a person feels unwell, he or she usually attends hospital and is assessed by a clinician and 

given a provisional diagnosis. When the clinician suspects cancer, a pathological diagnosis 

is required. This requires a pathologist, but pathologists are badly off and scarce in many 

countries. Since pathological diagnosis represents a subjective assessment by each 

pathologist, several pathologists must examine the same specimen and collate the results for 

accurate diagnosis, and each pathological diagnosis accordingly requires a substantial 

amount of time. A diagnosis support system using objective and quantitative approaches 

would thus be extremely useful. Moreover, the use of the Internet for diagnosis is expected 

to alleviate the problem of access to medical professionals in developing countries and 

isolated islands. Glandular cancers, such as those of the stomach, colon, prostate, and breast, 

are common, and we have therefore focused on these cancers in developing a computer 

aided diagnosis system using the Internet. 

In the field of medical image engineering, automatic and quantitative diagnosis systems 

have previously been studied by many researchers. Most such research has aimed at the 

development of diagnosis support systems addressing the lack of pathologists. A 

representative system is the pre-screening system for uterine cytodiagnosis that is currently 

in use. The pathologist must still perform many image processing steps to use these 

diagnosis systems. In research for tumour imaging, human input is still required for 

detection of the region of breast cancer, for identifying the glomeruli in the kidney; and so 

on. Although the types of tumour involved increase year by year, most research centres on 

tumours of the lung, colon, prostate, and ovaries, with few studies examining gastric 

tumours. 

Well-differentiated glandular cancer and adenoma differ from each other, and the 

classification of these tumours has recently been discussed by pathologists. However, no 

adequate automatic diagnosis systems for glandular tumours are available for such studies 

as described above, and pathologists have been eagerly awaiting a system for glandular 

tumours. Morphological classification of colorectal microscopic images has been reported as 

a recent diagnosis support system. This method allows features of tumours to be obtained 

from the whole image, but has a low rate of correct classification for images with a relatively 

large background region. With the aim of formulating an Internet-based diagnosis system, 
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we first created an automatic diagnosis system for glandular cancer. In the second stage of 

our research, we will integrate the Internet-based diagnosis system. 

In this chapter we explain our computer-aided diagnosis system for glandular tumours 

based on morphological features of the cytoplasm and nucleus. In this system, glandular 

tumours are classified into malignant tumours or adenoma, using numerical features 

obtained from the morphological assessments of pathologists. For numerical conversion of 

morphological features, manual extraction of regions of interest (ROIs) was performed, with 

pre-processing selection of colour components comprising image, contrast enhancement, 

binarisation using the Laplacian histogram and discriminant methods. In the pre-processing 

stage, each tumour was classified in terms of its glandular structure and nucleus. From the 

regions selected, many morphological and texture were identified, and using the obtained 

features, glandular tumours were classified by the discriminant method with the stepwise 

method. A small number of features were selected for diagnosis by the stepwise method. 

Finally, tumours were classified into various categories: non-neoplastic, gastric adenoma, 

and gastric cancer, using the obtained numerical features. 

2. System summary 

In this section we summarise the Internet-based diagnosis system, which allows doctors to 

obtain diagnostic results anytime, anywhere. Figure 1 shows the essential components of the 

system. First, we upload a glandular image to the system using the internet. After some 

processing, the system displays the uploaded image and the diagnosis. This upload window 

will be created using Perl. Recently, Java and PHP have been recognised as useful internet 

languages, and C language can also create diagnostic programs. Since the diagnosis system 

has to perform a large amount of processing, Perl cannot deliver sufficient computing speed.  

Figure 2 shows the algorithm used by the diagnosis system. One need only upload the 
lesion image, and the diagnosis system analyses the severity of the lesion. Since this 
algorithm is essential for this system, it may be very useful in future systems.  
 

 

Fig. 1. Internet-based diagnosis system 
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Fig. 2. Algorithm of the internet-based diagnosis system  

3. Severity grading of glandular tumours 

Pathologists classify glandular tumours into several categories as shown in Table 1, based 

on morphological features of the nucleus and cytoplasm as shown in Figure 3. Group 1 

includes normal tissue and obviously benign lesions, and group 5 corresponds to frank 

malignancy. Group 2 to 4 are borderline cases between benign tissue and malignant tumor. 

