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1. Introduction      

The metal coating deposited on the surface of a crystal is a screen that locks the 
electromagnetic fields in the crystal. Even for a real metal when its complex dielectric 

permittivity εm has large but finite absolute value, electromagnetic waves only slightly 
penetrate into such coating. For example, for copper in the wavelength range λ = 10–5–10–3 
cm, from the ultraviolet to the infrared, the penetration depth d changes within one order of 
magnitude: d ≈ 6 × (10–8–10–7) cm, remaining negligible compared to the wavelength, d << λ. 

In the case of a perfect metallization related to the formal limit εm → ∞ the wave penetration 
into a coating completely vanishes, d = 0. The absence of accompanying fields in the 
adjacent space simplifies considerably the theory of electromagnetic waves in such media. It 
turned out that boundary metallization not only simplifies the description, but also changes 
significantly wave properties in the medium. For example, it leads to fundamental 
prohibition (Furs & Barkovsky, 1999) on the existence of surface electromagnetic waves in 

crystals with a positively defined permittivity tensor ǆ̂ . There is no such prohibition at the 

crystal–dielectric boundary (Marchevskii et al., 1984; D’yakonov, 1988; Alshits & Lyubimov, 
2002a, 2002b)). On the other hand, localized polaritons may propagate along even perfectly 

metalized surface of the crystal when its dielectric tensor ǆ̂  has strong frequency dispersion 

near certain resonant states so that one of its components is negative (Agranovich, 1975; 
Agranovich & Mills, 1982; Alshits et al., 2001; Alshits & Lyubimov, 2005). In particular, in 
the latter paper clear criteria were established for the existence of polaritons at the metalized 
boundary of a uniaxial crystal and compact exact expressions were derived for all their 
characteristics, including polarization, localization parameters, and dispersion relations. 

In this chapter, we return to the theory of electromagnetic waves in uniaxial crystals with 

metallized surfaces. This time we will be concerned with the more common case of a crystal 

with a positively defined tensor ǆ̂ . Certainly, under a perfect metallization there is no 

localized eigenmodes in such a medium, but the reflection problem in its various aspects 

and such peculiar eigenmodes as the exceptional bulk (nonlocalized) polaritons that transfer 

energy parallel to the surface and satisfy the conditions at the metallized boundary remain. 
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We will begin with the theory for the reflection of plane waves from an arbitrarily oriented 
surface in the plane of incidence of the general position, where the reflection problem is 
solved by a three-partial superposition of waves: one incident and two reflected components 
belonging to different sheets of the refraction surface. However, one of the reflected waves 
may turn out to be localized near the surface. Two-partial reflections, including mode 
conversion and “pure” reflection, are also possible under certain conditions. The incident 
and reflected waves belong to different sheets of the refraction surface in the former case 
and to the same sheet of ordinary or extraordinary waves in the latter case. First, we will 
study the existence conditions and properties of pure (simple) reflections. Among the 
solutions for pure reflection, we will separate out a subclass in which the passage to the 
limit of the eigenmode of exceptional bulk polaritons is possible. Analysis of the 
corresponding dispersion equation will allow us to find all of the surface orientations and 
propagation directions that permit the existence of ordinary or extraordinary exceptional 
bulk waves. Subsequently, we will construct a theory of conversion reflections and find the 
configurations of the corresponding pointing surface for optically positive and negative 
crystals that specifies the refractive index of reflection for each orientation of the optical axis. 

The mentioned theory is related to the idealized condition of perfect metallization and needs 

an extension to the case of the metal with a finite electric permittivity εm. The transition to a 

real metal may be considered as a small perturbation of boundary condition. As was 

initially suggested by Leontovich (see Landau & Lifshitz, 1993), it may be done in terms of 

the so called surface impedance 1 mǇ / ǆ=  of metal. New important wave features arise in 

the medium with ζ ≠ 0. In particular, a strongly localized wave in the metal (a so-called 

plasmon) must now accompany a stationary wave field in the crystal. In a real metal such 

plasmon should dissipate energy. Therefore the wave in a crystal even with purely real 

tensor ǆ̂  must also manifest damping. In addition, in this more general situation the 

exceptional bulk waves transform to localized modes in some sectors of existence (the non-

existence theorem (Furs & Barkovsky, 1999) does not valid anymore).  
We shall consider a reaction of the initial idealized physical picture of the two independent 

wave solutions, the exceptional bulk wave and the pure reflection in the other branch, on a 

“switching on” the impedance ζ combined with a small change of the wave geometry. It is 

clear without calculations that generally they should loss their independency. The former 

exceptional wave cannot anymore exist as a one-partial eigenmode and should be added by 

a couple of partial waves from the other sheet of the refraction surface. But taking into 

account that the supposed perturbation is small, this admixture should be expected with 

small amplitudes. Thus we arise at the specific reflection when a weak incident wave 

excites, apart from the reflected wave of comparable amplitude from the same branch, also a 

strong reflected wave from the other polarization branch. The latter strong reflected wave 

should propagate at a small angle to the surface being close in its parameters to the initial 

exceptional wave in the unperturbed situation. 

Below we shall concretize the above consideration to an optically uniaxial crystal with a 

surface coated by a normal metal of the impedance ζ supposed to be small. The conditions 

will be found when the wave reflection from the metallized surface of the crystal is of 

resonance character being accompanied by the excitation of a strong polariton-plasmon. The 

peak of excitation will be studied in details and the optimized conditions for its observation 

will be established. Under certain angles of incidence, a conversion occurs in the resonance 
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area: a pumping wave is completely transformed into a surface polariton--plasmon of much 

higher intensity than the incident wave. In this case, no reflected wave arises: the normal 

component of the incident energy flux is completely absorbed in the metal. The conversion 

solution represents an eigenmode opposite in its physical sense to customary leaky surface 

waves known in optics and acoustics. In contrast to a leaky eigenwave containing a weak 

«reflected» partial wave providing a leakage of energy from the surface, here we meet a 

pumped surface polariton-plasmon with the weak «incident» partial wave transporting 

energy to the interface for the compensation of energy dissipation in the metal. 

2. Formulation of the problem and basic relations 

Consider a semi-bounded, transparent optically uniaxial crystal with a metallized boundary 

and an arbitrarily oriented optical axis. Its dielectric tensor ǆ̂  is conveniently expressed in 

the invariant form (Fedorov, 2004) as 
 

 ˆˆ ( )o e oǆ ǆ I ǆ ǆ= + − ⊗c c ,                                                         (1) 

where Î  is the identity matrix, c is a unit vector along the optical axis of the crystal, ⊗ is the 

symbol of dyadic product, εo and εe are positive components of the electric permittivity of 

the crystal. For convenience, we will use the system of units in which these components are 

dimensionless (in the SI system, they should be replaced by the ratios εo/ε0 and εe/ε0, where 

ε0 is the permittivity of vacuum).  

In uniaxial crystals, one distinguishes the branches of ordinary (with indices “o”) and 

extraordinary (indices “e”) electromagnetic waves. Below, along with the wave vectors kα  

(α = o, e), we shall use dimensionless refraction vectors nα = kα/k0 where k0 = ω/c, ω is the 

wave frequency and c is the light speed. These vectors satisfy the equations (Fedorov, 2004)  

 ˆ
o o o e e o eǆ , ǆ ǆ ǆ⋅ = ⋅ =n n n n .                                     (2) 

For real vectors no and ne, the ray velocities (the velocities of energy propagation) of the 

corresponding bulk waves are defined by  

 [ ]ˆ
, ( )( )o e

o e o e e o e
o o e o e

c cǆ c ǆ ǆ ǆ
ǆ ǆ ǆ ǆ ǆ

= = = + − ⋅
n n

u u n n c c .                          (3) 

Formulas (3) show that, in the ordinary wave, energy is transported strictly along the 
refraction vector, whereas, in the extraordinary wave, generally not.  
For our purposes, it is convenient to carry out the description in a coordinate system 
associated not with the crystal symmetry elements, but with the wave field parameters. Let 
us choose the x axis in the propagation direction m and the y axis along the inner normal n 

to the surface. In this case, the xy plane is the plane of incidence where all wave vectors of 
the incident and reflected waves lie, the xz plane coincides with the crystal boundary, and 
the optical axis is specified by an arbitrarily directed unit vector c (Fig. 1). The orientation of 
vector c = (c1, c2, c3) in the chosen coordinate system can be specified by two angles, θ and φ. 
The angle θ defines the surface orientation and the angle φ on the surface defines the 
propagation direction of a stationary wave field.  
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Fig. 1. The system of xyz coordinates and the orientation c of the crystal’s optical axis 

The stationary wave field under study can be expressed in the form: 

 
( , , ) ( )

exp[ )]
( , , ) ( )

x y t y
ik(x vt

x y t y

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

E E

H H
.                                           (4) 

The y dependence of this wave field is composed from a set of components. In the crystal (y 

> 0) there are four partial waves subdivided into incident (i) and reflected (r) ones from two 

branches, ordinary (o) and extraordinary (e):  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

i r i r
o o e ei r i r

o o e ei r i r
o o e e

y y y y y
C C C C

y y y y y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

E E E E E

H H H H H
.                (5)  

Here the vector amplitudes are defined by 

 
( )

exp( )
( )

i,r i,r
o o

oi,r i,r
o o

y
ip ky

y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

E e

H h
∓ ,                                                  (6) 

 
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∓
( )

exp[ ( ) ]
( )

i,r i,r
e e

ei,r i,r
e e

y
i p p ky

y

E e

H h
.                                              (7) 

In Eqs. (4)–(7), E, e and H, h are the electric and magnetic field strengths, k is the common x 

component of the wave vectors for the ordinary and extraordinary partial waves: k = 
i,r i,r
o e⋅ = ⋅k m k m , v = ω/k is the tracing phase velocity of the wave, and i,r

oC  and i,r
eC  are the 

amplitude factors to be determined from the boundary conditions. The upper and lower 

signs in the terms correspond to the incident and reflected waves, respectively. 
In the isotropic metal coating (y < 0) only two partial waves propagate differing from each 
other by their TM and TE polarizations: 

 exp
TM TE
m mTM TE

m m mTM TE
m m

(y)
C C ( ikp y)

(y)

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

E e e

H h h
.                                  (8)  

By definition, the above polarization vectors are chosen so that the TM wave has the 
magnetic component orthogonal to the sagittal plane and the electric field is polarized in 
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this plane, and for the TE wave, vice versa, the magnetic field is polarized in-plane and the 
electric field – out-plane: 

    ||(0, 0, 1)TM
mh ,  ||TM TM

m m m×e n h , ||(0, 0, 1)TE
me , ||TE TE

m m m×h n e .  9) 

The refraction vectors of the partial waves in the superpositions (5) and (8) are equal 

 (1, , 0)i,r T
o on p=n ∓ ,   (1, , 0)i,r T

e en p p=n ∓ ,  (1, , 0)T
m mn p= −n .  (10) 

