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1. Introduction  

This chapter provides an overview of the delamination growth in composite materials, 
cohesive interface models and finite element techniques used to simulate the interface 
elements. For completeness, the development and implementation of a new constitutive 
formula that stabilize the simulations and overcome numerical instabilities will be discussed 
in this chapter. 
Delamination is a mode of failure of laminated composite materials when subjected to 
transverse loads. It can cause a significant reduction in the compressive load-carrying 
capacity of a structure.  Cohesive elements are widely used, in both forms of continuous 
interface elements and point cohesive elements, (Cui & Wisnom, 1993; De Moura et al., 1997; 
Reddy et al., 1997; Petrossian & Wisnom, 1998; Shahwan & Waas, 1997; Chen et al., 1999; 
Camanho et al., 2001) at the interface between solid finite elements to predict and to 
understand the damage behaviour in the interfaces of different layers in composite 
laminates. Many models have been introduced including: perfectly plastic, linear softening, 
progressive softening, and regressive softening (Camanho & Davila, 2004). Several rate-
dependent models have also been introduced (Glennie, 1971; Xu et al., 1991; Tvergaard & 
Hutchinson, 1996; Costanzo & Walton, 1997; Kubair et al., 2003). A rate-dependent cohesive 
zone model was first introduced by Glennie (Glennie, 1971), where the traction in the 
cohesive zone is a function of the crack opening displacement time derivative. Xu et al. (Xu 
et al., 1991) extended this model by adding a linearly decaying damage law. In each model 
the viscosity parameter (η ) is used to vary the degree of rate dependence. Kubair et al. 

(Kubair et al., 2003) thoroughly summarized the evolution of these rate-dependant models 
and provided the solution to the mode III steady-state crack growth problem as well as 
spontaneous propagation conditions. 
A main advantage of the use of cohesive elements is the capability to predict both onset and 
propagation of delamination without previous knowledge of the crack location and 
propagation direction. However, when using cohesive elements to simulate interface 
damage propagations, such as delamination propagation, there are two main problems. The 
first one is the numerical instability problem as pointed out by Mi et al. (Mi et al., 1998), 
Goncalves et al. (Goncalves et al., 2000), Gao and Bower (Gao & Bower, 2004) and Hu et al. 
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(Hu et al., 2007). This problem is caused by a well-known elastic snap-back instability, 
which occurs just after the stress reaches the peak strength of the interface. Especially for 
those interfaces with high strength and high initial stiffness, this problem becomes more 
obvious when using comparatively coarse meshes (Hu et al., 2007). Traditionally, this 
problem can be controlled using some direct techniques. For instance, a very fine mesh can 
alleviate this numerical instability, however, which leads to very high computational cost. 
Also, very low interface strength and the initial interface stiffness in the whole cohesive area 
can partially remove this convergence problem, which, however, lead to the lower slope of 
loading history in the loading stage before the happening of damages. Furthermore, various 
generally oriented methodologies can be used to remove this numerical instability, e.g. Riks 
method (Riks, 1979) which can follow the equilibrium path after instability. Also, Gustafson 
and Waas (Gustafson & Waas, 2008) have used a discrete cohesive zone method finite 
element to evaluate traction law efficiency and robustness in predicting decohesion in a 
finite element model. They provided a sinusoidal traction law which found to be robust and 
efficient due to the elimination of the stiffness discontinuities associated with the 
generalized trapezoidal traction law. 
Recently, the artificial damping method with additional energy dissipations has been 
proposed by Gao and Bower (Gao & Bower, 2004). Also, Hu el al. proposed a kind of move-
limit method (Hu et al., 2007) to remove the numerical instability using cohesive model for 
delamination propagation. In this technique, the move-limit in the cohesive zone provided 
by artificial rigid walls is built up to restrict the displacement increments of nodes in the 
cohesive zone of laminates after delaminations occurred. Therefore, similar to the artificial 
damping method (Gao & Bower, 2004), the move-limit method introduces the artificial 
external work to stabilize the computational process. As shown later, although these 
methods (Gao & Bower, 2004; Hu et al., 2007) can remove the numerical instability when 
using comparatively coarse meshes, the second problem occurs, which is the error of peak 
load in the load–displacement curve. The numerical peak load is usually higher than the real 
one as observed by Goncalves et al. (Goncalves et al., 2000) and Hu et al. (Hu et al., 2007).  
Similar work has also been conducted by De Xie and Waas (De Xie & Waas, 2006). They 
have implemented discrete cohesive zone model (DCZM) using the finite element (FE) 
method to simulate fracture initiation and subsequent growth when material non-linear 
effects are significant. In their work, they used the nodal forces of the rod elements to 
remove the mesh size effect, dealt with a 2D study and did not consider viscosity parameter. 
However, in the presented Chapter, the author used the interface stiffness and strength in a 
continuum element, tackled a full 3D study and considered the viscosity parameter in their 
model. 
With the previous background in mind, the objective of this Chapter is to propose a new 
cohesive model named as adaptive cohesive model (ACM), for stably and accurately 
simulating delamination propagations in composite laminates under transverse loads. In 
this model, a pre-softening zone is proposed ahead of the existing softening zone. In this 
pre-softening zone, with the increase of effective relative displacements at the integration 
points of cohesive elements on interfaces, the initial stiffnesses and interface strengths at 
these points are reduced gradually. However, the onset displacement for starting the real 
softening process is not changed in this model. The critical energy release rate or fracture 
toughness of materials for determining the final displacement of complete decohesion is 
kept constant. Also, the traction based model includes a cohesive zone viscosity parameter 
(η ) to vary the degree of rate dependence and to adjust the peak or maximum traction. 
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In this Chapter, this cohesive model is formulated and implemented in LS-DYNA 

