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1. Introduction

No less than 99.9% of the matter in the visible Universe is in the plasma state. The plasma
is a gas in which a certain portion of the particles are ionized, and is considered to be the
“fourth” state of the matter. The Universe is filled with plasma particles ejected from the
upper atmosphere of stars. The stream of plasma is called the stellar wind, which also carries
the intrinsic magnetic field of the stars. Our solar system is filled with solar-wind-plasma
particles. Neutral gases in the upper atmosphere of the Earth are also ionized by a
photoelectric effect due to absorption of energy from sunlight. The number density of plasma
far above the Earth’s ionosphere is very low (∼100cm−3 or much less). A typical mean-free
path of solar-wind plasma is about 1AU1 (Astronomical Unit: the distance from the Sun to the
Earth). Thus plasma in Geospace can be regarded as collisionless.
Motion of plasma is affected by electromagnetic fields. The change in the motion of plasma
results in an electric current, and the surrounding electromagnetic fields are then modified by
the current. The plasma behaves as a dielectric media. Thus the linear dispersion relation of
electromagnetic waves in plasma is strongly modified from that in vacuum, which is simply
ω̃ = kc where ω̃, k, and c represent angular frequency, wavenumber, and the speed of light,
respectively. This chapter gives an introduction to electromagnetic waves in collisionless
plasma2, because it is important to study electromagnetic waves in plasma for understanding
of electromagnetic environment around the Earth.
Section 2 gives basic equations for electromagnetic waves in collisionless plasma. Then, the
linear dispersion relation of plasma waves is derived. It should be noted that there are many
good textbooks for linear dispersion relation of plasma waves. However, detailed derivation
of the linear dispersion relation is presented only in a few textbooks (e.g., Stix, 1992; Swanson,
2003; 2008). Thus Section 2aims to revisit the derivation of the linear dispersion relation.
Section 3 discusses excitation of plasma waves, by providing examples on the excitation of
plasma waves based on the linear dispersion analysis.
Section 4 gives summary of this chapter. It is noted that the linear dispersion relation can be
applied for small-amplitude plasma waves only. Large-amplitude plasma waves sometimes
result in nonlinear processes. Nonlinear processes are so complex that it is difficult to provide
their analytical expressions, and computer simulations play important roles in studies of
nonlinear processes, which should be left as a future study.

11AU∼150,000,000km
2 This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas No.21200050

from MEXT of Japan. The author is grateful to Y. Kidani for his careful reading of the manuscript.
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2 Electromagnetic Waves

2. Linear dispersion relation

2.1 Basic equations

The starting point is Maxwell’s equations (1-4)

∇× �E = − ∂�B

∂t
, (1)

∇× �B = μ0
�J +

1

c2
∂�E

∂t
, (2)

∇ · �E =
ρ

ǫ0
, (3)

∇ · �B = 0, (4)

where �E, �B,�J, and ρ represent electric field, magnetic field, current density, and charge density,
respectively. Here a useful relation ǫ0μ0 = 1/c2 is used where ǫ0 and μ0 are dielectric constant
and magnetic permeability in vacuum, respectively.
The motion of charged particles is described by the Newton-Lorentz equations (5,6)

d�x

dt
= �v, (5)

d�v

dt
=

q

m

(

�E+�v× �B
)

, (6)

where �x and �v represent the position and velocity of a charged particle with q and m being its
charge and mass. The motion of charged particles is also expressed in terms of microscopic
distribution functions

∂ f

∂t
+�v · ∂ f

∂�x
+

q

m

(

�E+�v× �B
)

· ∂ f

∂�v
= 0, (7)

where f [�x,�v, t] represents distribution function of plasma particles in a position-velocity phase
space. Equation (7) is called the Vlasov equation or the collisionless Boltzmann equation
(collision terms of the Boltzmann equation in right hand side is neglected). The zeroth
momentum and the first momentum of the distribution function give the charge density and
the current density

ρ = q
∫

fd3
�v, (8)

�J = q
∫

�v fd3
�v. (9)

2.2 Derivation of linear dispersion equation

Let us “linearize” the Vlasov equation. That is, we divide physical quantities into an
equilibrium part and a small perturbation part (for the distribution function f = n( f0 + f1)
with f0 and f1 being the equilibrium and the small perturbation parts normalized to unity,
respectively). Then the Vlasov equation (7) becomes

∂ f1
∂t

+�v · ∂ f1
∂�x

+
q

m

(

�v× �B0

)

· ∂ f1
∂�v

= − q

m

(

�E1 +�v× �B1

)

· ∂ f0
∂�v

. (10)
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Electromagnetic Waves in Plasma 3

Here, the electric field has only the perturbed component (�E0 = 0) and the multiplication

of small perturbation parts is neglected ( f1�E1 → 0 and f1�B1 → 0). Let us evaluate the term
(

�v× �B0

)

· ∂ f0
∂�v

by taking the spatial coordinate relative to the ambient magnetic field and

writing the velocity in terms of its Cartesian coordinate �v = [v⊥ cosφ,v⊥ sinφ,v||]. Here, v||
and v⊥ represent velocity components parallel and perpendicular to the ambient magnetic
field, and φ = Ωct+ φ0 represents the phase angle of the gyro-motion where Ωc ≡ q

mB is the
cyclotron angular frequency (with sign included). Then, we obtain

(

�v× �B0

)

· ∂ f0
∂�v

=

⎡

⎣

vyB0
−vxB0

0

⎤

⎦ ·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂v⊥
∂vx

∂ f0
∂v⊥

∂v⊥
∂vy

∂ f0
∂v⊥

∂ f0
∂v||

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎣

vyB0
−vxB0

0

⎤

⎦ ·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

vx
v⊥

∂ f0
∂v⊥

vy

v⊥

∂ f0
∂v⊥

∂ f0
∂v||

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0.