Here, the superscript T stands for transposition and n = k/k0 = c/v is the dimensionless wave 

slowness also called the refractive index. The parameters po, pe, p and pm that determine the 

dependences of the partial amplitudes on depth y can be represented as 

 1op s= − ,   e

Ǆ B
p s

A A

⎛ ⎞= −⎜ ⎟
⎝ ⎠

,   1 2(1 )
c c

p Ǆ
A

= − ,    m

R
p

nζ
= ,  (11) 

where we use the notation 

 2
os ǆ / n= ,  e oǄ ǆ / ǆ= ,   2

21 ( 1)A c Ǆ= + − , 2
31 (1 1 / )B c Ǆ= − − , 21 - ( )R nζ= .  (12) 

The orientation of the polarization vectors in (5), (6) is known from (Born & Wolf, 1986; 

Landau & Lifshitz, 1993) and can be specified by the relations 

 , , ,i,r i,r i,r i,r i,r i,r i,r i,r
o o e e e o ǂ ǂ ǂ ǂ o,e× ⋅ − = × =e ||n c e ||n (n c) ε c h n e . (13) 

Substituting relations (10) into (9) and (13) one obtains 

 3 3 2 1

1 2 2 1 3

( ,  ,  )

[ ( ),   ]

i,r T
o o oi,r

oi,r T
o o o o

p c c c p c
N

-n p p c c c p c ,   c s±

⎛ ⎞⎛ ⎞ − ±
⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟±⎝ ⎠ ⎝ ⎠

e

h

∓
,  (14) 

 1 1 2 2 1 2 3

3 3 2 1

{ [ ( ) ]/ , [ ( ) ]( ) / , }

[( ) , , ( ) ]

i,r T
e e e ei,r

ei,r T
e e e

c c p p c s c c p p c p p s c
N

 n p p c c c p p c

⎛ ⎞⎛ ⎞ − + − +
⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

e

h

∓ ∓ ∓

∓ ∓
, (15) 

 
( ,  ,  0)

(0,     0,     1)

TM T
m

TM T
m

R nζ ζ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

e

h
,          

(0,    0 )

( ,   ,   0)

TE T
m

TE T
m

,  -

R n

ζ

ζ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

e

h
.  (16) 

The normalization in (14)-(16) was done from the conditions | | 1o,e
i,r =h  and | | 1m

ǂ =h . It 

already presents in (16) and the factors No,e in (14), (15) are specified by the equations 

 2 2
2 1 31 / [( ) ]i,r

o o oN ǆ c c p c s= ± + ,     2 2
1 21 / 1 ( ) [ ( )]i,r

e e eN n p p c c p p= + − +∓ ∓ .      (17) 

3. Boundary conditions and a reflection problem in general statement 

The stationary wave field (4) at the interface should satisfy the standard continuity 
conditions for the tangential components of the fields (Landau & Lifshitz, 1993): 
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 0 0 0 0| | , | |t y t y t y t y=+ =− =+ =−= =E E H H .                                (18) 

When the crystal is coated with perfectly conducting metal, the electric field in the metal 
vanishes and the boundary conditions (18) reduces to 

 0| 0t y=+ =E .                                                                  (19) 

When the perfectly conducting coating is replaced by normal metal with sufficiently small 

impedance Ǉ Ǉ iǇ′ ′′= +  ( 0Ǉ ′ > , 0Ǉ ′′ < ), it is convenient to apply more general (although also 

approximate) Leontovich boundary condition (Landau & Lifshitz, 1993) instead of (19): 

 0( ) 0t t yǇ =++ × =E H n .                                                       (20) 

Below in our considerations, the both approximations, (19) and (20), will be applied. 
However we shall start from the exact boundary condition (18). 

3.1 Generalization of the Leontovich approximation 
The conditions (18) after substitution there equations (5)-(8) and (16) take the explicit form 

 

0

0
 

0

1 0

r r r i i
ox ex o ox ex

r r r i i
oz ez e oz ezi i

o er r TM i i
ox ex m ox ex

r r TE i i
oz ez m oz ez

e e R C e e

e e - C e e
C C

h h R C h h

h h C h h

ζ

ζ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

= − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.                           (21) 

Following to (Alshits & Lyubimov, 2009a) let us transform this system for obtaining an exact 

alternative to the Leontovich approximation (20). We eliminate the amplitudes TM
mC  and 

TE
mC  of the plasmon in metal from system (21) and reduce it to the system of two equations: 

 0
/ / / /

r r r r r i i i i i
ox ex oz ez o ox ex oz ez o

r r r r r i i i i i
oz ez ox ex e oz ez ox ex e

e e -Rh -Rh C e e -Rh -Rh C

e e h R h R C e e h R h R C
ζ ζ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

.   (22) 

Taking into account the matrix identities 

 (1 )
/ / / /

i,r i,r i,r i,r i,r i,r
oz ez oz ez oz ez

i,r i,r i,r i,r i,r i,r
ox ex ox ex ox ex

-Rh -Rh -h -h h h
R

h R h R h h h R h R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                       (23) 

and the explicit form of two-dimensional vectors Et = (Etx, Etz)T and Ht = (Htx, Htz)T residing 
in the xz plane, namely 

 
i r i r
ox ox ex exi r i r

t o o e ei r i r
oz oz ez ez

e e e e
C C C C

e e e e

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

E ,                                 (24) 

 
i r i r
ox ox ex exi r i r

t o o e ei r i r
oz oz ez ez

h h h h
C C C C

h h h h

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

H ,                               (25) 
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system (22) reduces to the following equation 

 0
ˆ{ (1 ) } 0t t t yǇ Ǉ R N =++ × + − =E H n H ,                                         (26) 

where the function R(ζn) was defined in (12), and ˆ ( )N Ǉn  is the 2 × 2 matrix: 

  
0 1ˆ ( )

1 / ( ) 0
N Ǉn

R Ǉn
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.                                                       (27) 

Notice that equation (26) is equivalent to an initial set of conditions (18). Impedance ζ in Eq. 
(26) is not assumed to be small and this expression only includes crystal fields (5)-(7). Thus, 
equation (26) is the natural generalization of Leontovich boundary condition (18). 

However, the impedance ζ of ordinary metals (like copper or aluminum) may be considered 
as a small parameter, especially in the infrared range of wavelengths. In this case, function 

R(ζn) in equation (26) [see in (12)] can be expanded in powers of the small parameter (ζn)2, 
holding an arbitrary number of terms and calculating the characteristics of the wave fields 

with any desired precision. This expansion comprises odd powers of the parameter ζ : 

 3 2 2
1 2 1

1

1 (2 1)!!ˆ ˆ( 0
2 2 ( 1)!

s
t t s ts

s

sǇ Ǉ n N Ǉ) N
s

∞

+
=

⎛ ⎞−
+ × + + =∑⎜ ⎟⎜ ⎟+⎝ ⎠

E H n H ,                      (28) 

where the set of matrices ˆ
mN  (m = 2s + 1) is defined by the expression 

 
0 1ˆ

0mN
m

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

.                                                             (29) 

In view of our considerations, from expansion (28) it follows that the discrepancy between 
Leontovich approximation (20) and the exact boundary condition starts from the cubic term 

~ζ3; hence the quadratic corrections ~ζ2 to the wave fields are correct in this approach. 

3.2 Exact solution of the reflection problem  
Now let us return to the reflection problem, i.e. to the system (21), which, together with 
relations (14) and (15), determines the amplitudes of superpositions (5) and (8). The right-
hand side of (21) is considered to be known. When the reflection problem is formulated, 
only one incident wave is commonly considered by assuming its amplitude to be known 
(while the other is set equal to zero). The refractive index n, which directly determines the 
angle of incidence, is also assumed to be known, while the amplitudes of the reflected waves 
in the crystal and those of the plasmon components in the metal are to be determined.  
Being here interested only in wave fields in the crystal, we can start our analysis from the 
more simple system (22) of only two equations with two unknown quantities. Omitting 
bulky but straightforward calculations we just present their results in the form of the 
reflection coefficients for the cases of an ordinary incident wave, 

 
ir r i

o e oo e eo o
oo eoi r i r

o o e o o o e e

D( p ,p )NC C D N
r , r

C D(p ,p )N C D(p ,p )N

−
= = − = = − ,                       (30) 

and an extraordinary incident wave, 
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ir r i

o e ee o oe e
ee oei r i r

e o e e e o e o

D(p , p )NC C D N
r , r

C D(p ,p )N C D(p ,p )N

−
= = − = = − .                       (31) 

In the above equations the following notation is introduced 

 
2

1 2 1 2 2 1

2
3

( )(1 / ){ ( ) [ ( )]}

( )[1 ( ) / ],

o e o o o e e

o e

D(p ,p ) c p c p Ǉn R c p c p p ǇnRs c c p p

c s p ǇnRs p p Ǉn R

= − + − + − − +

+ + + +
            (32) 

 2
3 2 12 (1 - )( / )eo o oD c p s Ǉ c c Ǉn Rε= + ,                                             (33) 

 2
3 2 12 (1 - )( / )oe e oD c p Ǉ c c Ǉn Rε= − .                                              (34) 

One can check that these expressions fit the known general equations (Fedorov & Filippov, 

1976). Before beginning our analysis of Eqs. (30)-(34), recall that we consider only the 

crystals (and frequencies) that correspond to a positively defined permittivity tensor (ǆo > 0 

and ǆe > 0). Depending on the relation between the components ǆo and ǆe , it is customary to 

distinguish the optically positive (ǆe > ǆo , i.e., Ǆ > 1) and optically negative (ǆe < ǆo , i.e., Ǆ < 1) 

crystals. Figure 2 shows the sections of the sheets of the refraction surface for these two 

types of crystals by the xy plane of incidence for arbitrary orientation of the boundary and 

propagation direction. Among the main reflection parameters shown in Fig. 2, the limiting 

values of the refractive indices on̂  and en̂  play a particularly important role: 

 ˆ
o on ǆ= ,          ˆ

e on ǆ A / B= .                                                (35) 

These separate the regions of real and imaginary values of the parameters po and pe: 

 2ˆ( / ) 1o op n n= − ,        2 2ˆ[( / ) 1] /e ep n n ǄB A= − .                               (36) 

 

Fig. 2. Sections of the ordinary and extraordinary sheets of the refraction surface by the xy 
plane of incidence and main parameters of the reflection problem for optically positive (a) 
and optically negative (b) crystals 
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The parameter po remains real only in the region 0 ≤ n ≤ n̂ o, i.e., as long as the vertical 

straight line in Fig. 2 crosses the corresponding circular section of the spherical refraction 

sheet for ordinary waves (or touches it). Similarly, the parameter pe remains real only in the 

region 0 ≤ n ≤ n̂ e. In both regions of real values, the refractive index n = 0 describes the 

reflection at normal incidence. 
Thus, when the stationary wave motions along the surface are described, three regions of 
the refractive index n should be distinguished: 

  (I) 0 < n ≤ min{ ˆ
on , ˆ

en },  (II) min{ ˆ
on , ˆ

en } < n ≤ max{ ˆ
on , ˆ

en }, (III) n > max{ ˆ
on , ˆ

en }.   (37) 

In the first region, both po and pe are real — this is the region of reflections where all partial 
waves are bulk ones. This situation automatically arises in an optically positive crystal with 
an ordinary incident wave (Fig. 2a) or in an optically negative crystal with an extraordinary 
incident wave (Fig. 2b). 