Classification of group 2 to 4 is difficult, even when tissue samples are analysed by 

pathologists. We classify gastrointestinal glandular tumours into group 1, group 3, and 

group 5. As an example we show a typical case of classification of colon tumour according 

to morphological features of the nucleus and cytoplasm. The original images are classified 

into the correct category by the pathologist. 

 

Group 1 Normal tissue and benign lesion 

Group 2 Benign lesion with aberrant tissue 

Group 3 Boundary case between benign and malignant tumor 

Group 4 Tissue at increased risk for cancer 

Group 5 Complete cancer 

Table 1. Severity classification of gastric biopsy specimens 

The severity of the tumour is decided by the shape of glands and the distribution of 

typically shaped glands. Although histological images can provide only 2D information 

about gland structure, pathologists need information on 3D structure. Pathologists mentally 

construct the 3D structure from the 2D shape and thereby determine the severity of the 

tumour. Figure 3 shows one examples of the relationship between 2D shape and 3D 

structure of glands. Many structures with a similar 2D appearance have different structures 

in 3D. Thus substantial experience is required for pathological diagnosis. In this research, 

statistical processing is used to recognise various 3D patterns. 

Calculate / store shape and texture feature  

Calculate / store group NO of the image 

Calculate / store diagnosis result 

Upload input via the Internet

Read image 

Store image

Output image 

Output diagnosis result 
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Fig. 3. Relation between 2D shape and 3D structure of glands 

4. Methodology 

4.1 Region extraction 
In this study we used original 2240x1680 pixel images with a 24-bit bitmap file format. As 
shown in Figure 4, rectangular regions containing glands are manually removed from the 
original image, and are used as the input images. The entire gland must be visible in these 
images.  
 

 

Fig. 4. Original image and extracted gland image 

First of procedure in this research we precisely extracted the nuclear regions and the 

glandular regions for computation of morphological features. Figure 5 shows the flowchart 

of the region extraction method for nuclear and glandular regions. A different binarisation 

method was used for these two types of region extraction: strong contrast between the 

nucleus and cytoplasm is better for binarisation for nuclear region extraction while strong 

contrast between the gland and background is preferred for binarisation for gland region 

extraction. In this study we used the red component of the RGB image for nuclear region 

extraction, and the green component image for glandular region extraction. The dotted line 

in Figure 5 shows that the nuclear regions are extracted from the extracted gland regions. In 

the automatic diagnosis system the discrimination of tumour severity was performed by the 

features computed from the extracted nuclear and gland shapes. 
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Fig. 5. Flowchart of region extraction method for nuclei and glands 

4.2 Pre-processing 
4.2.1 Selection of colour components for pre-processing 
Since the nuclei and glands are different colours in the images and these colours also vary 
slightly according to the staining protocol, it is difficult to extract the shape of nuclei and 
glands from colour images. We therefore converted the colour image into a greyscale image. 
There are various methods for doing this; one using one component in the RGB image and 
one converting the RGB basis into the YIQ basis. We used the second method, which is well 
known, using the Y component of the image in the YIQ basis. We show the conversion 
equation from the RGB basis to the YIQ basis below. 

 

0.299 0.587 0.144

0.596 0.274 0.322

0.211 0.522 0.331

Y R

I G

Q B

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= − −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

 (1) 

Figure 6 shows the obtained colour components of a glandular image represented in 
greyscale. In this instance, the R component image in the RGB basis is suitable for extraction 
of the nuclear region and the G component image is suitable for extraction of the glandular 
region. Moreover, the Y component image in the YIQ basis is suitable for computation of 
textural features within the glandular region. 
 

 

(a) R component           (b) G component           (c) B component         (d) Y component 

Fig. 6. Colour components of glandular image 

Input image

Extraction of glandular image

Selection of color component

Red image Green image

Enhancement of contrast

Binarizsation by Laplacian histogram method

Nuclear region Glandular
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4.2.2 γcompensation 

We performed γ compensation in order to optimise the results of binarisation. When the 
input pixel density is X and output pixel density is Y, the equation for γ compensation is 
shown below.  