This means that the distribution function must not be changed during the gyration of plasma
particles around the ambient magnetic field at an equilibrium state. By using the total
derivative, Eq.(10) can be rewritten as

d f1
dt

= − q

m

(

�E1 +�v× �B1

)

· ∂ f0
∂�v

,

and the solution to which can be obtained as

f1[�x,�v, t] = − q

m

∫ t

−∞

(

�E1[�x
′, t′] +�v′ × �B1[�x

′, t′]
)

· ∂ f0[�v
′]

∂�v′
dt′, (11)

where [�x′,�v′] is an unperturbed trajectory of a particle which passes through the point [�x,�v]
when t′ = t.
Let us Fourier analyze electromagnetic fields,

E1(�x, t) ≡ E1 exp[i�k ·�x− iω̃t],

B1(�x, t) ≡ B1 exp[i�k ·�x− iω̃t].

where ω̃ ≡ ω + iγ is complex frequency and �k is wavenumber vector. Then Maxwell’s
equations yield

�k× �E1 = ω̃�B1, (12)

�k× �B1 = −iμ0�J1 −
ω̃

c2
�E1. (13)

Inserting Eq.(12) into Eq.(13), we obtain

�k× (�k× �E1) = (�k · �E1)�k− |�k|2�E1 = −iω̃μ0
�J1 −

ω̃2

c2
�E1,

0 =
(

�k�k− |�k|2←→I
) c2

ω̃2
�E1 + �E1 + i

c2

ω̃
μ0�J1, (14)
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4 Electromagnetic Waves

where
←→
I represents a unit tensor and�a�b denotes a tensor such that

�a�b =

⎡

⎣

axbx axby axbz
aybx ayby aybz
azbx azby azbz

⎤

⎦ =

⎡

⎣

ax
ay
az

⎤

⎦

⎡

⎣

bx
by
bz

⎤

⎦

T

.

By using Eqs.(9), (11) and (12), the last term in the right hand side of Eq.(14) yields

i
c2

ω̃
μ0
�J1 = −i

Π2
p

ω̃

∫ ∫ t

−∞

(

�E1 +�v′ ×
�k× �E1

ω̃

)

· ∂ f0
∂�v′

exp[i�k ·�x′ − iω̃t′]dt′�vd3
�v, (15)

where Πp ≡
√

q2n
mǫ0

represents the plasma angular frequency. It follows that

(

�E1 +�v′ ×
�k× �E1

ω̃

)

· ∂ f0
∂�v′

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ex1

(

1−
v′yky + v′zkz

ω̃

)

+ Ey1

v′ykx
ω̃

+ Ez1
v′zkx

ω̃

Ex1
v′xky

ω̃
+ Ey1

(

1− v′xkx + v′zkz
ω̃

)

+ Ez1
v′zky

ω̃

Ex1
v′xkz

ω̃
+ Ey1

v′ykz
ω̃

+ Ez1

(

1−
v′xkx + v′yky

ω̃

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v′x
v⊥

∂ f0
∂v⊥

v′y
v⊥

∂ f0
∂v⊥

∂ f0
∂v||

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Ex1hx + Ey1hy + Ez1hz

where

hx =
v′x
v⊥

(

1− v′zkz
ω̃

)

∂ f0
∂v⊥

+
v′xkz

ω̃

∂ f0
∂v||

hy =
v′y
v⊥

(

1− v′zkz
ω̃

)

∂ f0
∂v⊥

+
v′ykz

ω̃

∂ f0
∂v||

hz =
v′z(v′xkx + v′yky)

ω̃v⊥

∂ f0
∂v⊥

+

(

1−
v′xkx + v′yky

ω̃

)

∂ f0
∂v||

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (16)

Now, let us consider transforming from Lagrangian coordinate along the unperturbed
trajectory [�x′,�v′, t′] to Eulerian coordinate [�x,�v, t] in a stationary frame. We define the velocity
as

v′x = v⊥ cos[Ωc(t− t′) + φ0]
v′y = v⊥ sin[Ωc(t− t′) + φ0]

v′z = v||

⎫

⎬

⎭

,

and integrate the velocity in the polar coordinate over time to obtain the position

x′ = x− v⊥
Ωc

{sin[Ωc(t− t′) + φ0]− sinφ0}
y′ = y+ v⊥

Ωc
{cos[Ωc(t− t′) + φ0]− cosφ0}

z′ = z− v||(t− t′)

⎫

⎬

⎭

.
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Electromagnetic Waves in Plasma 5

Further taking the wavenumber vector kx = k⊥ cosθ,ky = k⊥ sinθ,kz = k||, we obtain

exp[i�k ·�x′ − iω̃t′] = exp[i�k ·�x− iω̃t]exp[i(ω̃ − v||k||)(t− t′)]

×exp

[

−i
v⊥k⊥

Ωc

{

sin[Ωc(t− t′) + φ0 − θ]− sin[φ0 − θ]
}

]

= exp[i�k ·�x− iω̃t]
∞

∑
l,n=−∞

Jl

[

v⊥k⊥
Ωc

]

Jn

[

v⊥k⊥
Ωc

]

×exp[i(l− n)(φ0 − θ)]exp[i(ω̃ − v||k|| − nΩc)(t− t′)] (17)

where Jn[x] is the Bessel function of the first kind of order n with

exp[iasinψ] =
∞

∑
n=−∞

Jn [a]exp[inψ].