In region II, one of the parameters, po or pe, is imaginary. This is po in an optically positive 

crystal and pe in an optically negative one. Therefore, in the general solutions found below, 

one of the partial “reflected” waves may turn out to be localized near the surface. In 

particular, in this region, the amplitudes 
r

eC  (30) and 
r

oC  (31), respectively, in optically 

negative and positive crystals describe precisely these localized reflection components. 
Finally, in region III, both parameters, po and pe, are imaginary. In other words, in this 
region, a stationary wave field is possible in principle only in the form of surface 
electromagnetic eigenmodes — polaritons at fixed refractive index n specified by the poles 
of solutions (30) and (31), i.e., by the equation  

 D(n) = 0.                                                                    (38) 

In this paper devoted mainly to the theory of reflection, only regions I and II (37) can be of 
interest to us. In principle, Eqs. (30) and (31) completely solve the reflection problem. In 
contrast to the problem of searching for eigenmodes, where the dispersion equation (38) 
specifying the admissible refractive indices n should be analyzed, the choice of n in the case 
of reflection only fixes the angle of incidence of the wave on the surface. In this case, the 
crystal cannot but react to the incident wave, while Eqs. (30) and (31) describe this reaction. 
However, the reflection has peculiar and sometimes qualitatively nontrivial features for 
certain angles of incidence. For example, the three-partial solution can degenerate into a 
two-partial one, so only one reflected wave belonging either to the same sheet of the 
refraction surface (simple reflection) or to the other sheet (mode conversion) remains instead 
of the two reflected waves. At the same time, when grazing incidence is approached, the 
total wave field either tends to zero or remains finite, forming a bulk polariton. Below, we 
will consider the mentioned features in more detail for the particular case of perfect 

metallization (ζ = 0) when explicit analysis give visible results. 

4. Specific features of wave reflection from the perfectly metallized boundary 

The found above general expressions for reflection coefficients (30), (31) remain valid if to 

put into (32)-(34) ζ = 0 and R = 1. As a result, we come to the much more compact functions 

 2 2
1 2 1 2 3( ,  ) ( )( )o e o e o oD p p c p c c g c p c p ǆ / n= − − + ,                                  (39) 
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 2
2 32eo o oD c c p ǆ / n= ,                                                          (40) 

 2 32oe eD c c p= , (41) 

where the new function ( )g n  is introduced 

 
2

2 2 32
2 2

1

1
( ) ( 1)o

o e

ǆ cc A
g n p p p Ǆ

A c Ǆn A

⎛ ⎞
= − = − = − −⎜ ⎟⎜ ⎟

⎝ ⎠
.                              (42) 

With these simplifications we can proceed with our analysis basing on (Alshits et al., 2007). 

4.1 Simple reflection 

Let us consider the first type of two-partial reflections known as a pure (or simple) 

reflection. In this case the incident and reflected waves belong to the same refraction sheet, 

i.e., both components are either ordinary or extraordinary. It is obvious that such reflections 

take place when the amplitudes r
eC  in (30) or r

oC  in (31) become zero. This occurs when Doe 

(40) or Deo (41) vanishes, respectively. It is easily seen that both types of pure reflections are 

defined by the same criterion:  

 c2 c3 = 0.  (43) 

As follows from Eq. (43), the pure reflections of both ordinary and extraordinary waves in 
the crystals under consideration should exist independently of one another in the same two 
reflection geometries. This takes place only in those cases where the optical axis belongs 
either to the crystal surface (c2 = 0) or to the plane of incidence (c3 = 0). Since the optical axis 
in this case has a free orientation in these planes and since the angle of incidence is not 
limited by anything either, the pure reflections in three-dimensional space {n, c} occupy the 
surfaces defined as the set of two planes: c2 = 0 and c3 = 0. Let us consider in more detail the 
characteristics of pure reflections in these two geometries.  

4.1.1 The optical axis parallel to the surface 
In this case, c2 = 0, i.e., θ = 0, and the xy plane of incidence perpendicular to the surface 
makes an arbitrary angle φ with the direction of the optical axis. The main parameters for 
the independent reflections of ordinary and extraordinary waves take the form 

 {1 ( ) 0}i,r T
o,e o,en , p n ,=n ∓ ;  (44) 

 3 3 1

2 2
1 1 3

( )

( )

i,r T
o o o

i,r T
o o o o

c p , c , c p

n c p , c p , c ǆ / n

⎛ ⎞ ⎛ ⎞±
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟±⎝ ⎠ ⎝ ⎠

e

h

∓
,    

2 2
1 1 3

3 3 1

( )

( )

i,r T
e o e o o

i,r T
e e e

c p , c p , c ǆ / n n / ǆ

c p , c , c p

⎛ ⎞ ⎛ ⎞±
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟− ±⎝ ⎠ ⎝ ⎠

e

h ∓
;     (45) 

 r i
o oC C= ,          r i

e eC C= − .                                                      (46) 

As above, the upper and lower signs in Eqs. (44) and (45) correspond to the incident (i) and 

reflected (r) waves, respectively. In Eq. (11) for pe(n), we should take into account the fact 

that A = 1 and B = 2
1c + 2

3c /Ǆ in this case. The angles of incidence are defined by n < ˆ
o,en . For 

brevity, the normalizing factors in Eqs. (45) are included in the amplitudes i,r
o,eC . 
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Given (44)–(46), the pure reflection of the electric component of an ordinary wave in this 
geometry can be described by the combination 

 ( )( ) exp( ) exp( exp[ ( )]i r
o o o o o ox,y,t C ip ky ip ky ik x vt= − + −E e e .  (47) 

And the pure reflection of the magnetic component of an extraordinary wave is specified by 
a similar superposition: 

 ( )= − − −( ) exp( ) exp( exp[ ( )].i r
e e e e e ex,y,t C ip ky ip ky ik x vtH e e  (48) 

4.1.2 The optical axis parallel to the plane of incidence 
In this case, c3 = 0, i.e., the azimuth φ = 0, while the angle θ is arbitrary, which corresponds 

to arbitrarily oriented crystal surface and plane of incidence passing through the optical 

axis. The main parameters of the independently reflected waves are given by the formulas  

 {1, ( ) 0}i,r T
o on p n ,=n ∓ ,              {1, ( ), 0}i,r T

e en p p n=n ∓ ;  (49) 

 
,

,

(0, 0, 1)

( , 1, 0)

i r T
o

i r T
o o

e

h n p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠∓

,           
( , 0)

(0, 0, 1)

i,r 2 T
e e e

i,r T
e e

p , Ǆ / A pp

ǆ / An

⎛ ⎞ ⎛ ⎞± ±
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

e

h
;              (50) 

       r i
o oC C= − ,      r i

e eC C= .                                           (51) 

At c3 = 0 in Eq. (11) for pe(n), we have B = 1 and A = 2
1c +Ǆ 2

2c . Thus, according to Eqs. (50), the 

pure reflection of ordinary waves is described by the partial TE modes with the electric 

component orthogonal to the sagittal plane. Similarly, the partial components of the pure 

reflection of extraordinary waves are formed by the TM modes with the magnetic 

component perpendicular to the same plane. In the case under consideration, the analogues 

of Eqs. (47) and (48) are even simpler: 

 ( ) (0, 0, 1)sin( )exp[ ( )]o o ox,y,t C p ky ik x vt= −E ,                                  (52) 

 ( ) (0, 0, 1)cos( )exp[ ( )]e e ex,y,t C p ky ik x py vt= + −H .                            (53) 

4.2 Exceptional bulk polaritons 
4.2.1 Simple reflections of ordinary waves at grazing incidence 

As we see from Fig. 2, the grazing incidence of an ordinary wave is realized at n = on̂ , when, 

according to Eq. (36), po = 0. In this case, the simple reflection of an ordinary wave in the c2 = 

0 and c3 = 0 planes behaves differently as grazing incidence is approached, po → 0. As 

follows from Eqs. (44)–(46), in the former case where the optical axis is parallel to the surface 

(c2 = 0), the incident and reflected partial waves at po = 0 are in phase and together form an 

ordinary exceptional bulk wave: 

 
( )

ˆexp ( )
( )

o
o o

o

x,t ǚ
C i n x ct

x,t c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

E e

H h
.                                         (54) 
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The refraction vector of the wave under consideration and its vector amplitude are 

 ˆ ˆ(1, 0, 0) , εo o o on n= =n ,      
(0, 1, 0)

ˆ(0, 0, 1)
o

oo
n

⎛ ⎞ ⎛ ⎞
⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

e

h
,                           (55) 

and the energy flux (Poynting vector) in this wave, Po = Eo × Ho, lies at the intersection of the 
crystal surface with the sagittal surface, i.e., Po || x (Fig. 3a). 
 

 

Fig. 3. Characteristics of the ordinary (a) and extraordinary (b) bulk polaritons that emerge 
at c2 = 0 and c3 = 0, respectively 

On the other hand, the pure reflection of ordinary waves in the sagittal plane parallel to the 

optical axis (c3 = 0, c2 ≠ 0) as grazing incidence is approached (po → 0), according to Eqs. (52), 
gives antiphase incident and reflected partial waves that are mutually annihilated. In other 
words, no exceptional bulk polariton emerges on the branch of ordinary waves in this plane. 
The qualitative difference in the behavior of grazing incidence in the c2 = 0 and c3 = 0 planes 
that we found has a simple physical interpretation. For the limiting wave arising at grazing 
incidence to exist, its polarization Eo, according to the boundary condition (19), must be 
orthogonal to the crystal surface, Eo || n || y. As we see from Eqs. (45), this is actually the 

case for an ordinary wave at c2 = 0 and as po → 0. However, the incident and reflected 
components in the sagittal plane, according to Eqs. (50) and (52), give polarization Eo that is 
not orthogonal, but parallel to the surface; hence the annihilation of these components. 