 

1

255
255

X
Y

γ⎛ ⎞= ×⎜ ⎟
⎝ ⎠

 (2) 

In the above equation, γ indicates the parameter of the equation, and we use γ=5 for the 
nuclear region extraction and γ=3 for the glandular region extraction. 

4.3 Binarisation 
4.3.1 Binarisation by fixed threshold 
A binarisation method is useful when we try to extract an object shape. Here we explain the 
fundamental approach. Binarisation converts an intensity image into a two-level black and 
white image, using one threshold for the whole image. In the intensity image each pixel has 
a value of 8 bits, which is from 0 to 255. Below is a fundamental equation of binarisation in 
which f(x,y) indicates an intensity value of (x,y) coordinates in an image, g(x,y) refers to the 

output value after binarisation, and a T means the threshold value. 

 
0 ( , )

( , )
255 ( , )

f x y T
g x y

f x y T

≤⎧
= ⎨ >⎩

 (3) 

Since an object region such as a nuclear or gland region has a lower intensity than a 
background region, object regions have an intensity of 0 and background regions have 
intensity of 255 after binarisation. Therefore we can select the object region after 
binarisation, and easily analyse morphological features from the selected object. The 
selection of threshold value is important in the binarisation because the shape of the object 
can change according to the selected threshold. In this research we used the Laplacian 
histogram method and discriminant method. 

4.3.1 Binarisation by the discriminant method 
Here we explain binarisation with the discriminant method. In this method the optimal 
threshold is determined by searching for the maximal interclass variance after the intensity 
histogram h(k) is constructed from an image and is converted into two classes.  

First, an intensity value is set as k. We define the following equation as an index for 
goodness of binarisation, in which ┟(k) is the degree of separation used in the discriminant 
method, σB2(k) is the interclass variance, and  σT2 is the whole variance. 

 
2

2

( )
( ) B

T

k
k

ση
σ

=  (4) 

σB2(k) and  σT2 are computed in the next equation. 

 
{ }

{ }

2
2 ( ) ( )
( )

( ) 1 ( )
T

B

k k
k

k k

μ ω μ
σ

ω ω
⋅ −

=
−

  (5) 
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1

2 2

0

( ) ( )
L

T T
l

l p lσ μ
−

=
= −∑   (6) 

When an occurrence probability is p(l) using intensity l, the whole level is L (L=255 in this 
research), intensity histogram is h(l), and the total pixel number is N, the whole average 
value ┤T is shown in the next equation. 

 
1

1
0

0

( ) ( )
( ) ( ) 0, ( ) 1

( )

L

L
l

l

h l h l
p l p l p l

N
h l

−

−
=

=

⎛ ⎞
= = ≥ =⎜ ⎟

⎝ ⎠
∑

∑
  (7) 

 
1

0

( )
L

T
l

lp lμ
−

=

= ∑   (8) 

Moreover ω(k) and ┤(k) are defined by the occurrence probability p(l). 

 
1

0

( ) ( ) ( 1) ( )
L

l

k p l k p kω ω
−

=
= = − +∑   (9) 

 
1

0

( ) ( ) ( 1) ( )
L

l

k lp l k kp kμ μ
−

=

= = − +∑   (10) 

Since σT2 is constant regardless of k value, the degree of selection ┟(k) between classes 
becomes maximal when the value of σB2(k) becomes maximal. σB2(k) is computed by 
changing the value of k from 0 to L-1 in series, and an optimal k value is obtained. We 
perform the binarisation of a greyscale image using the obtained k value. We can objectively 
and automatically obtain an optimal threshold in this manner. 

4.3.1 Laplacian histogram method 
A problem arises when determining the threshold by the discriminant method: the obtained 
threshold shifts a little toward the intensity of a larger area when the ratio of the object area 
to background area is large. However, it is hoped that the intensity histogram for the 
discriminant method has a ratio of object area to background area of almost 1.  
The Laplacian histogram method is one solution for this problem. In this method the range 
of the histogram is limited to the regions adjacent to an object and background using the 
Laplacian value of an input image. In the images we used, the regions adjacent to an object 
and background have a large absolute Laplacian value of each pixel. We use the following 
equation for computing the Laplacian value for all pixels within an image and construct the 
histogram using only pixels with a Laplacian value greater than a certain threshold. 