(Livermore Software Technology Corporation, 2005)  as a user defined materials (UMAT). 

LS-DYNA is one of the explicit FE codes most widely used by the automobile and aerospace 

industries. It has a large library of material options; however, continuous cohesive elements 

are not available within the code. The formulation of this model is fully three dimensional 

and can simulate mixed-mode delamination. However, the objective of this study is to 

develop new adaptive cohesive elements able to capture delamination onset and growth 

under quasi-static and dynamic Mode-I loading conditions. The capabilities of the proposed 

elements are proven by comparing the numerical simulations and the experimental results 

of DCB in Mode-I.  

2. The constitutive model  

Cohesive elements are used to model the interface between sublaminates. The elements 

consists of a near zero-thickness volumetric element in which the interpolation shape 

functions for the top and bottom faces are compatible with the kinematics of the elements 

that are being connected to it (Davila et al., 2001). Cohesive elements are typically 

formulated in terms of traction vs. relative displacement relationship. In order to predict the 

initiation and growth of delamination, an 8-node cohesive element shown in figure 1 is 

developed to overcome the numerical instabilities. 

 

Solid 
elements 

Cohesive 
element 

 

Fig. 1. Eight-node cohesive element 

 

 

Fig. 2. Normal (bilinear) constitutive model 

The need for an appropriate constitutive equation in the formulation of the interface element 

is fundamental for an accurate simulation of the interlaminar cracking process. A 

constitutive equation is used to relate the traction to the relative displacement at the 
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interface. The bilinear model, as shown in figure 2, is the simplest model to be used among 

many strain softening models. Moreover, it has been successfully used by several authors in 

implicit analyses (De Moura et al., 2000; Camanho et al., 2003; Pinho et al., 2004; Pinho et al., 

2006).  

However, using the bilinear model leads to numerical instabilities in an explicit 

implementation. To overcome this numerical instability, a new adaptive model is 

proposed by Hu et al. (Hu et al., 2008) and presented in this Chapter as shown in figure 3. 

The adaptive interfacial constitutive response shown in figure 3 is implemented as 

follows: 
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Fig. 3. Adaptive constitutive model for Mode-I (Hu et.al, 2008) 

In pre-softening zone, maxo o
m m mαδ δ δ< < , the constitutive equation is given by  

 ( ) m
m m o

m

δσ σ ηδ
δ

= + $  (1) 

and  

 o
m mKσ δ=   (2) 

where σ  is the traction, . K .is the penalty stiffness and can be written as 

 max

max

0o m

o
i m m

fo
n m m m

K

K K

K

δ
δ δ

δ δ δ

⎧ ≤
⎪

= <⎨
⎪ ≤ <⎩

 (3) 

mδ  is the relative displacement in the interface between the top and bottom surfaces (in this 

study, it equals the normal relative displacement for Mode-I), o
mδ  is the onset displacement 

and it is remained constant in the simulation and can be determined as follows: 

www.intechopen.com



Finite Element Analysis of Delamination Growth in Composite Materials 
using LS-DYNA: Formulation and Implementation of New Cohesive Elements 