4.2.2 Simple reflections of extraordinary waves at grazing incidence 

The grazing incidence of extraordinary waves is considered similarly. It relates to n→ ˆ
en  and 

by (36), to pe → 0. In this case, the reverse is true: the incident and reflected waves are in 

antiphase (46) and, hence, are annihilated in the c2 = 0 plane, and being in phase (51) when 

the optical axis is parallel to the sagittal (c3 = 0) plane, which generates a bulk polariton: 

 0( )
ˆexp [ ( ) ]

( )
e

e e
e

x,y,t ǚ
C i n x py ct

x,y,t c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

E e

H h
,                                 (56)  

where 0ˆ
en  is ˆ

en  taken at  c3 = 0 and pe = 0. For the wave under consideration, we have  

 0

0

(0, 1, 0)
ˆ(1, , 0) ,

ˆ(0, 0, 1)

e
e e

e e

p n
n

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

e
n

h
,                                     (57) 
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 0 2 2 0 2
1 2 1 2

ˆ ˆ( ) ( )e o o e o e en ǆ A ǆ c ǆ c , p ǆ ǆ c c / n= = + = − .                            (58) 

As we see from Eq. (57), the bulk polariton (56) is actually polarized in accordance with 
requirement (19): ee || n. Note that the refraction vector ne (57) is generally not parallel to 
the surface. But the Poynting vector of the wave Pe still lies at the intersection of the sagittal 
plane and the crystal surface, Pe || x (Fig. 3b). One can show that this is a general property 

of exceptional waves for ζ = 0 holding even in biaxial crystals (Alshits & Lyubimov, 2009b). 
In the special case of c2 = c3 = 0, which corresponds to the propagation direction x along the 
optical axis, the sheets of the ordinary and extraordinary waves of the refraction surface are 
in contact. As a result, degeneracy arises: 

 0o ep p p= = = ,       ˆ ˆ
o e on n ǆ= = ,        (1, 0, 0)o e= =n n ,                       (59) 

and solutions (54) and (56) merge, degenerating into the corresponding TM wave. Since the 
uniaxial crystal in the case under consideration is transversally isotropic, the orientation of 
the xy coordinate plane is chosen arbitrarily: for any fixed boundary parallel to the optical 
axis, a bulk wave with a polarization vector Ec orthogonal to the surface and an energy flux 
Pc || x can always propagate along the latter. 

4.2.3 Proving the absence of other solutions 
Thus, exceptional ordinary bulk polaritons (54) emerge when the optical axis is parallel to the 
crystal surface. At the same time, similar extraordinary eigenmodes (56) exist if the optical 
axis is parallel to the sagittal plane. In both cases, TM-type one-partial solutions with an 
energy flux Po, e parallel to both the crystal surface and the sagittal plane occur (Fig. 3). 
Let us show that the dispersion equation (38), (39), 

 2 2
1 2 1 2 3( )( ) ( 1) 0o e o oD c p c c g c p c p p= − − + + =                                     (60) 

has no other eigensolutions. In principle, an exceptional bulk polariton does not need to 
belong to the family of simple reflections. It could also be a two-partial one, i.e., consist of 
the bulk component of one branch corresponding to outer refraction sheet and the admixing 
localized component of the other branch. Examples of such mixed solutions are known both 
for crystals with a metallized surface [in the special case of εo = 0 and εe > 0 (Alshits & 

Lyubimov, 2005)] and at the open boundary of a crystal with a positively defined tensor ǆ̂  

(Alshits & Lyubimov, 2002a and 2002b). However, it is clear that any such wave with or 
without an admixture of inhomogeneous components carries energy parallel to the surface, 
i.e., its bulk component should have a zero parameter po or pe (Fig. 3). 
Substituting into (60) Eqs. (11) and (42) for pe and g taken at po = 0, 

 2 1 2( ) 0ec c g c p− = ,                                                           (61) 

it is easy to see that at Ǆ < 1 the parameter g is real, while the parameter pe is imaginary and, 
apart from the already known solution c2 = 0, Eq. (60) has no other solutions, since the 
localization parameter pe (11) does not become zero at c2 ≠ 0. At Ǆ > 1, when pe is also real, 
Eq. (60) is equivalent to the requirement 

 2 2 2
2 2 3( ) 0c c c+ = ,                                                             (62) 
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which again leads to the solution 2c  = 0. 

At pe = 0, Eq. (60) takes the form 

 2
3 1 2[ 1) ] 0oc Ap (Ǆ c c+ − = ,                                                     (63) 

where it is considered that pe = 0 at n = ˆ
en  and, according to Eqs. (35) and (36), 

 2 2
2 3(1 )( )op Ǆ c c / Ǆ / A= − + .                                                  (64) 

This time the complexity in the dispersion equation (63) arises at Ǆ > 1; the purely imaginary 
parameter po at c3 ≠ 0 does not become zero, so c3 = 0 is the only root of Eq. (63). At Ǆ < 1, it is 
convenient to rewrite Eq. (63) as 
 

     2 2 2 2 2
3 2 2{ [1 (1 ) ]} 0c Ǆ c Ǆ c+ − − = .                                                 (65) 

Since the expression in braces is positive at any direction of the optical axis, c3 = 0 again 
remains the only root of the dispersion equation. 
Thus, there are no new solutions for exceptional bulk polaritons other than the one-partial 
eigenmodes (54) and (56) in crystals with a perfectly metallized boundary found above. 

4.3 Mode conversion at reflection 

Let us now turn to the other, less common type of two-partial reflections where the wave 

incident on the surface is converted into the reflected wave of the “conjugate” polarization 

branch (i.e., belonging to the other refraction sheet). We pose the following question: Under 

what conditions does the mode conversion take place at reflection and what place do the 

orientation configurations allowing a two-partial reflection with the change of the refraction 

sheet occupy in the three-dimensional space {n, θ, φ} of all reflections? To answer this 

question, let us turn to solutions (30), (31), (39). Conversion arises for the incident ordinary 

wave if we choose the angle of incidence (or n) in such a way that 
r

oC = 0 in (30), which is 

equivalent to the requirement D(-po , pe) = 0. At the same time, according to (31), the incident 

extraordinary wave will turn into an ordinary wave at reflection if D(po , -pe) = 0. 

4.3.1 The equation for the conversion surface and its analytical solution 
Here, one remark should be made. Clearly, the two-partial conversion reflection is reversible 

if the reflections from left to right and from right to left are kept in mind. We mean that the 

simultaneous reversal of the signs of the refraction vectors for the incident and reflected 

waves automatically converts the reflected wave into the incident one and the incident wave 

into the reflected one. Certainly, this reversed reflection is mathematically equivalent to the 

original one — the so-called reciprocity principle (Landau & Lifshitz, 1993). Symbolically, 

this can be written in the form: o → e = o ← e. It is much less obvious that two conversion 

reflections in one direction, o → e and e → o (see Fig. 2), also satisfy the boundary conditions 

for the same geometry of the problem (i.e., the set {n, c}).  
Thus, the form of the conversion wave superpositions is determined by the equations 
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 2 2
1 2 1 2 3( , ) ( )( ) ( 1) 0o o e o e o oD D p p c p c c g c p c p p≡ − − ≡ + − + + = ,                      (66) 

 2 2
1 2 1 2 3( , ) ( )( ) ( 1) 0e o e o e o oD D p p c p c c g c p c p p≡ − ≡ − + + + = ,                        (67) 

which are not identical and one would think that they should specify two different sheets, n 

= ( )o en → c  and n = ( )e on → c , of the mode conversion surface. However, this is not the case. As 

we will show below, these sheets merge into one common conversion surface n = n(c). 
It is convenient to represent the sought-for mode conversion surface as the locus of points 
located at distance n from the coordinate origin along each c corresponding to the roots of 
Eqs. (66) and (67). From physical considerations, this surface should not go beyond region I 
(37). Let us prove that the physical roots n of Eqs. (66) and (67) belonging to region I are 
common ones. After certain transformations, they can be reduced to 

 { }1 2( ) ( 1) 0
1

o e
o,e

g p p
D f z c c Ǆ

Ǆ
−

= − =
−

∓ ,                                         (68) 

where the upper sign corresponds to the first subscript, the function f(z) is defined by 

 
2 2 2 2
2 2 3

2 2 2
1 3 2

[ (1 ) ]( )

[ ( 1)]
o o e

2
o o e

A c p Ǆc c g p p
f(z)

c g c p p c p

− + + +
=

+ + +
,                                        (69) 

and po, pe, and g are the known functions (11) and (42) of the variable z = / 1 /on ǆ s≡ . It 
can be shown that the positive function f(z) decreases monotonically in the domains of its 
existence 0 < z < 1 (at Ǆ > 1) or 0 < z < A/B < 1 (at Ǆ < 1). Since it is larger in absolute value 
than the second term on the right-hand side of Eq. (68) in the upper limit, i.e., f(zmax) > 
|c1c2(Ǆ – 1)|, the expression in braces in (68) has no physical roots. Thus, the two complex 
irrational equations (66) and (67) can be reduced to one simple equation:  

 0o eg p p− = .                                                                (70) 

This implies that the mode conversion surface is actually a single-sheet one and the 

processes o → e and e → o are represented in space by the same pointing surface. 
In the given domain of the variable z, one has g + pope > 0 and the following identity holds: 

 
2 2 2 2 2 2 4 2 2 2 2

1 2 1 1 3[( ) ( ) ( )]

1 (1 )(
o e o e

o e o e

g p p g p p A c c z c A z A c c

Ǆ Ǆ g p p ) g p p

− − + − + + +
= =

− − + +
.           (71) 

Therefore, Eq. (70) is equivalent to the biquadratic equation 

 2 2 4 2 2 2 2
1 2 1 1 3( ) ( ) ( ) 0c c z c A z A c c+ − + + + = .                                       (72) 

Thus, we arrive at a compact exact analytical form of the conversion surface n = n(c): 

 ( )2 2 2 2 2
1 1 2 32

3

( ) ( ) 4
2(1 )

oǆn n c A c A Ac c
c

±= = + ± − −
−

c ,                     (73) 

on which, however, additional condition I (37) was superimposed. As we see from this 
solution, the surface under study is very symmetric. It is invariant with respect to the 
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change of sign of any component of vector c, i.e., it has three mutually orthogonal symmetry 
planes coincident with the coordinate planes. However, the main property of this surface is 

that each point of it describes two different conversion reflections, o → e and e → o. In other 
words, the following assertion is valid:  

If a two-partial wave reflection with the change of the refraction sheet (e.g., o → e) exists in the 

geometry under consideration, then the other conversion reflection (e → o) should also be at the same 
orientations of the boundary (θ) and the reflection plane (φ) and the same refractive index (n). 
Analysis shows that the shape of the mode conversion surface is significantly different for 
optically positive (Ǆ > 1) and negative (Ǆ < 1) crystals. This is clearly seen from Fig. 4, where 
surface (73) was constructed numerically at Ǆ = 1.5 (a) and 0.8 (b). Because of symmetry, we 
show only the upper halves (c2 > 0) of the corresponding surfaces from which the quarters  
(0 < φ < π/2) were cut out for clarity. For an optically positive crystal, the conversion surface 
has the shape of an axially asymmetric torus in which the hole shrinks to the point 
coincident with the coordinate origin. This surface is a single-sheet one in the sense that the 
ray along each vector c crosses it once. 
 

 

Fig. 4. Conversion surfaces for an optically positive crystal with Ǆ = 1.5 (a) and an optically 
negative crystal with Ǆ = 0.8 (b) 

The conversion surface for a negative crystal is radically different: it is a two-sheet one (the 
ray along c crosses it twice); the upper half of the surface resembles a mushroom with a cap 
that descends to the x axis on both sides and a stipe that sharpens downward. 
To analyze in more detail the geometry of the conversion surfaces of the above two types, it 
is convenient to consider their sections by the c1 = 0, c2 = 0, and c3 = 0 coordinate planes. 