 

2 2
2

2 2

( , ) ( , )
( , )

( , 1) ( , 1) ( 1, ) ( 1, ) 4 ( , )

f x y f x y
f x y

x y

f x y f x y f x y f x y f x y

∂ ∂
∇ = +

∂ ∂
= − + + + − + + −

  (11) 

In this study we selected only the pixels within the top 20% of all computed Laplacian 
values. 
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4.4 Post-processing 
The two-level image obtained by the Laplacian histogram and discriminant method has the 

following noise considerations. 

1. Salt-and-pepper noise in the background 
2. White space in the object region 
For the first type of noise a median filter is effective, and a filter operator of 3x3 is used in 
this study. For the second type an area combination by closing processing is effective.  
In the G component image after labelling processing for the two-level image, we select the 

largest area as the glandular region and eliminate other regions as noise in the image. For 

the white space in the gland we obtain the area and leave the largest area as the glandular 

cavity and eliminate any other white space. 

In the two-level image of the R component we select the regions within the gland as nuclear 

and eliminate the regions external to the gland as noise. In other words, the nuclear region is 

determined after extraction of the glandular region. 

Figure 7 shows the result of post-processing for the G component image. Figure 7(a) shows 

an image after binarisation of the G component image and Figure 7(b) shows the image 

obtained after post-processing. Figure 8 shows the result of post-processing for the R 

component image. Figure 8(a) shows the image after binarisation of R component image and 

Figure 8(b) shows an obtained image after post-processing. 

 

              

                                 (a) After binarisation                    (b) After post-processing 

Fig. 7. Glandular image 
 

                      

                               (a) After binarisation                      (b) After post-processing 

Fig. 8. Nuclear image 

The median filter outputs the median value of intensity magnitude as intensity value of 

reference pixel after the pixel values within the masked region are permutated according to 

the intensity magnitude. This filter is suitable for elimination of salt-and-pepper noise in an 

image. For the filtering in this study we use a filter operator (mask operator) of 3x3 pixels. 

As the closing processing, several shrinkage treatments are performed after several 

expanding processing procedures. 
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4.6 Morphological feature extraction 
4.6.1 Features of area 
The area of an object region is expressed by the number of pixels within the connected 
components. In this study we define the area as shown in Figure 9 and Table 2. Four types 
of area are computed as shown below. 
1. The nuclear area: the sum of the areas of all nuclei within a gland 
2. The cytoplasmic area: the area of A in Figure 9 
3. The glandular cavity area: the area of B+C in Figure 9 
4. The glandular area: the area of A+B+C in Figure 9 
 

 

Fig. 9. Definitions of various areas             
 

Cytoplasm Hole Gland 

A B+C A+B+C 

Table 2. The definitions of various areas 

4.6.2 Features of length 
The perimeter of an object region is expressed using the number of contour pixels obtained 
by contour tracing. The distance between obliquely lining pixels is multiplied by a weight of 

2 . Three features as shown below are computed as the features of length. 

1. Perimeters of the gland and glandular cavity 
2. Feret’s diameter: the length of the diagonal line of the minimal rectangle surrounding a 

gland 

4.6.3 Features of chord and axis 
The five features computed as features of chord and axes are as follows.  
1. The longest segment: the length of the maximal segment in the gland and the length of 

A in the horizontal direction as shown in Figure 10. 
2. The maximal section: the length of the longest segment among segments in all 

directions and the length of B as shown in Figure 10. 
3. The average number of chords comprising the gland in the horizontal axis and in the 

vertical axis 
4. The average length of the vertical segment; the average length of the segment vertical to 

the maximal segment and the length of C as shown in Fig.10. 

4.6.4 Features of equivalent shape 
One feature of equivalent shape is defined as the length of the short axis in the ellipse which 
has the same area of the gland and half of the maximal segment. In this definition we obtain 
the following equation using the letters a and b in Fig.11. 

A

B

C
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Fig. 10. Definition of chord and axis features of the object 
 

 

Fig. 11. The definition of equivalent oval 

 

particle area abπ=

maximal segment 2a=
(12) 

 

The short axis of the equivalent ellipse is computed by the next equation. 