 

413 

 o
mδ = min

min

o i

o iK K K

σ σ σ
= =   (4) 

where oσ  is the initial interface strength, iσ  is the updated interface strength in the pre-

softening zone, minσ  is the minimum limit of the interface strength, oK  is the initial stiffness, 

iK  is the updated stiffness in the pre-softening zone, and minK  is the minimum value of the 

stiffness. For each increment and for time t+1, mδ  is updated as follows: 

 1 1t t
m c ct tδ ε+ += −    (5) 

where ct  is the thickness of the cohesive element and 1tε + is the normal strain of the cohesive 

element for time t+1, 1t tε ε ε+ = + Δ , where εΔ  is the normal strain increment. The max( )t
mδ  is 

the max relative displacement of the cohesive element occurs in the deformation history. For 

each increment and for time t+1, max
mδ  is updated as follows: 

 max 1 1( )t t
m mδ δ+ +=                            if 1 max( )t t

m mδ δ+ ≥   and,  (6) 

 max 1 max( ) ( )t t
m mδ δ+ =                      if 1 max( )t t

m mδ δ+ <   (7) 

Using the max value of the relative displacement max
mδ  rather than the current value mδ  

prevents healing of the interface. The updated stiffness and interface strength are 

determined in the following forms: 

 
max

min( )m
i o oo

m

δσ σ σ σ
δ

= − + ,            minoσ σ>  and ( maxo o
m m mαδ δ δ< < )  (8) 

 
max

min( )m
i o oo

m

K K K K
δ
δ

= − + ,         minoK K>  and ( maxo o
m m mαδ δ δ< < )  (9)  

It should be noted that α  in equations (8) and (9) is a parameter to define the size of pre-

softening zone. When α =1, the present adaptive cohesive mode degenerates into the 

traditional cohesive model. In these computations, α was set to zero. From our numerical 

experiences, the size of pre-softening zone has some influences on the initial stiffness of 

loading-displacement curves, but not so significant. The reason is that for the region far 

always from the crack tip, the interface decrease or update according to equations (8) and (9) 

is not obvious since max
mδ  is very small. The energy release rate for Mode-I ICG  also remains 

constant. Therefore, the final displacements associated to the complete decohesion if
mδ  are 

adjusted as shown in figure 3 as 

 if
mδ =

2 IC

i

G

σ
   (10) 

Once the max relative displacement of an element located at the crack front satisfies the 

following conditions; max o
m mδ δ> , this element enters into the real softening process. Where, 

as shown in figure 3, the real softening process denotes a stiffness decreasing process caused 

by accumulated damages. Then, the current strength nσ  and stiffness nK , which are almost 

equal to minσ  and minK , respectively, will be used in the softening zone. 
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2.  In softening zone, max fo
m m mδ δ δ≤ < , the constitutive equation is given by  

 (1 )( ) m
m m o

m

d
δσ σ ηδ
δ

= − + $    (11) 

where d is the damage variable and can be defined as 

 
max

max

( )

( )

f o
m m m

f o
m m m

d
δ δ δ
δ δ δ

−
=

−
,  [ ]0,1d∈    (12)  

The above adaptive cohesive mode is of the engineering meaning when using coarse meshes 

for complex composite structures, which is, in fact, an ‘artificial’ means for achieving the 

stable numerical simulation process. A reasonable explanation is that all numerical 

techniques are artificial, whose accuracy strongly depends on their mesh sizes, especially at 

the front of crack tip. To remove the factitious errors in the simulation results caused by the 

coarse mesh sizes in the numerical techniques, some material properties are artificially 

adjusted in order to partially alleviate or remove the numerical errors. Otherwise, very fine 

meshes need to be used, which may be computationally impractical for very complex 

problems from the capabilities of most current computers. Of course, the modified material 

parameters should be those which do not have the dominant influences on the physical 

phenomena. For example, the interface strength usually controls the initiation of interface 

cracks. However, it is not crucial for determining the crack propagation process and final 

crack size from the viewpoint of fracture mechanics. Moreover, there has been almost no 

clear rule to exactly determine the interface stiffness, which is a parameter determined with 

a high degree of freedom in practical cases. Therefore, the effect of the modifications of 

interface strength and stiffness can be very small since the practically used onset 

displacement o
mδ  for delamination initiation is remained constant in our model. For the 

parameters, which dominate the fracture phenomena, should be unchanged. For instance, in 

our model, the fracture toughness dominating the behaviors of interface damages is kept 

constant. 