4.3.2 The section of the conversion surface by the c1 = 0 coordinate plane 
In this section, the azimuth φ is fixed (φ = π/2 and 3π/2) and solution (73) takes the form 

 ( )2

2
( ) ( sin 2 )

2sin
oǆn n θ A A A θ
θ±= = ± − ,       21 ( 1)sinA Ǆ θ= + − .               (74) 

According to condition I (37), the closed n = ( )n θ±  curves should not go beyond the circle: 

 min{ }o en ǆ , ǆ≤ .                                                           (75) 

n

c

z

x 

y

(a) (b)
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It is easy to verify that n+ lies outside region (75) for optically positive crystals (Ǆ > 1) at any 

angle θ, i.e., n+(θ) > oǆ , while n– belongs to this region at all θ: ( )n θ−  < oǆ . Thus, the root 

n+ should be discarded at Ǆ > 1; this explains why the surface n(c) is a single-sheet one at Ǆ > 

1. Thus, the sought-for section of the conversion surface by the c1 = 0 plane is 

 
2

2

sin 2
( ) 1 1

2sin
oǆ A θ

n n θ
Aθ−

⎛ ⎞
⎜ ⎟= = − −
⎜ ⎟
⎝ ⎠

.                                       (76) 

Curiously enough, as Ǆ = εe/εo (the crystal anisotropy) increases, solution (76) tends to a 
limiting function that does not depend on Ǆ, 

 ( ) cosǄ 1
on n θ ǆ | θ|>>

−≈ = ,                                                    (77) 

and that is represented by two circumferences with radius oǆ /2 touching one another at 

the coordinate origin with a common tangent along the y axis (see Fig. 5a).  However, most 

crystals have a small rather than large anisotropy, when Ǆ – 1 << 1, and solution (76) is close 

to another limiting function:  
 

 

Fig. 5. Sections of the conversion surfaces n(c) by the c1 = 0 and c3 = 0 planes for optically 
positive (a) and optically negative (b) crystals (given the symmetry of the surfaces n(c) 
relative to the coordinate planes, the region is bounded by the interval 0 ≤ θ ≤ π/4) 
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 1 , | | / 4;
( )

|cot |, | | / 4,

oǄ

o

ǆ θ π
n n θ

ǆ θ θ π
≈

−

⎧ ≤⎪≈ = ⎨
≥⎪⎩

                                        (78) 

which coincides with the large circumference ˆ ( )o on θ ǆ=  in the region |θ| ≤ π/4 and 

approaches to the small circumferences (77) near the coordinate origin (see Fig. 5a). As we 

see from the same figure, the n(θ) curves corresponding to Ǆ = 4 and 1.1 actually approach 

the limiting curves (77) and (78). 

For an optically negative crystal (Ǆ < 1), by no means any orientation of vector c satisfies the 

requirement that (74) be real and condition (75), which is now reduced to the inequality 
ˆ( ) e en θ n ǆ± ≤ = . On the other hand, both branches of solution (74), n–(θ) and n+(θ), are valid 

in this case in the region of allowed angles θ, so the surface becomes a two-sheet one. 

Naturally, the configuration of the section of the conversion surface differs significantly 

from that in the case of Ǆ > 1 considered above (see the c1 = 0 sections in Fig. 5b). 
Let us now consider Eq. (74) in the special case of a small anisotropy, 0 < 1 – Ǆ << 1, which is 
practically realized in most crystals. Formally, this solution is very similar to (78) 

 
/ 4

( )
cot / 4

o

o

ǆ , |θ| π ,
n n θ

ǆ | θ|, |θ| π .
±

⎧ ≥⎪= ≈ ⎨
≥⎪⎩

                                           (79) 

This time, however, the limiting solution exists only in the region |θ| ≥ π/4, where the inner 

branch n–(θ) closely follows Eq. (78). At |θ| = π/4, the transition to the large circumference 

again occurs (Fig. 5b), but upward, to the outer branch n+(θ), rather than downward. Here, it 

should be noted that we do not distinguish εo from εe in (78) with our accuracy of the zero-

order approximation in parameter 1 – Ǆ. However, we can show that including the next 

expansion terms ensures that the inequality ˆ
en n± ≤  is satisfied.  

Note also yet another circumstance important for the subsequent analysis. A check indicates 
that the curvature of the c1 = 0 section under consideration remains positive for a negative 

crystal at the upper and lower points (θ = ±π/2) in the entire region 0 < Ǆ < 1. 

4.3.3 The sections of the conversion surface by the planes of simple reflection  
Curiously enough, the conversion surface under study also intersects with the other two 
coordinate planes, c3 = 0 and c2 = 0, which, as we know, are the planes of simple reflection. 
The physical interpretation of the paradoxical existence of such “antagonistic” reflection 
modes will be given below. 

The c3 = 0 section (φ = 0 and φ = π). In the c3 = 0 coordinate plane, Eqs. (66) and (67) are 
simplified via factorization, although they appear different. However, given the identity 

 
2 2 2
1 2

1 2
1 2

( )e o
e

e

p c p c
c g c p

c p c Ǆ / A

−
± =

∓
,                                                    (80) 

which is valid at c3 = 0, both Eqs. (66) and (67) in this plane can be reduced to 

 2 2 2
1 2( )e op c p c− = 0.                                                             (81) 

The first root of this equation that corresponds to the requirement pe = 0 and that is equal to 
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 2 2ˆ ( ) cos sine o en n θ ǆ θ ǆ θ= = + ,                                                (82) 

belongs to region I (37) (being its boundary) only at Ǆ < 1. We are talking about the one-
partial eigensolutions (54), which can turn into the two-partial superposition corresponding 
either to a pure reflection at grazing incidence or to a conversion reflection at certain small 
perturbations of the geometry of the problem. In the latter case, an ordinary bulk (incident 
or reflected) wave with small amplitude is admixed to a weakly perturbed original 
extraordinary component. 

For optically positive crystals (Ǆ > 1), solution (82) lies outside region I (37) bounded by the 

circumference with radius n = n̂ o and is extraneous, because po is a purely imaginary 

parameter at n > n̂ o  and the exceptional bulk polariton under consideration cannot turn into 

a conversion reflection at any small perturbation (i.e., (82) is not part of the conversion 

surface). The fact that the other two factors in Eq. (82) become zero, c1po – c2 = 0 and c1po + c2 

= 0, leads to the combined solution 

 ˆ coson n | θ|= ,       ϕ = 0, π .                                                   (83) 

It coincides with the asymptotic solution (77) in the c1 = 0 section and has a simple graphical 

representation in polar coordinates (n, θ) in the form of two circumferences with radius 
ˆ

on /2 symmetric relative to the x and y coordinate axes and touching one another at the 

coordinate origin (see the c3 = 0 section in Fig. 5a). Thus, at large Ǆ the conversion surface 

has identical circular sections in the c1 = 0 and c3 = 0 sections. A check shows that at Ǆ >> 1 

any other sections of the conversion surface by the planes passing through the y axis are 

described by the same Eq. (83). In other words, the corresponding limiting surface n(c) 

should have the shape of an ideal circular torus. 

It is easy to verify that the pair of circumferences (83) entirely belongs to region I (37) at any 

Ǆ. For optically positive crystals (Ǆ > 1), this trivially follows from the comparison of Eq. (83) 

with the equality ˆ
o on ǆ=  (see (35)). However, it is also satisfied at any θ for optically 

negative crystals (Ǆ < 1), for which condition I (37) is reduced to the more binding inequality 

n < ˆ ( )en θ . This becomes obvious if we write this condition as 

 2 2|cos | cos sino o eǆ θ ǆ θ ǆ θ< + .                                              (84) 

Certainly, at Ǆ < 1 solution (83) should be complemented by root (72) obtained above, which 

is in agreement with the conversion surface being a two-sheet one. As we see from Fig. 5b (c3 

= 0), the outer part of the section described by function (82) changes the sign of the 

curvature at the upper and lower points (θ = ±π/2) as the parameter Ǆ passes through a 

certain critical value Ǆ0 . A simple calculation gives Ǆ = 1/2 for the zero-curvature parameter. 

As we saw, the curvature remains universally positive at any Ǆ for optically negative 

crystals in the c1 = 0 section in the vicinity of the same direction. This means that the 

conversion surface in the direction c || y remains convex only at 1/2 < y < 1 and has a 

saddle point at 0 < Ǆ < 1/2. 

The physical meanings of solutions (82) and (83) differ significantly. In contrast to the 
boundary one-partial solution corresponding to (82), Eq. (83) specifies a two-partial 
reflection, which however, has its own peculiarities. The condition c3 = 0 implies that the 
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optical axis belongs to the plane of incidence and that the reflections described by Eq. (83) 
correspond to the two specific situations where the direction of either the incident wave or 
the reflected one coincides with the optical axis (see Fig. 6). The equations c1po – c2 = 0 and 
c1po + c2 = 0 are satisfied in the former and latter cases, respectively. In a sense, the two-
partial reflections of this kind with one of the components belonging to both refraction 
sheets are simultaneously simple and conversion ones. Therefore, the intersection of the 
conversion surface with the c3 = 0 plane along lines (83) contains no paradox. 
As we see from Fig. 6a, at the fixed refractive index n corresponding to a wave incident 
along the optical axis, two different two-partial combinations can be realized. These differ 
by the choice of one reflected wave from the two possible waves that belong to different 
refraction sheets and that have different propagation directions and polarizations. This 
requires only properly choosing the polarization of the wave incident along the optical axis.  
 

 

Fig. 6. Two-partial reflections in the c3 = 0 plane when the incident (a) and reflected (b) 
waves coincide with the optical axis 

In such degenerate directions, a crystal is known to allow the propagation of waves with a 

polarization arbitrarily oriented in the plane orthogonal to the optical axis. In particular, a 

wave with a polarization different from the two possible values corresponding to the two-

partial reflections mentioned above can also be thrown on the surface in this direction. In 

this case, an ordinary three-partial reflection is realized in the crystal. 

Any of the two possible incident waves corresponding to the same factor n (83) can also 

accompany the wave reflected along the optical axis (Fig. 6b). In this case, the crystal itself 

will choose such a polarization of the reflected degenerate wave that the total superposition 

of the two-partial reflection satisfies the boundary condition (19). 

Clearly, four different two-partial reflections can be obtained at certain small perturbations 

of the reflection geometry shown in Fig. 6: two simple, o → o and e → e, and two conversion, 

o → e and e → o, ones. This ultimately resolves the paradox of the surprising coexistence of 

simple and conversion reflections in the c3 = 0 plane. 