 
4

2
2

ab
b

a

π
π

×
=

×
 (13) 

4.6.5 Other features of equivalent shape 
1. The short axis and long axis of the ellipse: the length of the short axis and long axis of 

the ellipse which has the same area and the same perimeter. 
2. The ellipticity: the ratio of the long axis length to the short axis length. The ratio 

increases as the long axis length of the equivalent ellipse increases, and the ratio 
becomes 1 as the shape of equivalent ellipse approximates a circle. 

3. The side ratio of rectangle: the ratio of the long axis length to short axis length in the 
equivalent rectangle. The side ratio of the rectangle increases as the rectangle becomes 
longer and thinner, and the ratio becomes 1 as the rectangle approximates a quadrate.  

4.6.6 Features of morphology 
1. The inertia moment: this feature shows the distribution of pixels to the centre of inertia. 
2. The stretching factor: the ratio of maximal segment of the gland to the average vertical 

segment. The factor increases as the gland becomes larger and thinner. 
3. The degree of dispersion: the ratio of the gland area to the minimal rectangle including 

a gland. The value ranges from 0 to 1, and becomes 1 as the gland shape approximates a 
rectangle. 

4. Heywood diameter: the ratio of gland perimeter to circle perimeter with the same area as 
the gland. Heywood diameter becomes 1 as the shape of the object approximates a circle. 

5. The hydraulic radius: the ratio of area to perimeter in a gland. 

← B 

← A 

C

↓

Horizontal axis

V
ertical ax

is 

a 

b 
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6. Waddel disk radius: the radius of a circle with the same area as the gland. 
7. Nuclear to cytoplasmic ratio: this index is used by pathologists in actual diagnosis. 

4.7 Textural feature extraction 
4.7.1 Textural feature extraction 
Essentially, the aim of our system is to diagnose gastric tumours using morphological 
features of the glands, cytoplasm, and nucleus. However, with increasing tumor grade it is 
difficult to separate the individual nuclei. Therefore we use the following textural features 
within the cytoplasm instead of computing the morphological features of individual nuclei. 
We determine textural features by intensity histogram, difference statistics, and co-
occurrence matrix. 
1. Intensity histogram 
In an image the normalized histogram p(l) is characterized by the following equation, using 
the intensity level L (L=256) and the intensity histogram h(l) (0≤l≤L-1). 

 
1

0

( )
( )

( )
L

l

h l
p l

h l
−

=

=

∑
  (14) 

The above normalized histogram indicates a probability distribution of intensity. By treating 
the intensity histogram as the probability distribution, the computed result does not depend 
on the area of region. We use seven scalar values computed by the probability distribution 
p(l) as features in the intensity histogram. The equations for these features are shown below. 
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In the above equation, MEN means the average of the intensity values of all the pixels in an 

image. CNT indicates contrast and is the second moment around the origin. CNT becomes 

large when the histogram distribution slants to the strong intensity side. VAR means 

variance and is the second moment around the variance or the average. VAR becomes large 

when the number of pixels with values far from the average is large. SKW means skewness 

and is large when the histogram shape is distorted from the normal distribution. KRT means 

kurtorsis and shows a degree of concentration (“peakedness”) compared with the normal 

distribution. EGY indicates energy and the angular second moment. EGY is large when the 

histogram distribution focuses on the pixels with a particular intensity. EPY means entropy 

and has a large value when the pixels within the reference region have different intensities. 

2. Difference statistics 
We construct a histogram with frequencies with the intensity difference l between pixels at 

the positional relation of δ =(r, θ) within a reference region, as shown in Figure 12. Like the 

intensity histogram, the intensity probability pδ (l) is constructed from the frequency of the 
histogram. The seven above-mentioned scalar features are computed by replacing p(l) by 

pδ (l). In this study MEN, EGY, EPY, and VAR are selected by the after-mentioned test.  
 