Eq.(16) also becomes

hx = cos[Ωc(t− t′) + φ0]

{

(

1−
v||k||

ω̃

)

∂ f0
∂v⊥

+
v⊥k||

ω̃

∂ f0
∂v||

}

hy = sin[Ωc(t− t′) + φ0]

{

(

1−
v||k||

ω̃

)

∂ f0
∂v⊥

+
v⊥k||

ω̃

∂ f0
∂v||

}

hz =
v||k⊥

ω̃
cos[Ωc(t− t′) + φ0 − θ]

∂ f0
∂v⊥

+

(

1− v⊥k⊥
ω̃

cos[Ωc(t− t′) + φ0 − θ]

)

∂ f0
∂v||

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

For the time integral in Eq.(15), we use the following relationship,

∫ t

−∞

∞

∑
n=−∞

Jn[λ]

⎡

⎣

cos[Ωc(t− t′) + φ0]
sin[Ωc(t− t′) + φ0]

1

⎤

⎦exp[−inφ0]exp[i(ω̃ − v||k|| − nΩc)(t− t′)]dt′

=
∞

∑
n=−∞

Jn[λ]

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

iexp[−i(n− 1)φ0]

ω̃ − v||k|| − (n− 1)Ωc
+

iexp[−i(n+ 1)φ0]

ω̃ − v||k|| − (n+ 1)Ωc

exp[−i(n− 1)φ0]

ω̃ − v||k|| − (n− 1)Ωc
− exp[−i(n+ 1)φ0]

ω̃ − v||k|| − (n+ 1)Ωc

2iexp[−inφ0]

ω̃ − v||k|| − nΩc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
∞

∑
n=−∞

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

nΩc

v⊥k⊥
Jn [λ]

iexp[−inφ0]

ω̃ − v||k|| − nΩc

−J′n[λ]
exp[−inφ0]

ω̃ − v||k|| − nΩc

Jn[λ]
iexp[−inφ0]

ω̃ − v||k|| − nΩc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

Here,
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6 Electromagnetic Waves

λ ≡ v⊥k⊥
Ωc

,

cosφ =
exp[iφ] + exp[−iφ]

2
,

sinφ =
exp[iφ]− exp[−iφ]

2i
,

and the following Bessel identities are used,

Jn+1[λ] + Jn−1[λ] =
2n

λ
Jn [λ]

Jn+1[λ]− Jn−1[λ] = −2J′n[λ]

with

∞

∑
n=−∞

Jn[λ] (A[n− 1]± A[n+ 1]) =
∞

∑
n=−∞

(Jn+1[λ]± Jn−1[λ])A[n]

By using Eq.(18), Eq.(15) is rewritten as

− i
Π2

p

ω̃

∫ ∫ t

−∞

(

Exhx + Eyhy + Ezhz
)

exp[i�k ·�x′ − iω̃t′]dt′�vd3
�v

= −i
Π2

p

ω̃

∫ ∞

∑
l,n=−∞

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

i
nΩc

v⊥k⊥
Jn[λ]

{

(

1−
v||k||

ω̃

)

∂ f0
∂v⊥

+
v⊥k||

ω̃

∂ f0
∂v||

}

−J′n[λ]

{

(

1−
v||k||

ω̃

)

∂ f0
∂v⊥

+
v⊥k||

ω̃

∂ f0
∂v||

}

i
nΩcv||
ω̃v⊥

Jn[λ]
∂ f0
∂v⊥

+ i Jn[λ]

(

1− nΩc

ω̃

)

∂ f0
∂v||

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

× Jl [λ]

ω̃ − v||k|| − nΩc
exp[i(l − n)(φ0 − θ)]�E1�vd

3
�v

=
Π2

p

ω̃2

∫ ∞

∑
l,n=−∞

⎡

⎣

v⊥ cosφ0

v⊥ sinφ0

v||

⎤

⎦

⎡

⎢

⎢

⎣

nΩc

v⊥k⊥
Jn [λ]U

iJ′n[λ]U
Jn [λ]W

⎤

⎥

⎥

⎦

T

�E1

× Jl [λ]

ω̃ − v||k|| − nΩc
exp[i(l − n)(φ0 − θ)]d3

�v, (19)

where

U ≡ v⊥k||
∂ f0
∂v||

+ (ω̃ − k||v||)
∂ f0
∂v⊥

,

W ≡ (ω̃ − nΩc)
∂ f0
∂v||

+
nΩcv||
v⊥

∂ f0
∂v⊥

.
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Electromagnetic Waves in Plasma 7

and

⎡

⎣

vx(Exhx + Eyhy + Ezhz)
vy(Exhx + Eyhy + Ezhz)
vz(Exhx + Eyhy + Ezhz)

⎤

⎦ =

⎡

⎣

vxhx vxhy vxhz
vyhx vyhy vyhz
vzhx vzhy vzhz

⎤

⎦

⎡

⎣

Ex

Ey

Ez

⎤

⎦

=

⎡

⎣

vx
vy
vz

⎤

⎦

⎡

⎣

hx
hy
hz

⎤

⎦

T ⎡

⎣

Ex

Ey

Ez

⎤

⎦

Let us assume that distribution functions are gyrotropic, i.e., f0(�v) ≡ f0(v||,v⊥) (
∂ f0
∂φ0

= 0) and

that the wavenumber vector�k is taken in the x− z plane, i.e., θ = 0. Then, we have

∫

d3
�v =

∫ 2π

0

∫ ∞

0

∫ ∞

−∞
v⊥dv||dv⊥dφ0 = 2π

∫ ∞

0

∫ ∞

−∞
v⊥dv||dv⊥

and

∫ 2π

0
Jl [λ]cosφ0 exp[i(l − n)φ0]dφ0 =

2π

2
(Jn−1[λ] + Jn+1[λ]) =

2πn

λ
Jn [λ],

∫ 2π

0
Jl [λ]sinφ0 exp[i(l − n)φ0]dφ0 =

2π

2i
(Jn−1[λ]− Jn+1[λ]) =

2π

i
J′n[λ],

∫ 2π

0
Jl [λ]exp[i(l − n)φ0]dφ0 = 2π Jn[λ].

Thus Eq.(14) can be rewritten as

0=
(

�k�k− |�k|2←→I
) c2

ω̃2
+←→ǫ (ω̃,�k), (20)

where

←→ǫ (ω̃,�k)�E1 = �E1 + i
c2

ω̃
μ0�J1,

←→ǫ (ω̃,�k) =
←→
I + ∑

s

Π2
p

ω̃2

∞

∑
n=−∞

∫

1

ω̃ − k||v|| − nΩc

←→Tn d3
�v, (21)

with

←→Tn =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

n2Ω2
c

k2⊥v⊥
J2n[λ]U i

nΩc

k⊥
Jn [λ]J

′
n[λ]U

nΩc

k⊥
J2n[λ]W

−i
nΩc

k⊥
Jn [λ]J

′
n[λ]U v⊥ J′n

2
[λ]U −iv⊥ Jn[λ]J

′
n[λ]W

nΩcv||
k⊥v⊥

J2n[λ]U iv|| Jn [λ]J
′
n[λ]U v|| J

2
n[λ]W

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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8 Electromagnetic Waves