The c2 = 0 section (θ = 0). In the c2 = 0 coordinate plane, Eqs. (66) and (67) again coincide: 

 2 2
3( ) 0o op p c+ = .                                                              (85) 

Equation (85) has only one solution, po = 0, i.e., 

 ˆ
o on n ǆ= = ,                                                                (86) 
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which corresponds to the one-partial ordinary eigenmode (54). At Ǆ > 1, circumference (86) 
is the boundary of region I (37). We previously obtained the exceptional bulk polariton (54) 

by passing to the limit of grazing incidence, n → n̂ o , on the family of pure reflections. At 

the reverse perturbation of the refractive index, n ← n̂ o , with the optical axis retained in the 

c2 = 0 plane, polariton (54) naturally again splits into the two-partial solution corresponding 
to a pure reflection. However, at certain matched changes of the optical-axis orientation and 
the refractive index n corresponding to the motion along the conversion surface, the same 
ordinary polariton, being slightly distorted, will attach an extraordinary (incident or 
reflected) component with a small amplitude, which relates to a mode conversion. 
In an optically negative crystal (Ǆ < 1), circumference (86) lies outside region I (37), except 
for its two points at the intersection with the x axis (where the “mushroom cap” in Fig. 4b 
touches the “ground”). In the latter case, we are talking about the bulk polariton 
propagating along the optical axis parallel to x and characterized by parameters (59). The 
same points are also seen on the c3 = 0 section (see Fig. 5b). 

5. Resonance reflection from the metal coating with nonzero impedance 

In this section we turn to a more practical problem considering wave reflections in a crystal 

from the metal coating which is not perfect anymore. The impedance of the metal will be 

supposed finite (ζ ≠ 0) but small. We shall consider the physical consequences of this new 

feature of the boundary problem on the example of rather nontrivial resonance of reflection 

which may be interpreted as an excitation of strong polariton by means of a weak incident 

pump wave. The idea of the resonance was already discussed in the Introduction. Now we 

are prepared to start a new stage of studies, following to (Depine & Gigli, 1995; Alshits & 

Lyubimov, 2010). 

In this section, we consider in detail the specific features of resonance excitation of an 
extraordinary polariton in an optically negative crystal and of the accompanying plasmon in 
a metal by an incident ordinary pump wave. Similar results for an optically positive crystal 
will be shortly presented separately. 

5.1 The structure of wave fields in a crystal 

As we have seen, in crystals covered by a perfect metal there are two special geometries 

admitting simple reflections. They occur in the both sheets of the refraction surface when the 

optical axis is parallel to either the interface (c2 = 0) or the sagittal plane (c3 = 0). At grazing 

incidence simple reflections may transform into exceptional bulk waves: the ordinary wave - 

in the c2 = 0 plane and the extraordinary wave – in the c3 = 0 plane. In optically negative 

crystals (γ < 1) the extraordinary exceptional wave (56)-(58) belongs to an internal sheet of 

the refraction surface and is accompanied by the independent simple reflection of the 

ordinary waves at the same refractive index 0ˆ
en n=  (Fig. 7a). The wave characteristics of this 

simple reflection in accordance with Eqs. (49)-(51) are given by 

 0 , 0 0ˆ ˆ(1, , 0)i r
o o ep n= ∓n ,       0 0

2
ˆ ˆ ˆ 1o o ep |c |(n / n ) Ǆ= − ,                              (87) 

 
0

0 00

(0, 0, 1)

ˆ ˆ( , 1, 0)

i,r
o

i,r
o eo

p n

⎛ ⎞ ⎛ ⎞
⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

e

h ∓
,        r i

o oC C= .                                      (88) 
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Here we stress that in the c3 = 0 plane these independent solutions also coexist even at ζ ≠ 0. 

That follows from Eqs. (33), (34) providing simple reflections in both wave branches (Deo = 

Doe = 0) in any symmetry plane (c3 = 0) containing the optical axis. One of them at grazing 

incidence creates an extraordinary bulk polariton. Below we consider the mechanism of its 

excitation by means of a resonance reflection in the vicinity of this exceptional orientation. 

Assuming that ζ ≠ 0, let us deviate the plane of incidence from the direction of the optical 
axis c by a small angle θ. Naturally this leads to a change in the orientation of the surface 
and in the coordinate system connected to the geometry, in which now 

 1 2 3( , , )Tc c c=c
�

,                                                            (89) 

where 3 sinc θ=�
 (an arc over the parameter indicates that this parameter is small: 3|c |

�
<< 1). 

When 3 0c ≠�
, the section of the refraction surface by the new plane of incidence xy (Fig. 7b) 

does not show any tangency of sheets, in contrast to the unperturbed situation of Fig. 7a.  
 

 

Fig. 7. The wave characteristics of reflections in an optically negative crystal; (a) in the 

absence of perturbation, c3 = 0, and (b) with perturbation c3 ≠ 0. The refraction vectors are 
shown together with the sections of the refraction sheets by the plane of incidence xy 

A perturbed expression for the limiting parameter ˆ
en  is given by the exact formula (35). 

This parameter corresponds to the perturbed limiting refraction vector 

 ˆ ˆ ˆ(1 0)i
o o e, p , n= −n .                                                          (90) 

By varying the propagation direction of the incident ordinary wave with the refraction 

vector i
on  near the limiting vector (90), we can conveniently represent the vector i

on  as  

 (1 0)i
o o, p , n= −n ,   ˆ Δo o op p p= + ,   n = ˆ

en  + Δn .                               (91) 

In other words, the angle of incidence ǂ o = arctanpo (see Fig. 7b) of this wave becomes a free  

parameter close to the limiting angle ˆ ˆarctano oǂ p= , where ˆ 1op B / A= − . Taking into 

account (11), one can easily find for ordinary waves the following relation 

        0 3ˆΔ [ /( ) ]Δo o ep ǆ n n≈ − ,                                                        (92) 

which gives a relationship between Δn and ˆΔ o o oǂ ǂ ǂ= − :  
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 0 0ˆ ˆΔ Δe o on n p ǂ≈ − ,                                                              (93) 

where 0ˆ
en  and 0ˆ

op  are unperturbed limiting parameters defined by (58) and (87).  

The wave field structure of the reflection is determined by the superposition of three partial 

waves given by Eqs. (4)-(7) with 0i
eC = . A concretization of the parameter po in these 

formulae yields the expression  

 
0 2

ˆ Δ
ˆ( )

o
o o o

e

ǆ
p p ǂ

n
≈ + ,                                                         (94) 

p is defined by the exact Eq. (11) and the parameter pe is determined by Eq. (36): 

 
0

0 2 2 2 0 2

ˆ Δ Δ 021 1
(Δ )

ˆ ˆ ˆ( ) ) Δ Δ 0

o оo о eo e
e e о

e e e o о

ǂ , ǂ ,p ǆ ǆǆ ǆ
p p ǂ

n n n (n i ǂ , ǂ .

⎧ ≥⎛ ⎞ ⎪= = − ≈⎜ ⎟ ⎨⎜ ⎟ ⎪⎝ ⎠ − <⎩
       (95) 

As expected, the variation of the angle of incidence near the limiting position оǂ̂  leads to the 

transformation of the extraordinary partial wave from bulk reflected for ǂΔ o ≥ 0 to the 

accompanying localized wave for ǂΔ o < 0. However, for sufficiently small | ǂΔ o| in (31), 

when |pe| << 1, in the first case we have nearly grazing refection, whereas, in the second 

case, the localized mode should be a deeply penetrating (quasibulk) wave. Thus, in either 

case the extraordinary wave remains a weakly perturbed initial bulk polariton (56). 

5.2 Reflection coefficients and the excitation factor of a polariton-plasmon 

An analysis of the considered resonance may be done basing on general solution (30)-(34) of 

the reflection problem specifying it to a small region of geometrical parameters | ǂΔ o|<< 1, 

1/
2

2

2

3 <<cc
�

 and limiting ourselves to the linear approximation in the impedance Ǉ . In this 

case one can replace in (32)-(34) R → 1 retaining only terms ~ Ǉ . The results are 

 
ˆ

( )
ˆ

r
o oe

eo o i 2 0
o o e o o

ǅǋ ǄnС
r ǅ,Δǂ

C ǅ ǋ n / 2 ǋ ǄΔǂ Ǉ
≡ = −

+ +
,                                    (96) 

 
2 0

2

2 0

ˆ 2
( )

ˆ 2

r
o e o oo

oo o i
o o e o o

ǅ ǋ n / ǋ ǄΔǂ ǇС
r ǅ ,Δǂ

C ǅ ǋ n / ǋ ǄΔǂ Ǉ

− −
≡ =

+ +
,                                   (97) 

where the notation is introduced 

 0 0 2ˆ ˆ2 ( )o o e eǋ p n / ǆ= ,         3 2ǅ с / c= �
.                                             (98) 

Eqs. (96), (97) are valid for either sign of Δǂ o; however one should remember that at the 

change of this sign all square roots in these equations become imaginary instead of real, or 

vise versa, as in (95). Below we will see that the reflection coefficients exhibit completely 

different behavior in the domains with real and imaginary parameter pe.  

Both the numerators and denominators in the functions (96) and (97) are combinations of 

small quantities, and even a small variation of these quantities may lead to large variations 
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of the functions themselves. It is this fact that is responsible for the resonance properties of 

the reflection: a sharp increase or, conversely, decrease in the relative intensity of the partial 

components in the related wave superposition for appropriate combinations of the small 

parameters Δǂ o , ǅ , and Ǉ .  
As the measure of efficiency of a resonance, introduce the excitation factor of an 
extraordinary polariton as the ratio of the moduli of Poynting vectors:  

 
0

/r i
eo e o

y
K

=
= P P .                                                         (99) 

The energy fluxes i
oP  and r

oP  entering (99) are related to the energy densities i
ow  and r

ew  of 
the corresponding waves by the formulas   

 0ˆ ˆi i i i r r r r
o o o o o e e e e e| | w | | w c / n , | | w | | w c / n= = = =P u P u .                        (100) 

Here i
ou  and r

eu  are the group velocities (3), which can be calculated near the peak in zero 
approximation; moreover, by definition we have  

               = = = = 21 1 1 1
   

8 8 8 8
i i 2 i i 2 i 2 r r
o o o o o e ew | | | C | |C | , w |C |

π π π π
H h .                    (101) 

Taking into account these relations and Eq. (96), we obtain  

                                         
22

0

ˆ
( ) ( )

ˆ
o

eo o eo o

e

n
K ǅ ,Δǂ r ǅ,Δǂ

n
= .                                               (102) 

Figure 8 shows a three-dimensional picture of the maximum of the excitation factor 
2( Δ )eo oK ǅ , ǂ  of an extraordinary polariton and the minimum of 2 2( Δoo o|r ǅ , ǂ )|  for the same 

combination of the control parameters δ2 and Δǂ o for a sodium nitrate crystal with 
aluminum coating at a wavelength in vacuum of λ0 = 0.85 μm. Below, these characteristics of 
the resonance will be studied in more detail.  