 

Fig. 12. The positional relationship of a pixel pair 

3. Co-occurrence matrix 
Like the difference statistics, the co-occurrence matrix is the method that quantifies the 

relationship between pixels at the positional relationship of δ =(r, θ). When the reference 

pixel is i and has an intensity of li, the pixel j is separately placed at distance of δ and has an 

intensity of lj, and the probability is defined by Pδ (li, lj). The matrix obtained by Pδ (li, lj) is 

called a co-occurence matrix. When the intensity level is L, the co-occurence matrix has a 

size of LxL. Figure 13 shows an example of a co-occurrence matrix. Figure 13(1) shows part 

of an image and each small square represents a pixel within the image. The numbers in the 

squares in Figure 13(a) represents the intensity values in each pixel. Figure 13(b) shows a co-

occurence matrix when the distance r=1 and the angle ┠=0°, and Figure 13(c) shows a co-

occurence matrix when the distance r=1 and the angle ┠=90°. 

We use 13 textural features obtained from the co-occurrence matrix. Before computation of 

these textural features, we define Px(li), Py(lj), Px-y(k), Px+y(k), μx, μy, σx2, σy2, HX, HY, HXY1, 

and HXY2 as follows. 
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0
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L

x i i j
l

P l P l lδ

−
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Fig. 13. Example of a co-occurrence matrix 
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By using the above definitions, the textural features are computed as shown in the next 
equations. 
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Since the above features are mathematically defined by the co-occurrence matrix, it is 
difficult to explain their physical meanings.  
In our study a small square of 16x16 pixels is clipped from the tumour region for textural 
analysis. We compute the textural features with respect to this small region. For the analysis 
of nuclear distribution, an area near the gland base is desirable. We use the next procedure 
for clipping the small regions. 
1. A raster scan is performed using a small square with 16x16 pixels within a two-level 

image of the gland region. 
2. The raster scan is finished when all the intensity values are 0 in the small region. 
3. The textural analysis is performed by Y component image with the coordinates that are 

obtained at the end of the scan. 
Figure 14 shows the clipped 16x16-pixel region. Figure 14(a) shows a small square obtained 

by raster scanning and Figure 14(b) shows the Y component image superimposed on the 

specified small region.  

 

            

                                       (a) Binarized image                      (b) Y image 

Fig. 14. The small region obtained for the computation of textural features 

4.8 Principal component analysis 
The principal component analysis is performed to reduce the number of dimensions after 

the computation of shape and textural features. When variables are xi (i=1 to n) and 

coefficients are ai (i=1 to n), the principal component Z is defined by the next equation. 

 1 1 2 2 n nZ a x a x a x= ⋅ + ⋅ + + ⋅A   (46) 

For the principal component, the coefficients ai are obtained under the next condition. 

 2 2 2
1 2 1na a a+ + + =A   (47) 
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The coefficients are obtained by the eigenvalues ┣i of the coefficient correlation matrix. The 
contribution rate of the obtained principal component is computed by the following 
equation. In this study the principal components are selected so that the cumulative 
contribution rate becomes about 90%. 

 contribution rate 100 [%]i

p

λ
= ×   (48) 

4.9 Discriminant method 
The discriminant method is performed for classifying the cases into three classes (non-
neoplastic, adenoma, and adenocarcinoma) after the shape and textural features and the 
principal component score are computed. The procedure of discrimination is shown below. 
Step 1. F test for homoscedasticity 
Step 2. t-test for average difference 
Step 3. Stepwise method 
Step 4. Discriminant method 
In step 1 all 54 features are tested to determine whether each feature has similar variance in 
each tumour. In step 2 all the features are tested to determine whether they have similar 
averages in each tumour. Homoscedasticity must be tested because the method by which 
the t test is conducted varies depending on whether homoscedasticity is present or not. 
When a feature des not have average difference, the feature is removed from among the 
candidates for classification. In step 3 the features for step 4 are selected. In step 4 pattern 
classification is performed by the discriminant method. 

5. Results and discussion 

The tumour image information used in our system is shown in Table 3. For computation of 
shape features we used images with 896x672 pixels, which was reduced at a ratio of 40% of 
the original image. For computation of textural features we used images with 444x336 
pixels, reduced at a ratio of 40% of the original image. 
 

Tumor Number of images Number of glands 

Not malignant 8 28 

Gastric adenoma 19 84 

Gastric cancer 6 46 

Table 3. Number of images corresponding to each category 

5.1 Pre-processing and Post-processing 
The region extraction results for nuclei and glands are shown in Figures 15 and 16. Figures 
are photographed at the same magnitude. In these figures, (a) is the original image 
including a gland, (b) is the extracted nuclear region, and (c) is the extracted gland 
(cytoplasm) region. 
Using the threshold determined by the Laplacian histogram and discriminant method, the 
nuclear and glandular regions were precisely extracted for most of the images. Although the 
nuclear region was precisely extracted for all the images, extraction was less precise for 
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glandular regions. Figure 17 shows one of the unsuccessful attempts. The reason for the lack 
of success is that the boundary between the background and gland is not clear. 