Here Eq.(20) is called the linear dispersion relation and Eq.(21) is called the plasma dielectric
equation. Note that ∑

s
is added in Eq.(21) for treating multi-species (e.g., ions and electrons)

plasma (Πps,Ωcs, f0s).
There also exists another expression for the plasma dielectric equation,

←→ǫ =
←→
I + ∑

s

Π2
p

ω̃2

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∞

∑
n=−∞

∫

k||
∂ f0
∂v||

+
nΩc

v⊥

∂ f0
∂v⊥

ω̃ − k||v|| − nΩc

←→Snd
3
�v−←→

I

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (22)

where

←→Sn =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

n2Ω2
c

k2⊥
J2n[λ] i

nΩc

k⊥
v⊥ Jn [λ]J

′
n[λ]

nΩc

k⊥
v|| J

2
n[λ]

−i
nΩc

k⊥
v⊥ Jn[λ]J

′
n[λ] v2⊥ J′n

2
[λ] −iv||v⊥ Jn[λ]J

′
n[λ]

nΩc

k⊥
v|| J

2
n[λ] iv||v⊥ Jn [λ]J

′
n[λ] v2|| J

2
n[λ]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

2.3 Linear dispersion relation for waves in Maxwellian plasma

The Maxwellian (or Maxwell-Boltzmann) distribution is usually regarded as a distribution
of particle velocity at an equilibrium state. Plasma or charged particles easily move
along an ambient magnetic field, while they do not move across the ambient magnetic
field. Distributions of particle velocity often show anisotropy in the direction parallel
and perpendicular to the ambient magnetic field. That is, the average drift velocity and
the temperature in the direction parallel to the ambient magnetic field differ from those
in the direction perpendicular to the ambient magnetic field. Thus the following shifted
bi-Maxwellian distribution is used as a velocity distribution at an initial state or an equilibrium
state,

f (v||,v⊥) = f||(v||) f⊥(v⊥)

f||(v||) =
1√

2πVt||
exp

[

−
(v|| −Vd)

2

2V2
t||

]

f⊥(v⊥) =
1

2πV2
t⊥

exp

[

− v2⊥
2V2

t⊥

]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (23)

where Vd is the drift velocity in the direction parallel to the ambient magnetic field, and

Vt|| ≡
√

T||/m and Vt⊥ ≡ √
T⊥/m are the thermal velocities in the direction parallel and

perpendicular to the ambient magnetic field, respectively, with T being temperature of plasma
particles.
When plasma has the Maxwellian velocity distribution (23), we can explicitly perform the
velocity-space integral by using the following properties,
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∫ ∞

−∞

f||dv||
ω̃ − k||v|| − nΩc

= − 1√
2k||Vt||

Z0 [ζn]

∫ ∞

−∞

v|| f||dv||
ω̃ − k||v|| − nΩc

= − 1√
2k||Vt||

Z1 [ζn] = − 1

k||

{

1+
ω̃ − nΩc√
2k||Vt||

Z0 [ζn]

}

∫ ∞

−∞

v2|| f||dv||
ω̃ − k||v|| − nΩc

= − 1√
2k||Vt||

Z2 [ζn]

= −
√
2Vt||
k||

⎧

⎨

⎩

ω̃ + k||Vd − nΩc√
2k||Vt||

+

(

ω̃ − nΩc√
2k||Vt||

)2

Z0 [ζn]

⎫

⎬

⎭

∫ ∞

−∞

∂ f||
∂v||

dv||
ω̃ − k||v|| − nΩc

=
1√

2k||V
3
t||

{Z1 [ζn]−VdZ0 [ζn]}

=
1

k||V
2
t||

{

1+
ω̃ − k||Vd − nΩc√

2k||Vt||
Z0 [ζn]

}

∫ ∞

−∞

v||
∂ f||
∂v||

dv||
ω̃ − k||v|| − nΩc

=
1√

2k||V
3
t||

{Z2 [ζn]−VdZ1 [ζn]}

=
ω̃ − nΩ

k2||V
2
t||

{

1+
ω̃ − k||Vd − nΩc√

2k||Vt||
Z0 [ζn]

}

and

∫ ∞

0
J2n [λ] f⊥2πv⊥dv⊥ = exp

[

− a2

2

]

In

[

a2

2

]

∫ ∞

0
J2n [λ]

∂ f⊥
∂v⊥

2πdv⊥ = − 1

V2
t⊥

exp

[

− a2

2

]

In

[

a2

2

]

∫ ∞

0
Jn [λ] J

′
n [λ] f⊥2πv2⊥dv⊥ =

k⊥V2
t⊥

Ωc
exp

[

− a2

2

]{

I ′n

[

a2

2

]

− In

[

a2

2

]}

∫ ∞

0
Jn [λ] J

′
n [λ]

∂ f⊥
∂v⊥

2πv⊥dv⊥ = − k⊥
Ωc

exp

[

− a2

2

]{

I ′n

[

a2

2

]

− In

[

a2

2

]}

∫ ∞

0
J′n

2
[λ] f⊥2πv3⊥dv⊥ = 4V2

t⊥ exp

[

− a2

2

]{

n2

2a2
In

[

a2

2

]

− a2

4
I ′n

[

a2

2

]

+
a2

4
In

[

a2

2

]}

∫ ∞

0
J′n

2
[λ]

∂ f⊥
∂v⊥

2πv2⊥dv⊥ = −4exp

[

− a2

2

]{

n2

2a2
In

[

a2

2

]

− a2

4
I ′n

[

a2

2

]

+
a2

4
In

[

a2

2

]}

where
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10 Electromagnetic Waves

ζn ≡
ω̃ − k||Vd − nΩc√

2k||Vt||
,

a ≡
√
2k⊥Vt⊥

Ωc
=

√
2λ

Vt⊥
v⊥

.