Let us show that the factor )Δ(
2

oeo ǂ,ǅK  simultaneously characterizes the excitation of the 

accompanying surface plasmon in the metal (y < 0), whose field is given by Eqs. (8), (9). In 

zero approximation (when c3 = 0 and Ǉ = 0), the polarization of the excited extraordinary 

polariton (56), (57) is close to the TM type, while the polarizations of the incident and 

reflected ordinary waves (50)1, to the TE type. In this case, the ratio of the amplitudes of 

these components at resonance, which is characterized by the excitation factor Keo , shows 

that the dominant polarization of the whole wave superposition is the TM polarization, 

when the field H is parallel to the z axis. Since the tangential components Ht must be 

continuous on the interface (Landau & Lifshitz, 1993), the plasmon amplitudes can be 

estimated as CTM ≈ Ce and |CTE|<<|CTM|. Taking into account these relations and the 

normalization condition |hTM| = |he| = 1, we obtain the following expression in zero 

approximation:   

 2 2 2( Δ )i i
TM o e o eo o|C / C | |C / C | |r ǅ, ǂ |≈ = .                                         (103) 

Thus, the factor Keo (102) describes the resonance excitation of both a polariton in the crystal 
and a localized plasmon in the metal coating. 

www.intechopen.com



Electromagnetic Waves in Crystals with Metallized Boundaries 

 

61 

5.3 Resonance excitation of a surface polariton  

When the pumping ordinary wave is incident on the crystal boundary at angle ˆ
o oǂ ǂ< , an 

extraordinary surface polariton is excited. In this case formulas (96) and (102) yield  
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′ ′′+ + − −
.                          (104) 
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Fig. 8. Surfaces (a) 2( Δ )eo oK ǅ , ǂ and (b) | 2( Δ )оо or ǅ , ǂ |2 for a sodium nitrate crystal with 

aluminum coating for λ0 = 0.85 μm. 

As a function of the deviation of the incidence angle Δǂ o , this expression has an obvious 

maximum for  

 2Δ max
o oǂ |Ǉ | /ǋ Ǆ′′= − .                                                      (105) 

For a fixed value of Δ Δ max
o oǂ ǂ= , the excitation factor remains a function of the value 2ǅ :  

 ( )
( )

2 0
2

2
2 0

ˆ( )Δ
ˆ 2

max o e o e
eo o

o e

ǅǋ ǆ / n n
K ǅ , ǂ

ǅ ǋ n / Ǉ
=

′+
,                                           (106) 

which also has a maximum for an appropriate choice of δ 3 2/c c≡ �
:  
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 2 0ˆ2max o eǅ Ǉ / ǋ n′= .                                                           (107) 

Substituting (107) into (106), we find the absolute maximum of the excitation factor  

 ( )
0

2

0 2

ˆ ˆ
Δ

ˆ2

max max o e o o
eo eo max o

oe

ǋ Ǆǆ n p
K K ǅ , ǂ

n Ǉ(n ) Ǉ
= = =

′′
                                    (108) 

which is inversely proportional to the small parameter Ǉ ′ ; this guarantees the efficiency of 

the resonance, especially in the infrared region. According to (87) and (58), the numerator in 

(108) is expressed as  

 20

2
2

1
ˆ

1 (1 )
o

|c | Ǆ
p

Ǆ c

−
=

− −
.                                                      (109) 

This shows that the coefficient max
eoK  can be additionally increased by choosing a crystal with 

high anisotropy factor (1 )Ǆ−  and the orientation of the optical axis in the yz plane (c1 = 0) 

corresponding to the maximum possible component |c2| = 1. As a result, we obtain 
0ˆ 1 1op / Ǆ= −  and, instead of (108), we have the optimized value  

 
1max o e

eo
o e

ǆ ǆ
K

Ǉ ǆ ǆ
−

=
′

.                                                        (110) 

Below we will assume that c1 = 0 in all numerical estimates and figures.  

In terms of the ratios max
eo eoK / K , 2 2

maxǅ / ǅ , and Δ /Δ max
o oǂ ǂ , the sections of the peak (104) 

for a fixed value of the parameter Δ Δ max
o oǂ ǂ=  (105) or 2 2

maxǅ ǅ=  (107) are given by  
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Δ Δ 1
1

2

max
eo

eo max o
max

o o

K
K ǅ , ǂ

ǂ / ǂ
Ǉ / Ǉ

=
⎛ ⎞−⎜ ⎟ +

′ ′′⎜ ⎟
⎝ ⎠

.   (111) 
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Fig. 9. Two sections of the surfaces 2( Δ )eo oΚ ǅ , ǂ  and 2 2( Δoo o|r ǅ , ǂ )|  shown in Fig. 8 when (a) 

Δ Δ max
o oǂ ǂ≡ ≈ --2.1 or (b) 2 2

maxǅ ǅ≡ ≈ 0.078; 0ǌ  = 0.85 μm and max
eoΚ ≈ 10.8 
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Figure 9a (curve 1) shows that the section of the peak for Δ Δ max
o oǂ ǂ=  rapidly reaches a 

maximum and then slowly decreases as the parameter δ increases. Of course, this is 
advantageous for applications but restricts (at least, in the visible range) the applicability of 

the approximation based on the inequality δ2 << 1. The half-width of this peak is 

 2 2 0
1/2

ˆ(Δ ) 4 2 8 2max o eǅ ǅ Ǉ / ǋ n′= = . (112) 

Away from the section Δ Δ max
o oǂ ǂ= , the coordinate of the maximum and the half-width of 

the peak with respect to δ noticeably increase, which is clearly shown in the three-

dimensional picture of the peak in Fig. 8.  

Another section of the same peak (for 2 2
maxǅ ǅ= ) is shown in Fig. 9b (curve 1). According to 

(111)2, its half-width is 

 max
1/2

8 8 | |
( ) | |

| |
o o

o

ζ ζ ζα α
ζ κ γ
′ ′ ′′

Δ = Δ =
′′

.                                         (113) 

Compared with (112), this quantity contains an additional small parameter | Ǉ ′′ |, which 

accounts for the relatively small width in this section of the peak in the region |Δ | 1oǂ <<  .  

The penetration depth de of a polariton into a crystal is limited by the parameter pe and, 

according to (95), depends on the angle Δ oǂ . At the maximum point Δ Δ max
o oǂ ǂ=  (105), the 

penetration depth is  

 
0 2

0
0

0

ˆ( )1 1

ˆIm 2 | |Im
e

e
e o ee e

n
d

k p k n p

λ
πε ε ζ

= ≈ =
′′

.                                   (114)  

The plasmon penetration depth into the metal is found quite similarly 

 0| |1

Im 2
m

m

d
k p

λ ζ
π
′′

= ≈ ,                                                    (115) 

where we have made use of Eq. (11)4 by expressing Impm ≈ 0ˆ1/| | enζ ′′ . Comparing Eqs. (114) 

and (115), we can see that the plasmon in metal is localized much stronger than the 

polariton in the crystal: dm/de ~
2| |ζ ′′ .  

In Fig. 9, the material characteristics of the crystal εo and εe , as well as the geometric 

parameters c1 and c2 are "hidden" in the normalizing factors 2
maxǅ , Δ max

oǂ , and max
eoΚ . The first 

section (Fig. 9a) is independent of other parameters and represents a universal characteristic 

in a wide range of wavelengths, whereas the second section (Fig. 9b) depends on the ratio 

/| |ζ ζ′ ′′  obtained from Table 1 for aluminum at a vacuum wavelength of λ0 = 0.85 μm.  
 

λ0, μm 0.4 0.5 0.6 0.85 1.2 2.5 5.0 

ζ ′  0.0229 0.0234 0.0253 0.0373 0.0092 0.0060 0.0046 

-ζ ′′  0.267 0.215 0.180 0.135 0.108 0.050 0.026 

Table 1. Components of the surface impedance iζ ζ ζ′ ′′= +  for aluminum in the visible and 

infrared ranges at room temperature, obtained from the data of (Motulevich, 1969) 
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The absolute values of the main parameters of the peak are shown in Table 2 for a sodium 
nitrate crystal NaNO3 for various wavelengths. In our calculations (including those related 
to Fig. 8), we neglected a not too essential dispersion of permittivities and used fixed values 

of εo = 2.515, εe = 1.785, and γ = 0.711 (Sirotin & Shaskolskaya, 1979, 1982) at λ0 = 0.589 μm.  

First of all, it is worth noting that, in the visible range of wavelengths of λ0 = 0.4--0.6 μm, the 

maximal excitation factor (110) relatively slowly decreases as λ0 increases, although remains 

rather large (
max

eoΚ ≈ 16--18). With a further increase in the wavelength to the infrared region 

of the spectrum, the factor first continues to decrease down to a point of λ0 = 0.85 μm and 

then rather rapidly increases and reaches a value of about 90 at λ0 = 5 μm. The half-width of 

the peak 1/2)(Δ oǂ  (113), starting from the value of 1/2)(Δ oǂ  ≈ 5°, rapidly decreases as the 

wavelength increases and becomes as small as about 0.1° at λ0 = 5 μm, which, however, is 

greater than the usual angular widths of laser beams. The half- width 
1/2

2
)(Δǅ  (112) differs 

from 
2

maxǅ  (107) only by a numerical factor of 24  and therefore is not presented in the 

table. The penetration depth de (114) of a polariton into the crystal at the point of absolute 

maximum of the resonance peak is comparable with the wavelength of the polariton and 

remains small even in the infrared region, although being much greater than the localization 

depth dm of the plasmon (115). However, as oǂΔ  → 0, pe → 0 (95), the penetration depth de 

rapidly increases, and the polariton becomes a quasibulk wave. The optimized perturbation 

δmax corresponding to the angle θmax = arctanδmax remains small over the entire range of 

wavelengths and varies from 0.05 to 0.01, which certainly guarantees the correctness of the 

approximate formulas obtained.  
 

 0ǌ , 

μm 
0.4 0.6 0.85 1.2 2.5 5.0 

max
eoK  17.6 15.9 10.8 43.8 67.1 87.5 

1/2(Δ )oǂ
 

5.5° 4.1° 4.5° 0.9° 0.3° 0.11° 

ed , μm 0.090 0.225 0.399 0.719 3.18 12.4 

Δ max
oǂ−

 
8.0° 3.6° 2.1° 1.3° 0.3° 0.08° 

2
maxǅ  0.048 0.053 0.078 0.019 0.013 0.010 

maxθ  12° 13° 16° 7.8° 6.5° 5.7° 

Surface 
polariton 

(a pumped 
mode) 

Δ 0max
oǂ <  

oǙ  15° 15° 18° 9.3° 7.7° 6.8° 
max
eoK  2.7 3.9 4.6 6.9 14.4 26.3 

2
maxǅ  0.56 0.38 0.28 0.23 0.11 0.05 

Bulk polariton 

Δ 0max
oǂ =  

maxθ  37° 32° 28° 26° 18° 13° 

Plasmon 
md , 

μm 
0.017 0.017 0.018 0.021 0.020 0.021 

Table 2. Parameters of polaritons excited in an optically negative sodium nitrate crystal with 

aluminum coating for various wavelengths (c1 = 0, ˆ
oǂ = 32.5°) 
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5.4. Conversion reflection and a pumped surface mode  

Now we consider the reflection coefficient (97) in more detail for Δ oǂ < 0:  

 
( )
( )

2 0

2

2 0

ˆ / 2 Δ
( Δ )

ˆ / 2 Δ

r
o e o oo

oo o i
o o e o o

ǅ ǋ n Ǉ i ǋ Ǆ ǂ |Ǉ |C
r ǅ , ǂ

C ǅ ǋ n Ǉ i ǋ Ǆ ǂ |Ǉ |

′ ′′− − − −
≡ =

′ ′′+ + − −
.                        (116)  

In contrast to the excitation factor Keo (104) of the extraordinary polariton, the reflection 

coefficient (116) does not "promise" any amplification peaks. Conversely, it follows from 

(116) that the amplitude of the ordinary reflected wave never exceeds in absolute value the 

amplitude of the incident wave. Moreover, the substitution of the coordinates Δ max
oǂ  (105) 

and δmax (107) of the absolute maximum of the excitation factor (104) into (116) gives the 

absolute minimum (see Fig. 8 and curves 2 in Fig. 9): 

 2 2( Δ ) 0max
oo max o|r ǅ , ǂ | =                                                       (117)  

Thus, the resonance reflection in the optimized geometry is a conversion reflection (i.e., a 
two-partial reflection with a change of branch) and a quite nontrivial one at that. Indeed, in 
this case the incident ordinary partial wave in the crystal is accompanied by a unique wave, 
which, being an extraordinary wave belongs to the other refraction sheet and is not a bulk 
reflected wave. This wave is localized at the interface between the crystal and metal and 
transfers energy along the interface (Fig. 10). 
 