3. Information finite element implementation 

The proposed cohesive element is implemented in LS-DYNA finite element code as a user 

defined material (UMAT) using the standard library 8-node solid brick element and *MAT_ 

USER_ DEFINED_ MATERIAL_MODELS. The keyword input has to be used for the user 

interface with data. The following cards are used (LSDYNA User’s Manual; LSTC, 2005) as 

shown in table 1.  

This approach for the implementation requires modelling the resin rich layer as a non-zero 

thickness medium. In fact, this layer has a finite thickness and the volume associated with 

the cohesive element can in fact set to be very small by using a very small thickness (e.g. 0.01 

mm).  To verify these procedures, the crack growth along the interface of a double cantilever 

beam (DCB) is studied. The two arms are modelled using standard LS-DYNA 8-node solid 

brick elements and the interface elements are developed in a FORTRAN subroutine using 

the algorithm shown in figure 4.  
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Fig. 4. Flow chart for traction computation in Mode-I 

The LS-DYNA code calculates the strain increments for a time step and passes them to the 
UMAT subroutine at the beginning of each time step. The material constants, such as the 
stiffness and strength, are read from the LS-DYNA input file by the subroutine. The current 
and maximum relative displacements are saved as history variables which can be read in by 
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the subroutine. Using the history variables, material constants, and strain increments, the 
subroutine is able to calculate the stresses at the end of the time step by using the 
constitutive equations. The subroutine then updates and saves the history variables for use 
in the next time step and outputs the calculated stresses. Note that the *DATABASE _ 
EXTENT _ BINARY command is required to specify the storage of history variables in the 
output file. 
 

Variable MID RO MT LMC NHV IORTHO IBULK IG 

Type I F I I I I I I 

Variable IVECT IFAIL ITHERM IHYPER IEOS 

Type I I I I I 

Variable AOPT MAXC XP YP ZP A1 A2 A3 

Type F F F F F F F F 

Variable V1 V2 V3 D1 D2 D3 BETA 

Type F F F F F F F 

Variable P1 P2 P3 P4 P5 P6 P7 P8 

Type F F F F F F F F 

where 
MID: Material identification; RO: Mass density; MT: User material type (41-50 inclusive); LMC: Length 
of material constant array which is equal to the number of material constant to be input; NHV: Number 
of history variables to be stored; IORTHO: Set to 1 if the material is orthotropic; IBULK: Address of bulk 
modulus in material constants array; IG: Address of shear modulus in material constants array; IVECT: 
Vectorization flag (on=1), a vectorized user subroutine must be supplied; IFAIL:  Failure flag (on=1, 
allows failure of shell elements due to a material failure criterion; ITHERM: Temperature flag (on=1), 
compute element temperature; AOPT: Material axes option; MAXC:  Material axes change flag for brick 
elements; XP,YP,ZP: Coordinates of point p for AOPT=1; A1,A2,A3: Components of vector a  AOPT=2; 
V1,V2,V3: Components of vector v AOPT=3; D1,D2,D3: Components of vector d AOPT=2; BETA: 
Material angle in degrees for AOPT=3; P1..P8..: Material parameter (LSDYNA User’s Manual; LSTC, 
2005). 

Table 1. Keyword cards for UMAT (LSDYNA User’s Manual; LSTC, 2005) 

It is worth noting that the stable explicit time step is inversely proportional to the maximum 
natural frequency in the analysis. The small thickness elements drive up the highest natural 
frequency, therefore, it drives down the stable time step. Hence, mass scaling is used to 
obtain faster solutions by achieving a larger explicit time step when applying the cohesive 
element to quasi-static situations. Note that the volume associated with the cohesive element 
would be small by using a small thickness and the element’s kinetic energy arising from this 
be still several orders of magnitude below its internal energy, which is an important 
consideration for quasi-static analyses to minimize the inertial effects. 