Here In[x] is the modified Bessel function of the first kind of order n with the following
properties,

∫ ∞

0
xJ2n [tx]exp

[

−x2
]

dx =
1

2
exp

[

− t2

2

]

In

[

t2

2

]

,

∫ ∞

0
x2 Jn [tx] J

′
n [tx]exp

[

−x2
]

dx =
t

4
exp

[

− t2

2

]{

I ′n

[

t2

2

]

− In

[

t2

2

]}

,

∫ ∞

0
x3 J′n

2
[tx]exp

[

−x2
]

dx = exp

[

− t2

2

]{

n2

2t2
In

[

t2

2

]

− t2

4
I ′n

[

t2

2

]

+
t2

4
In

[

t2

2

]}

,

and Zp[x] is the plasma dispersion function (Fried & Conte, 1961)

Z0[x] ≡ 1√
π

∫ ∞

−∞

1

t− x
dt, (24)

Zp[ζn] ≡ −
k||√

π

∫ ∞

−∞

v
p
||

ω̃ − k||v|| − nΩc
exp

[

−
(v|| −Vd)

2

2V2
t||

]

dv||,

Z1[ζn] =
√
2Vt||

{

1+
ω̃ − nΩc√
2k||Vt||

Z0[ζn]

}

,

Z2[ζn] = 2V2
t||

⎧

⎨

⎩

ω̃ + k||Vd − nΩc√
2k||Vt||

+

(

ω̃ − nΩc√
2k||Vt||

)2

Z0[ζn]

⎫

⎬

⎭

.

We also use the following identity of the modified Bessel function,

∞

∑
n=−∞

nI ′n[λ] =
∞

∑
n=−∞

n

2
(In+1[λ] + In−1[λ]) =

∞

∑
n=−∞

nIn[λ] = 0

∞

∑
n=−∞

{

In[λ]− I ′n[λ]
}

=
∞

∑
n=−∞

{

In[λ]−
1

2
(In+1[λ] + In−1[λ])

}

= 0

Then we obtain

∞

∑
n=−∞

∫

1

ω̃ − k||v|| − nΩc

←→Tnd3
�v ≡←→

K =

⎡

⎣

K1,1 K1,2 K1,3

−K1,2 K2,2 K2,3

K1,3 −K2,3 K3,3

⎤

⎦ , (25)

where
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K1,1 =
∞

∑
n=−∞

2n2

a2
exp

[

− a2

2

]

In

[

a2

2

]

{(

V2
t⊥

V2
t||

− 1

)

+
V2
t⊥

V2
t||

ξnZ0[ζn]

}

,

K1,2 = i
∞

∑
n=−∞

nexp

[

− a2

2

]{

In

[

a2

2

]

− I ′n

[

a2

2

]}

V2
t⊥

V2
t||

ξnZ0[ζn],

K1,3 =
∞

∑
n=−∞

2nVt⊥
aVt||

exp

[

− a2

2

]

In

[

a2

2

]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
nΩc

(

1− V2
t||

V2
t⊥

)

√
2k||Vt||

+
ω̃ − nΩc√
2k||Vt||

ξnZ0[ζn]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

K2,2 = K1,1 −
∞

∑
n=−∞

a2 exp

[

− a2

2

]{

I ′n

[

a2

2

]

+ In

[

a2

2

]}

V2
t⊥

V2
t||

ξnZ0[ζn],

K2,3 = i
∞

∑
n=−∞

aVt⊥
Vt||

exp

[

− a2

2

]{

In

[

a2

2

]

− I ′n

[

a2

2

]}

ω̃ − nΩc√
2k||Vt||

ξnZ0[ζn],

K3,3 = 2
∞

∑
n=−∞

exp

[

− a2

2

]

In

[

a2

2

]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ω̃2 + n2Ω2
c

(

1− V2
t||

V2
t⊥

)

2k2||V
2
t||

+

(

ω̃ − nΩc√
2k||Vt||

)2

ξnZ0[ζn]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

with

ξn ≡
ω̃ − k||Vd − nΩc

(

1− V2
t||

V2
t⊥

)

√
2k||Vt||

.

The linear dispersion relation is obtained by solving the following equation,

0= Det

[

c2

ω̃2

(

�k�k− |�k|2←→I
)

+
←→
I + ∑

s

Π2
p

ω̃2

←→
K

]

(26)

≡

∣

∣

∣

∣

∣

∣

∣

∑s Π2
pK1,1 + ω̃2 − c2k2|| ∑s Π2

pK1,2 ∑s Π2
pK1,3 + c2(k||k⊥)

−∑s Π2
pK1,2 ∑s Π2

pK2,2 + ω̃2 − c2(k2|| + k2⊥) ∑s Π2
pK2,3

∑s Π2
pK1,3 + c2(k||k⊥) −∑s Π2

pK2,3 ∑s Π2
pK3,3 + ω̃2 − c2k2⊥

∣

∣

∣

∣

∣

∣

∣

.