 

        

            (a) Non-neoplastic tissue            (b) Nuclear image             (c) Glandular image 

Fig. 15. Extraction results for non-neoplastic tissue  
 

            

                    (a) Gastric adenoma               (b) Nuclear image            (c) Glandular image 

Fig. 16. Extraction results for gastric adenoma 

 

 

Fig. 17. Image for which extraction of the gland region was unsuccessful  

5.2 Textural features 
We selected 14 textural features among all the candidate features by the principal component 
analysis and discriminant methods. The following parameters were derived from difference 
statistics and co-occurrence matrix at the computation of these textural features.  
The results of the computed textural features are shown in Figure 18. Figure 18 (a) shows the 
values of SKW obtained from the intensity histogram and figure (b) shows those of VAR. In 
both figures blue plots show cancer cases, pink plots indicate adenoma cases, and yellow 
plots show the non-neoplastic cases. Values of SKW for cancer and non-neoplastic lesions 
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are similar, and those of cancer and adenoma are similar. For example, when we classify all 
cases into 3 classes, we first classify them into 2 classes according to Figure 18(a); one being 
cancer and non-neoplastic lesions and the other adenoma. Next we classify the class of 
cancer and non-neoplastic lesions into the class of cancer and the class of non-neoplastic 
lesions. In this way we can classify all cases into 3 classes. 
 

Features invariables value 

distance : r 4 
Gray-Level Difference Matrix 

angle : ┠ 0° 

distance : r 4 
co-occurrence matrix 

angle : ┠ 0° 

Table 4. Parameters for computation of difference statistics and co-occurrence matrix 
 

 

(a) SKW (density histogram) 

 
(b) VAR (density histogram) 

Fig. 18. Results of computed textural features 

5.3 Principal component analysis 
In this study we computed 40 shape features and 14 textural features for discrimination of 
tumor severity. The relationship between factor loading and each principal component is 
shown in Figure 19. The vertical axis indicates factor loading and the horizontal axis shows 
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the number of principal components. In this study we selected the principal components 
with an eigenvalue of more than 1. Consequently, the 1st to the 9th principal components 
were selected, and the cumulative contribution rate was 91%.  
 

 

Fig. 19. Factor loading of each principal component 

5.4 Stepwise method 
In the previous section, 40 shape features and 14 textural features were computed and then 
selected by principal component analysis. However, some features revealed a strong 
correlation with each other or did not contribute towards discrimination. In this situation 
the features used for the discriminant analysis are selected by the stepwise method. The 
following seven features among the 54 features were selected by the stepwise method.  
1. AVE in the intensity histogram 
2. VAR in the intensity histogram 
3. EPY in the co-occurrence matrix 
4. Nuclear to cytoplasmic ratio 
5. Stretching factor 
6. The average number of chords in glands in the horizontal axis 
7. SKW in the intensity histogram 

5.5 Discriminant analysis 
5.5.1 Discriminant analysis by principal component score 
The Table 5 shows the result of pattern classification using eight principal components 
without the third principal component. “Actual tumour category” in this Table means the 
classification according to the pathologist and “assigned tumour category” means the 
classification according to the computer analysis. 
According to the computer analysis, the correct classification rate was 88% and the incorrect 
classification rate was 12%. Further, both the false negative rate and false positive rate were 
about 6%. 