4. Numerical simulations 

4.1 Quasi-static analysis 

The DCB specimen is made of a unidirectional fibre-reinforced laminate containing a thin 

insert at the mid-plane near the loaded end. A 150 mm long specimen ( L ), 20 mm wide ( w ) 
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and composed of two thick plies of unidirectional material (2 h  = 2×1.98 mm) shown in 

figure 5 was tested by Morais (Morais et al., 2000). The initial crack length ( cl ) is 55 mm. A 

displacement rate of 10 mm/sec is applied to the appropriate points of the model. The 

properties of both carbon fiber-reinforced epoxy material and the interface are given in table 

2.  
 

 

Displacement rate 

Displacement rate 

L                     
    cl          

2h 

w  

 

Fig. 5. Model of DCB specimen 

 

 

d 

Cohesive elements 

Case B. 1 element across the width. 

 

d 

Cohesive elements 

Case A. 8 elements across the width. 

 

Fig. 6. LS-DYNA finite element model of the deformed DCB specimen 
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Carbon fiber- reinforced epoxy material DCB specimen interface 

ρ =1444 kg/m3 ICG = 0.378 kJ/m2 

11E = 150 GPa, 22E = 33E = 11 GPa    oK = 3x104 N/mm3 

12υ = 13υ = 0.25 , 23υ = 0.45 oσ = 45 MPa          case I 

12G = 13G = 6.0 MPa, 23G = 3.7 MPa oσ = 60 MPa          case II 

Table 2. Properties of both carbon fiber-reinforced epoxy material and specimen interface 

The LS-DYNA finite element model, which is shown deformed in figure 6, consists of two 
layers of fully integrated S/R 8-noded solid elements, with 3 elements across the thickness. 
Two cases with different mesh sizes are used in the initial analysis, namely: case A, which 
includes eight elements across the width, and case B, which includes one element across the 
width, respectively. The two cases are compared using the new cohesive elements with 
mesh size of 1 mm to figure out the anticlastic effects. 
A plot of a reaction force as a function of the applied end displacement is shown in figure 7. 

It is clearly shown that both cases bring similar results with peak load value of 64 N. 

Therefore, the anticlastic effects are neglected and only one element (case B) is used across 

the width in the following analyses. 

 

 

Fig. 7. Load-displacement curves for a DCB specimen in both cases A and B 

Different cases are considered in this study and given in table 3 to investigate the influence 

of the new adaptive cohesive element using different mesh sizes. The aim of the first five 

cases is to study the effect of the element size with constant values of interface strength and 

stiffness on the load-displacement relationship. Different element sizes are used along the 

interface spanning from very small size of 0.5 mm to coarse mesh of 2 mm. Moreover, cases 

3, 6, and 7 are to study the effect of the value of minimum interface strength on the results. 

Finally, Cases 6 and 8 are to find out the effect of the high interfacial strength. 
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Case 1 Mesh size = 2 mm oσ =45 MPa, minσ  = 15 Mpa 
oK = 3x104 N/mm3, 

minK = 1x104  N/mm3 

Case 2 Mesh size =1.25 mm oσ =45 MPa, minσ  = 15 Mpa 
oK = 3x104 N/mm3, 

minK = 1x104  N/mm3 

Case 3 Mesh size = 1 mm oσ =45 MPa, minσ  = 15 Mpa 
oK = 3x104 N/mm3, 

minK = 1x104  N/mm3 

Case 4 Mesh size = 0.75 mm oσ =45 MPa, minσ  = 15 Mpa 
oK = 3x104 N/mm3, 

minK = 1x104  N/mm3 

Case 5 Mesh size = 0.5 mm oσ = 45 MPa, minσ = 15 MPa 
oK = 3x104 N/mm3, 

minK = 1x104  N/mm3 

Case 6 Mesh size = 1 mm oσ = 45 MPa, minσ = 22.5 MPa
oK = 3x104 N/mm3, 

minK =1.5x104 N/mm3 

Case 7 Mesh size = 1 mm oσ = 45 MPa, minσ = 10 MPa 
oK = 3x104 N/mm3, 

minK = 0.667x104 N/mm3 

Case 8 Mesh size = 1 mm oσ = 60 MPa, minσ = 30 MPa 
oK = 3x104 N/mm3, 

minK = 1.5x104 N/mm3 

Table 3. Different cases of analyses 

Figures 8 and 9 show the load-displacement curves for both normal (bilinear) and adaptive 

cohesive elements in cases 1 and 5, respectively, with different element sizes.  