3. Excitation of electromagnetic waves

Eq.(26) tells us what kind of plasma waves grows and damps in arbitraryMaxwellian plasma.
This section gives examples on the excitation of plasma waves based on the linear dispersion
analysis.
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12 Electromagnetic Waves

For simplicity, let us assume propagation of plasma waves in the direction parallel to the
ambient magnetic field, i.e., k⊥ = 0. Then, we have I0 [0] = 1 and In 
=0 [0] = 0. These also gives

I ′±1 [0] = 0.5. Thus we obtain K1,1 = K2,2, K1,3 = 03, K2,3 = 0 and Eq.(26) becomes

⎧

⎨

⎩

(

∑
s

Π2
pK1,1 + ω̃2 − c2k2||

)2

+ ∑
s

Π2
pK

2
1,2

⎫

⎬

⎭

{

∑
s

Π2
pK3,3 + ω̃2

}

= 0 (27)

The first factor is for transverse waves where �k ⊥ �E. That is, a wave propagates in the z
direction while its electromagnetic fields polarize in the x − y plane. The second factor is

for longitudinal waves where�k || �E. That is, a wave propagates in the z direction and only
its electric fields polarize in the z direction. The longitudinal waves are also referred to as

compressional waves or sound waves. Especially in the case of �k || �E, waves are called
“electrostatic” waves because these waves arise from electric charge and are expressed by
the Poisson equation (3).

3.1 Transverse electromagnetic waves

The first factor of Eq.(27) becomes the following equation,

∑
s

Π2
p

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

V2
t⊥

V2
t||

− 1

)

+
V2
t⊥

V2
t||

ω̃ − k||Vd − Ωc

(

1− V2
t||

V2
t⊥

)

√
2k||Vt||

Z0

[

ω̃ − k||Vd − Ωc√
2k||Vt||

]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= c2k2|| − ω̃2 (28)

The plasma dispersion function Z0[x] (Fried & Conte, 1961) is approximated for |x| ≫ 1 as

Z0[x] ∼ iσ
√

π exp[−x2]− 1

x

(

1+
1

2x2
+

3

4x4
+ · · ·

)

(29)

with

σ =

⎧

⎨

⎩

0, Im[x] > 1/|Re[x]|
1, |Im[x]| < 1/|Re[x]|
2, Im[x] < −1/|Re[x]|

Here the argument of the dispersion function x is a complex value.
Let us consider that a phase speed of waves is much faster than velocities of plasma particles.
Then, the argument of the plasma dispersion function becomes a larger number. Here, the
drift velocity of plasma Vd is also neglected. Equation (28) is thus rewritten by using Eq.(29)
as

3 K1,3 = 0 if n= 0, and lim
a→0

In
[

a2

2

]

a
= lim

a→0

a

2

In
[

a2

2

]

− In [0]

a2

2 − 0
= lim

a→0

a

2
I′n

[

a2

2

]

= 0 if n 
= 0.
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(a) Linear scale. (b) Logarithmic scale.

Fig. 1. Linear dispersion relation (frequency ω versus wavenumber k) for electromagnetic
waves in plasma. The quantities ω and ck are normalized by Πpe.

∑
s

Π2
p

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

V2
t⊥

V2
t||

− 1

)

− V2
t⊥

V2
t||

ω̃ − Ωc

(

1− V2
t||

V2
t⊥

)

ω̃ − Ωc

(

1+
k2||V

2
t||

(ω̃ − Ωc)2
+ · · ·

)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(30)

+iσ
√

π ∑
s

Π2
p

V2
t⊥

V2
t||

ω̃ − Ωc

(

1− V2
t||

V2
t⊥

)

√
2k||Vt||

exp

[

− (ω̃ − Ωc)2

2k2||V
2
t||

]

− c2k2|| + ω̃2 = 0

The solutions to above equation are simplified when we assume that the temperature of
plasma approaches to zero, i.e., Vt|| → 0 and Vt⊥ → 0. Note that this approach is known as the
“cold plasma approximation.” Equation (30) is rewritten by the cold plasma approximation
as

Π2
pe

ω̃

ω̃ − Ωce
+ Π2

pi

ω̃

ω̃ − Ωci
+ c2k2|| − ω̃2 = 0 (31)

Here an electron-ion pair plasma is assumed (Ωci > 0 and Ωce < 0). The solutions to the
above equation are shown in Figure 1. Note that the imaginary part of the complex frequency
(growth/damping rate) becomes zero in the present case. There exist four dispersion curves.
The dispersion curves for ω > 0 are called “L-mode” (left-handed circularly polarized)
waves, while the dispersion curves for ω < 0 are called “R-mode” (right-handed circularly
polarized) waves. In the present case, a positive frequency corresponds to the direction of ion
gyro-motion, which is left-handed (counter-clockwise) circularly polarized against magnetic
field lines.
The dispersion curves for the high-frequency R-mode and L-mode waves approach to the
following frequencies as k|| → 0,
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14 Electromagnetic Waves

ωR =

√

(Ωce + Ωci)2 + 4(Π2
pe + Π2

pi − ΩceΩci)− (Ωce + Ωci)

2
(32)

ωL =

√

(Ωce + Ωci)2 + 4(Π2
pe + Π2

pi − ΩceΩci) + (Ωce + Ωci)

2
(33)

which are known as the R-mode and L-mode cut-off frequencies, respectively. The two
high-frequency waves approach to ω = ck||, i.e., electromagnetic light modewaves as k|| → ∞.
On the other hand, the low-frequency wave approaches to k||VA as k|| → 0, and approaches to
Ωc as k|| → ∞. Note that VA ≡ cΩci/Πpi is called the Alfven velocity. The R-mode and L-mode
low-frequencywaves are called electromagnetic electron and ion cyclotronwave, respectively,
or (electron and ion) whistler mode wave.
The temperature of plasma affects the growth/damping rate in the dispersion relation.
Assuming ω ≫ |γ| (where ω̃ ≡ ω + iγ), the imaginary part of Eq.(30) gives the growth rate γ
as

γ ∼ − 1

2ω −
ΩceΠ

2
pe

(ω − Ωce)2
−

ΩciΠ
2
pi

(ω − Ωci)2

(34)

×σ
√

π

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Π2
pe

V2
te⊥

V2
te||

ω − Ωce

(

1− V2
te||

V2
te⊥

)

√
2k||Vte||

exp

[

− (ω − Ωce)2

2k2||V
2
te||

]