5.5.2 Discriminant analysis by shape features and textural features 
Table 6 shows the results by shape features and textural features using seven features that 
obtained by stepwise method. “Actual tumour category” in this Table means the 
classification according to the pathologist and “assigned tumour category” means the 
classification according to the computer analysis. 
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Assigned tumour 
 

Gastric cancer Gastric adenoma Not malignant 

Gastric cancer 
37 

(80%) 
6 

(13%) 
3 

(7%) 

Gastric adenoma
9 

(11%) 
75 

(89%) 
0 

(0%) 

Actual 
tumour 

Not malignant 
1 

(4%) 
0 

(0%) 
27 

(96%) 

Table 5. Result of discriminant analysis using principal components score 

 

Assigned tumour 
 

Gastric cancer Gastric adenoma Not malignant 

Gastric cancer 
38 

(82%) 
4 

(9%) 
4 

(9%) 

Gastric adenoma 
6 

(7%) 
78 

(93%) 
0 

(0%) 

Actual 
tumour 

Not malignant 
1 

(4%) 
0 

(0%) 
27 

(96%) 

Table 6. Result of discriminant analysis using features 

According to this method, the correct classification rate was 91% and incorrect classification 
rate was about 9%. Further, both the false negative rate and false positive rate were about 5%. 

5.5.3 Glandular images that were unsuccessfully classified 
Here we consider the glandular images that were unsuccessfully classified. In tumour 
diagnosis in particular, it is important to reduce the false negative rate. Representative 
images that were unsuccessfully classified are shown below.  
 

   

Fig. 20. Glandular images that were misclassified 

The above images have glands that appear to suggest cancer, but they were classified as 
non-neoplastic. The reason for the misclassification is that the gland in the left image has 
low apytia and is similar to glands seen in non-neoplastic tissue. The gland in the right 
image also has low apytia and is not enlarged. 

5.5.4 Diagnosis by weighting combination 
In the previous section each glandular image was diagnosed by the discriminant method. 
But in the actual hospital setting, pathologists formulate a diagnosis only by looking at the 
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shape and distribution of all glands. Here we propose a more comprehensive diagnosis 
method by averaging the classification score of each gland. Gastric cancer would score 3; 
gastric adenoma, 2; and non-neoplastic lesions, 1, as shown in Table 7. 
 

tumor weight 

Gastric cancer 3 

Gastric adenoma 2 

Not malignant 1 

Table 7. Scores for cancer, adenoma, and non-neoplastic lesions 

Table 8 shows the diagnosis results of all the cases, obtained by computing an average of all 
glandular scores in the original image. This table shows that the correct diagnosis rate was 
91% and the wrong diagnosis rate about 9% by this method. Moreover, the false negative 
rate was 0% and the false positive rate was about 9%. 
 

assigned tumor 
 

Gastric cancer Gastric adenoma Not malignant 

Gastric cancer 
7 

(88%) 
1 

(13%) 
0 

(0%) 

Gastric adenoma 
2 

(11%) 
17 

(89%) 
0 

(0%) 

actual 
tumor 

Not malignant 
0 

(0%) 
0 

(0%) 
7 

(100%) 

Table 8. Classification of gastric tumours using severity score  

6. Conclusion 

This chapter deals with computer-aided diagnosis of glandular tumours for internet-based 
telemedicine. In many countries including Japan, the scarcity of pathologists is one of the 
problems in medical diagnosis, and this Internet-based diagnosis system goes some way 
toward addressing this issue. In this chapter we have reported a diagnosis system for 
glandular tumours such as those of the stomach, colon, prostate, and breast. Here we 
explain the diagnosis system with a central focus on gastric tumour.  
 First, we discussed the difference between shape features and textural features of non-
neoplastic lesions, adenoma, and cancer, and perform numerical conversion of atypism and 
anisocytosis. We created a system for extracting the nuclei and glands and tested this 
method in gastric tumours. As the result the system using binarisation of the red and green 
components of a tumour image can extract a region with an arbitrary density when the 
region is surrounded by a relatively clear boundary. Next, we computed 40 shape features 
and 14 textural features and determined the score of principal component analysis. The 
discriminant result reached 88% with eight principal components, and 91% with seven 
selected features. Moreover, when we performed weighting based on the discriminated 
gland and classified the original image into three categories of severity, the discriminant 
ratio reached 91% by the principal component method and 94% by the selected features 
method. Our proposed system therefore appears valid for the diagnosis of gastric tumours. 
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 With this method, we must remove each gland region from the original image. In future 
work, we will focus on a method of automatically extracting each gland. In higher grade 
cases most of the glands are unformed, and creation of an automatic gland shape extraction 
algorithm is a difficult problem facing Internet-based diagnosis systems.  
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