 

 

Fig. 8. Load-displacement curves obtained using both bilinear and adaptive formulations-
case 1 

Figure 8 clearly shows that the bilinear formulation results in a severe instability once the 
crack starts propagating. However, the adaptive constitutive law is able to model the 
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smooth, progressive crack propagation. It is worth mentioning that the bilinear formulation 
brings smooth results by decreasing the element size. And it is clearly noticeable from figure 
9 that both bilinear and adaptive formulations are found to be stable in case 5 with very 
small element size. This indicates that elements with very small sizes need to be used in the 
softening zone to obtain high accuracy using bilinear formulation. However, this leads to 
large computational costs compare to case 1.  On the other hand, figure 10, which presents 
the load-displacement curves, obtained with the use of the adaptive formulation in the first 
five cases, show a great agreement of the results regardless the mesh size. Adaptive cohesive 
model (ACM) can yield very good results from the aspects of the peak load and the slope of 
loading curve if minσ  is properly defined. From this figure, it can be found that the different 

mesh sizes result in almost the same loading curves. Even, with 2 mm mesh size, which 
considerable large size, although the oscillation is higher compared with those of fine mesh 
size, ACM still models the propagation in stable manner. The oscillation of the curve once 
the crack starts propagates became less by decreasing the mesh size. Therefore, the new 
adaptive model can be used with considerably larger mesh size and the computational cost 
will be greatly minimized. 
 

 

Fig. 9. Load-displacement curves obtained using both bilinear and adaptive formulations-
case 5 

The load-displacement curves obtained from the numerical simulation of cases 3, 6 and 7 are 

presented in figure 11 together with experimental data (Camanho & Davila, 2002).  It can be 

seen that the average maximum load obtained in the experiments is 62.5 N, whereas the 

average maximum load predicted form the three cases is 65 N. It can be observed that 

numerical curves slightly overestimate the load. It is worth noting that with the decrease of 

interface strength, the result is stable, very good result can be obtained by comparing with 

the experimental ones, however, the slope of loading curve before the peak load is obviously 

lower than those of experimental ones (case 7; minσ =10.0 MPa). In case 6 ( minσ =22.5 MPa) 

and case 3 ( minσ =15 MPa), excellent agreements between the experimental data and the 
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numerical predictions is obtained although the oscillation in case 6 is higher compared with 

those of case 3. Also, the slope of loading curve in case 3 is closer to the experimental results 

compared with that in case 6. 
 

 

Fig. 10. Load-displacement curves obtained using the adaptive formulation-cases 1-5 

 

 

Fig. 11. Comparison of experimental and numerical simulations using the adaptive 
formulation - cases 3, 6 and 7 
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Figure 12 show the load-displacement curves of the numerical simulations obtained using 
the bilinear formulation in both cases, i.e., cases 6 and 8.  
 

 

Fig. 12. Load-displacement curves obtained using the bilinear formulation- cases 6 and 8 

 

 

Fig. 13. Comparison of experimental and numerical simulations using the adaptive    
formulation-cases 6 and 8 
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The bilinear formulations results in a severe instabilities once the crack starts propagation. It 
is also shown that a higher maximum traction (case 8) resulted in a more severe instability 
compared to a lower maximum traction (case 6). However, as shown in figure 13, the load-
displacement curves of the numerical simulations obtained using the adaptive formulations 
are very similar in both cases. The maximum load obtained from case 8 is found to be 69 N 
while in case 6, the maximum load obtained is 66 N. The adaptive formulation is able to 
model the smooth, progressive crack propagation and also to produce close results 
compared with the experimental ones.  

4.2 Dynamic analysis 

The DCB specimen, as shown in figure 5, is made of an isotropic fibre-reinforced laminate 

containing a thin insert at the mid-plane near the loaded end,  L =250 mm, w =25 mm 

and h  =1.5 mm, was analyzed by Moshier (Moshier,  2006). The initial crack length ( cl ) is 34 

mm. A displacement rate of 650 mm/sec is applied to the appropriate points of the model. 