+Π2
pi

V2
ti⊥

V2
ti||

ω − Ωci

(

1− V2
ti||

V2
te⊥

)

√
2k||Vti||

exp

[

− (ω − Ωci)
2

2k2||V
2
ti||

]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Here the higher-order terms are neglected for simplicity. One can find that the growth rate
becomes always negative γ ≤ 0 for light mode waves (|ω| > ωR,L). On the other hand, γ
becomes positive for electromagnetic electron cyclotron waves (Ωce < ω < 0) with

ω

Ωce
>

(

1−
V2
te||

V2
te⊥

)

, 2
ω

Ωce
<

Π2
pe

(ω − Ωce)2
(35)

Here ion terms are neglected by assuming |ω|≫Ωci and |ω|≫Πpi. This condition is achieved
when Vte⊥ > Vte||, which is known as electron temperature anisotropy instability.
As a special case, electromagnetic electron cyclotron waves are also excited if the ion
contribution (the third line in Eq.(34)) becomes larger than the electron contribution (the
second line in Eq.(34)) around |ω| ∼ Ωci. The growth rare becomes positive when

ω

Ωci
>

(

1−
V2
ti||

V2
ti⊥

)

, −
Π2

pe

Ωce
<

ΩciΠ
2
pi

(ω − Ωci)2
(36)
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(a) Electron temperature anisotropy instability
with Vte⊥ = 4Vte||, Te|| = Ti|| = Ti⊥, Πpe =

10|Ωce|, c= 200Vte||.

(b) Ion temperature anisotropy instability with
Vti⊥ = 4Vti||, Ti|| = Te|| = Te⊥, Πpe = 10|Ωce|, c=
200Vte||.

(c) Firehose instability with Vti|| = 16Vti⊥,
Ti⊥ = Te|| = Te⊥, Πpe = 10|Ωce|, c= 200Vte||.

Fig. 2. Linear dispersion relation for electromagnetic instabilities.

Here |ω| ≪ |Ωce| and |ω| ≪ Πpe are assumed. This condition is achieved when Vti|| ≫ Vti⊥,
which is known as firehose instability.
For electromagnetic ion cyclotron waves (0 < ω < Ωci), the growth rare becomes positive
when

ω

Ωci
<

(

1−
V2
ti||

V2
ti⊥

)

, −
Π2

pe

Ωce
>

ΩciΠ
2
pi

(ω − Ωci)2
(37)

Here ω ≪ |Ωce| and ω ≪ Πpe are used. This condition is achieved when Vti⊥ > Vti||, which is
known as ion temperature anisotropy instability.
Examples of these electromagnetic linear instabilities are shown in Figure 2, which are
obtained by numerically solving Eq.(28).
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3.2 Longitudinal electrostatic waves

The second factor of Eq.(27) becomes

1+ ∑
s

Π2
p

k2||V
2
t||

{

1+
ω̃ − k||Vd√

2k||Vt||
Z0

[

ω̃ − k||Vd√
2k||Vt||

]}

= 0 (38)

By using the similar approach, the above equation is rewritten by using Eq.(29) as

1− ∑
s

Π2
p

(ω̃ − k||Vd)2

{

1+
3k2||V

2
t||

(ω̃ − k||Vd)2
+ · · ·

}

+iσ
√

π ∑
s

Π2
p

k2||V
2
t||

ω̃ − k||Vd√
2k||Vt||

exp

[

−
(ω̃ − k||Vd)

2

2k2||V
2
t||

]

= 0 (39)

For a simple case with Vd = 0 and ω ∼ Πpe, Eq.(39) gives

ω2 =
Π2

pe +
√

Π4
pe + 12Π2

pek||V
2
te||

2
∼ Π2

pe + 3k2||V
2
te|| (40)

which is known as the dispersion relation of Langmuir (electron plasma) waves. The
imaginary part in Eq.(39) gives the damping rate as

γ

ω
∼ −σ

√
π

2

ω5

√
2k3||V

3
te||(ω

2 + 6k2||V
2
te||)

exp

[

− ω2

2k2||V
2
te||

]

(41)

This means that the damping of the Langmuir waves becomes largest at k|| ∼ Πpe/Vte||, which
is known as the Landau damping. Note that the second line in Eq.(39) comes from the gradient
in the velocity distribution function, i.e., ∂ f0/∂v||. Thus electrostatic waves are known to be
most unstable where the velocity distribution function has the maximum positive gradient.
As an example for the growth of electrostatic waves, let us assume a two-species plasma, and
one species drift against the other species at rest. Then, Eq.(39) becomes

0= 1−
Π2

p1

(ω̃ − k||Vd1)2

{

1+
3k2||V

2
t1||

(ω̃ − k||Vd1)2

}

−
Π2

p2

ω̃2

{

1+
3k2||V

2
t2||

ω̃2

}

(42)

+i
σ
√

π

k2||

{

Π2
p1

V2
t1||

ω̃ − k||Vd1√
2k||Vt1||

exp

[

−
(ω̃ − k||Vd1)

2

2k2||V
2
t1||

]

+
Π2

p2

V2
t2||

ω̃√
2k||Vt2||

exp

[

− ω̃2

2k2||V
2
t2||

]}

By neglecting higher-order terms, the growth rate is obtained as

γ ∼ −
ω3(ω − k||Vd1)

3

(ω − k||Vd1)3Π2
p2 + ω3Π2

p1

(43)

×σ
√

π

2k2||

{

Π2
p1

V2
t1||

ω − k||Vd1√
2k||Vt1||

exp

[

−
(ω − k||Vd1)

2

2k2||V
2
t1||

]

+
Π2

p2

V2
t2||

ω√
2k||Vt2||

exp

[

− ω2

2k2||V
2
t2||

]}
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(a) Electron beam-plasma instability with Vte ≡
Vt1|| = Vt2||, Vd1 = 4Tte, Πp2 = 9Πp1.

(b) Electron beam-plasma instability with Vte ≡
Vt1|| = Vt2||, Vd1 = 4Tte, Πp1 = 9Πp2.

Fig. 3. Linear dispersion relation for electrostatic instabilities. The frequency is normalized
by Π2

pe ≡ Π2
p1 + Π2

p2. Note that these two cases have the same growth rate, but the maximum

growth rate is given at ω ∼ Πp2.

One can find that the growth rate becomes positive when ω − k||Vd1 < 0, (ω − k||Vd1)
3Π2

p2 +

ω3Π2
p1 < 0, and the second line in Eq.(43) is negative. If Vd1 ≫ Vt1 + Vt2, the growth rate

becomes maximum at ω/k|| ∼ Vd1 − Vt1. It is again noted that the second line in Eq.(43)
comes from derivative of the velocity distribution function with respect to velocity with v =
ω/k||. Electrostatic waves are excited when the velocity distribution function has positive
gradient. This condition is also called the Landau resonance. Since the positive gradient in
the velocity distribution function is due to drifting plasma (or beam), the instability is known
as the beam-plasma instability.
Examples of the beam-plasma instability are shown in Figure 3, which are obtained by
numerically solving Eq.(38).
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3.3 Cyclotron resonance

Since the Newton-Lorentz equation (6) and the Vlasov equation (7) cannot treat the relativism
(such that c ≫ Vd), plasma particles cannot interact with electromagnetic light mode waves.
On the other hand, drifting plasma can interact with electromagnetic cyclotron waves when
a velocity of particles is faster than the Alfven speed VA but is slow enough such that
electrostatic instabilities do not take place.
For isotropic but drifting plasma, Eq.(27) is rewritten as

0= ω̃2 − c2k2|| − Π2
pe

ω̃ − k||Vde

ω̃ − k||Vde − Ωce
− Π2

pi

ω̃ − k||Vdi

ω̃ − k||Vdi − Ωci
(44)

+iσ
√

π

{

Π2
pe

ω̃ − k||Vde√
2k||Vte||

exp

[

−
(ω̃ − k||Vde − Ωce)2

2k2||V
2
te||

]

+Π2
pi

ω̃ − k||Vdi√
2k||Vti||

exp

[

−
(ω̃ − k||Vdi − Ωci)

2

2k2||V
2
ti||

]}

Here higher-order terms are neglected. The imaginary part of the above equation gives the
growth rate as

γ ∼ − 1

2ω −
ΩceΠ

2
pe

(ω − k||Vde − Ωce)2
−

ΩciΠ
2
pi

(ω − k||Vdi − Ωci)2

(45)

×σ
√

π

{

Π2
pe

ω − k||Vde√
2k||Vte||

exp

[

−
(ω − k||Vde − Ωce)2

2k2||V
2
te||

]

+Π2
pi

ω − k||Vdi√
2k||Vti||

exp

[

−
(ω − k||Vdi − Ωci)

2

2k2||V
2
ti||

]}

In the case of Vde 
= 0 and Vdi = 0, ion cyclotron waves have positive growth rate at ω ∼ Ωci

when

ω

k||
−Vde < 0, −

Π2
pe

Ωce
>

ΩciΠ
2
pi

(ω − Ωci)2
(46)

Here ω ≪ |Ωce| and ω ≪ Πpe are assumed. The maximum growth rate is obtained at ω ∼
k||(Vde −VA).
In the case of Vde = 0 and Vde 
= 0, electron cyclotron waves have positive growth rate at
ω ∼ −Ωci when

ω

k||
−Vdi > 0, −

Π2
pe

Ωce
<

ΩciΠ
2
pi

(ω − k||Vdi − Ωci)2
(47)
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(a) Ion beam-cyclotron instability with Vdi =
2VA = 0.005c, Te|| = Te⊥ = Tti|| = Ti||, Πpe =

10|Ωce|.

(b) Electron beam-cyclotron instability with
Vde = 2VA = 0.005c, Te|| = Te⊥ = Tti|| = Ti||,
Πpe = 10|Ωce|.

Fig. 4. Linear dispersion relation for beam-cyclotron instabilities.

Here |ω| ≪ |Ωce| and |ω| ≪ Πpe are assumed. The maximum growth rate is obtained at
ω ∼ k||(Vdi +VA).
These conditions are called the cyclotron resonance. Note that electron cyclotron waves are
excited by drifting ions while ion cyclotron waves are excited by drifting electrons. These
instabilities are known as the beam-cyclotron instability.
Examples of the beam-cyclotron instability are shown in Figure 4, which are obtained by
numerically solving Eq.(28).

4. Summary

In this chapter, electromagnetic waves in plasma are discussed. The basic equations for
electromagnetic waves and charged particle motions are given, and linear dispersion relations
of waves in plasma are derived. Then excitation of electromagnetic waves in plasma is
discussed by using simplified linear dispersion relations. It is shown that electromagnetic
cyclotron waves are excited when the plasma temperature in the direction perpendicular
to an ambient magnetic field is not equal to the parallel temperature. Electrostatic waves
are excited when a velocity distribution function in the direction parallel to an ambient
magnetic field has positive gradient. Note that the former condition is called the temperature
anisotropy instability. The latter condition is achieved when a high-speed charged-particle
beam propagates along the ambient magnetic field, and is called the beam-plasma instability.
Charged-particle beams can also interact with electromagnetic cyclotron waves, which is
called the beam-cyclotron instability. These linear instabilities take place by free energy
sources existing in velocity space.
It is noted that plasma is highly nonlinear media, and the linear dispersion relation can be
applied for small-amplitude plasma waves only. Large-amplitude plasma waves sometimes
result in nonlinear processes, which are so complex that it is difficult to provide their analytical
expressions. Therefore computer simulations play essential roles in studies of nonlinear
processes. One can refer to textbooks on kinetic plasma simulations (e.g., Birdsall & Langdon,
2004; Hockney & Eastwood, 1988; Omura & Matsumoto, 1994; Buneman, 1994) for further
reading.
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