Young’s modulus, density and Poisson’s ratio of carbon fibre-reinforced epoxy material are 

given as E =115 GPa, ρ =1566 Kg/m3, and υ =0.27, respectively. The properties of the DCB 

specimen interface are given as following: ICG = 0.7 kJ/m2, oK = 1x105 N/mm3, minK = 

0.333x105 N/mm3, oσ = 50 MPa, and minσ = 16.67 MPa    

Similarly, the LS-DYNA finite element model consists of two layers of fully integrated S/R 

8-noded solid elements, with 3 elements across the thickness. The adaptive rate-dependent 

cohesive zone model is implemented using a user defined cohesive material model in LS-

DYNA. Two different values of viscosity parameter are used in the simulations; η = 0.01 

and 1.0 N·sec/mm3, respectively. Note that η is a material parameter depending on 

deformation rate, which appears in equations (1) and (11). When η =0, it would be a 

traditional model without rate dependence. By observing equation (1), η  determines the 

ratio between viscosity stress mηδ$  and interface strength mσ  since mσ σ= i  if equations (1) 

and (4) are considered by setting K K= i . For example, if mδ$ = 6.5 mm/sec is assumed on the 

interface here (i.e. 1% of loading rate). η = 0.01 N·sec/mm3 corresponds to a low viscosity 

stress of 0.065MPa, which is much lower than the initial interface strength of 50 MPa. 

However, η =1.0 N·sec/mm3 corresponds to a viscosity stress of 6.5 MPa, which is around 

13% of the interface strength, and denotes a higher rate dependence. In addition, two sets of 

simulations are performed here. The first set involves simulations of normal (bilinear) 

cohesive model. The second set involves simulations of the new adaptive rate-dependent 

model. 
A plot of a reaction force as a function of the applied end displacement of the DCB specimen 
using cohesive elements with viscosity value of 0.01 N·sec/mm3 is shown in figure 14. It is 
clearly shown from figure 14 that the bilinear formulation results in a severe instability once 
the crack starts propagating. However, the adaptive constitutive law is able to model the 
smooth, progressive crack propagation. It is worth mentioning that the bilinear formulation 
might bring smooth results by decreasing the element size. 
The load-displacement curves obtained from the numerical simulation of both bilinear and 
adaptive cohesive model using viscosity parameter of 1.0 N·sec/mm3 is presented in figure 
15. It can be seen that, again, the adaptive constitutive law is able to model the smooth, 
progressive crack propagation while the bilinear formulation results in a severe instability 
once the crack starts propagating. The average maximum load obtained using the adaptive 
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rate dependent model is 110 N, whereas the average maximum load predicted form the 
bilinear model is 120 N. 
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Fig. 14. Load-displacement curves obtained using both bilinear and adaptive formulations 
(η = 0.01) 
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Fig. 15. Load-displacement curves obtained using both bilinear and adaptive formulations 
(η =1) 
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Fig. 16. Load-displacement curves obtained using bilinear formulations (η = 0.01,1) 
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Fig. 17. Load-displacement curves obtained using adaptive formulations (η = 0.01,1) 

Figure 16 shows the load-displacement curves of the numerical simulations obtained using 
the bilinear formulation with two different viscosity parameters, 0.01 and 1.0 N·sec/mm3, 
respectively. It is noticed from figure 16 that, in both cases, the bilinear formulation results 
in severe instabilities once the crack starts propagation. There is a very slight improvement 
to model the smooth, progressive crack propagation using bilinear formulations with a high 
viscosity parameter. On the other hand, the load-displacement curves of the numerical 
simulations obtained using the new adaptive formulation with two different viscosity 
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parameters, 0.01 and 1.0 N·sec/mm3, respectively, is depicted in figure 17. It is clear from 
figure 17 that the adaptive formulation able to model the smooth, progressive crack 
propagation irrespective the value of the viscosity parameter. More parametric studies will 
be performed in the ongoing research to accurately predict the effect of very high value of 
viscosity parameter on the results using both bilinear and adaptive cohesive element 
formulations. 

5. Conclusions 

A new adaptive cohesive element is developed and implemented in LS-DYNA to overcome 
the numerical insatiability occurred using the bilinear cohesive model. The formulation is 
fully three dimensional, and can be simulating mixed-mode delamination, however, in this 
study, only DCB test in Mode-I is used as a reference to validate the numerical simulations. 
Quasi-static and dynamic analyses are carried out in this research to study the effect of the 
new constitutive model. Numerical simulations showed that the new model is able to model 
the smooth, progressive crack propagation.  Furthermore, the new model can be effectively 
used in a range of different element size (reasonably coarse mesh) and can save a large 
amount of computation. The capability of the new mode is proved by the great agreement 
obtained between the numerical simulations and the experimental results. 
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