 

Fig. 10. Schematic picture of the pumped polariton-plasmon near the interface between a 
crystal and metal coating 

Naturally, in this case the absence of the reflected wave does not imply the violation of the 
energy conservation law; just the propagation geometry corresponding to the minimum 
(117) is chosen so that the normal component of the Poynting vector of the incident wave is 
completely absorbed in the metal. This component is estimated by means of (100)1: 

 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆsin ( / ) ( / ) /i i i i
o o o o o o e o o o e o| || | ǂ w c n p n n cw p n ǆ⊥ = = =P P .                           (118)  

Following (Landau & Lifshitz, 1993) and relations (100), (101), and (103), we can easily verify 
that this component is equal the normal energy flux absorbed by the metal coating at 
resonance:  
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0 0

2 2 ˆ ˆ

8
i i o e

m t S eo max o o
o

p ncǇ
| | | | сǇ |r | w cw

π ǆ⊥
′

′= = =P H .                               (119)  

It is not incidental that the final expression for m| |⊥P  does not contain the components of 

the impedance. Indeed, according to the energy conservation law, in this case dissipation 

should completely compensate the normal energy flux in the incident wave, which "knows" 

nothing about the metallization of the crystal surface. It is essential that the dissipation (119), 

remaining comparable with the energy flux density in the incident wave, is very small 

compared with the intensity of the polariton--plasmon localized at the interface:  

 2 2

0 0 0

1

ˆ ˆ ˆ8

i
o

e max e S e S eo max m

e e e

cwc c
| | w | | | |r | | |

πn n n
⊥= = = >>P H P .                   (120)  

The fact that the energy flux of the polariton--plasmon at the interface is considerably 
greater than the intensity of the pumping wave in no way contradicts either the energy 
conservation law or the common sense. We consider a steady-state problem on the 
propagation of infinitely long plane waves. In this statement, the superposition of waves 

jointly transfers energy along the surface from --∞ to +∞. These waves exist only together, 
and the question of the redistribution of energy between the partial waves can be solved 
only within a non-stationary approach. Indeed, suppose that, starting from a certain instant, 
a plane wave coinciding with our ordinary wave is incident on the surface of a crystal. Upon 
reaching the boundary, this wave generates an extraordinary wave whose amplitude 
increases in time and gradually reaches a steady-state regime that we describe. Naturally, 
the time of reaching this regime is the larger, the higher the peak of the excitation factor.  
In fact, the conversion reflection considered represents an eigenwave mode that arises due 
to the anisotropy of the crystal. It is natural to call this mode, consisting of a surface 
polariton--plasmon and a weak pumping bulk wave, a pumped surface wave by analogy 
with the known leaky surface waves, which are known in optics and acoustics (Alshits et al., 
1999, 2001). The latter waves also consist of a surface wave and the accompanying weak 
bulk wave, which, in contrast to our case, removes energy from the surface to infinity, rather 
than brings it to the surface; i.e., it is a leak, rather than a pump, partial wave. 

Numerical analysis of the exact expression for the reflection coefficient roo , Eqs. (30)1 , (32), 

has shown (Lyubimov et al., 2010) that the conversion phenomenon (117) retains 

independently of the magnitude of the impedance Ǉ . However it turns out that for not too 

small Ǉ , positions of the maximum of the excitation factor Keo and the minimum (117) of the 

reflection coefficient roo do not exactly coincide anymore, as they do in our approximation. 

5.5. Resonance excitation of a bulk polariton  

When a pump wave of the ordinary branch is incident at angle oo ǂǂ ˆ≥  on the boundary of 

the crystal, a bulk extraordinary polariton is generated. The expression, following from (96) 

and (102), for the excitation factor Keo of such a polariton is significantly different from 

expression (104), which is valid for 0Δ <оǂ :  

 

( )
2 0

2

2
2 0 2

ˆ ˆ( )Δ
ˆ Δ

o e o e
eo o

o e o o

ǅǋ ǆ / n n
K (ǅ , ǂ )

ǅ ǋ n / 2 ǋ Ǆ ǂ Ǉ Ǉ
=

′ ′′+ + +
.                              (121)  
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As the angle Δ oǂ  increases, the function (121) monotonically decreases, so that the excitation 

factor attains its maximum for Δ 0оǂ = , i.e., for ˆ
o oǂ ǂ= :  

 

( )
=

′ ′′+ +

2 0
2

2
2 0 2

ˆ ˆ( )
( 0)

ˆ

o o e
eo

o e

eǅǋ ǆ / n n
K ǅ ,

ǅ ǋ n / 2 Ǉ Ǉ
.                                          (122)  

In turn, formula (122), as a function of the parameter 2ǅ , forms a peak with the coordinate 

of the maximum  

 2

0 0

2 2

ˆ ˆmax

o e o e

|Ǉ| |Ǉ |ǅ
ǋ n ǋ n

′′
= ≈ .                                                     (123)  

Note that the optimized parameters 2
maxǅ  (123) and 2

maxǅ  (107) for the excitation of bulk and 

localized polaritons are substantially different (see Table 1):  

 2 2
max maxǅ / ǅ |Ǉ | /Ǉ′′ ′≈ .                                                        (124)  

With regard to (123), the absolute maximum of the excitation factor (121) is expressed as  

 
( ) ( )

0 0
2 ˆ ˆ2 2

( 0)
ˆ ˆ

max o o
eo eo max

o o

p p
K K ǅ ,

n |Ǉ| Ǉ n |Ǉ | Ǉ
= = ≈

′ ′′ ′+ +
.                             (125)  

Next, by analogy with (110) and with regard to (109), for c1 = 0 we obtain the following 
optimized value:  

 
2max o e

eo
o e

ǆ ǆ
K

|Ǉ | Ǉ ǆ ǆ
−

≈
′′ ′+

.                                                (126)  

The approximate equality in formulas (123)--(126) implies that the terms of order 
2~ ( / ) 1Ǉ Ǉ′ ′′ <<  are omitted.  

The three-dimensional picture of the excitation peak (121) is shown in Fig. 8 as a slope of a 

ridge in the region 0Δ ≥оǂ . The figure shows that, in the domain max
ǅ~ǅ , оǂΔ  ≈ 0, the 

factor Keo(δ2 ǂ,Δ o) rather weakly depends on ǅ  and can be estimated at max
ǅǅ =   as  

 2( Δ )
1 Δ Δ

max
eo

eo max o
max

o o

K
K ǅ , ǂ

ǂ / | ǂ |
≈

+
.                                          (127)  

The half-width of this one-sided peak is obviously given by |ǂ|ǂ max

oo Δ)(Δ 1/2 = . In Fig. 8, 

the section (127) is shown as the edge of the surface Keo(δ2 ǂ,Δ o) that reaches the plane 

0.28
22 ≈= maxǅǅ  (see Table 2).  

Note that, in the domain Δ 0оǂ ≥ , conversion is impossible (roo ≠ 0) for ζ ≠ 0; thus, along with 

the extraordinary reflected wave, an ordinary reflected wave always exists, such that  

 2 2 1 Δ / Δ /
( Δ )

1 Δ / Δ /

max
o o

oo max o
max

o o

ǂ | ǂ | Ǉ |Ǉ |
|r ǅ , ǂ |

ǂ | ǂ | Ǉ |Ǉ |

′ ′′− −
≈

′ ′′+ +
.                                 (128)  
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where, just as in (127), the terms quadratic in Ǉ ′  and linear in Δ oǂ  are omitted. Formula 
(128) shows that, for Δ Δ max

o oǂ | ǂ |<< , Ǉ |Ǉ |′ ′′<< , the absolute values of the amplitudes of the 
incident and ordinary reflected waves are rather close to each other; hence, if we neglect the 
dissipation in the metal, nearly all the energy of the incident wave is passed to the ordinary 
reflected wave. In this situation, the presence of additional quite intense extraordinary 
reflected wave looks paradoxical.  

This result can be more clearly interpreted in terms of wave beams rather than plane waves 

(Fig. 11). Let us take into consideration that plane waves are an idealization of rather wide 

(compared to the wavelength) beams of small divergence. Of course, it is senseless to choose 

the angle Δ oǂ  smaller than the angle of natural divergence of a beam. However, this angle 

can be very small (10-4--10-3 rad) for laser beams. If the width of an incident beam of an 

ordinary wave is l, then the reflected beam of the same branch of polarization has the same 

width. However, the beam of an extraordinary wave is reflected at a small angle eϕ
�

 to the 

surface, and its width l
�

should also be small: /sine ol l ǂϕ=
� �

 (Fig. 11). It can easily be shown 

that this width decreases so that even a small amount of energy in a narrow beam ensures a 

high intensity of this wave. The consideration would be quite similar to our analysis of the 

energy balance in the previous sub-section. 
 

 

Fig. 11. The scheme of the resonance excitation of a bulk polariton by a finite-width beam 

Fortunately, even a small deviation of ǂΔ o from zero easily provides a compromise that 

allows one, at the expense of the maximum possible intensity in the extraordinary reflected 

wave, to keep this intensity high enough and, moreover, to direct a significant part of the 

energy of the incident wave to this reflected wave. Indeed, formulas (127) and (128) show 

that, say, at |ǂ|ǂ max

oo Δ0.1Δ ≈ , the energy is roughly halved between the reflected waves, 

and Keo ≈ 0.76
max

eoK . For |ǂ|ǂ max

oo Δ0.2Δ ≈ , we obtain |roo|2 ≈ 0.3 and Keo ≈  0.7
max

eoK . 

The ratio of the absolute maxima (110) and (126) taken for different optimizing parameters 
2
maxǅ  and 2

maxǅ , respectively, is usually much greater than unity:  
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.                                      (129)  

In other words, the excitation efficiency of bulk polaritons is less than that of surface 

polaritons (see Table 2). Nevertheless, the attainable values of the excitation factor max
eoK  of a 

bulk polariton are in no way small. According to Table 2, when Δǂ o = 0, the intensity of the 
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reflected extraordinary wave is three or four times greater than that of the incident ordinary 

wave even in the visible range of wavelengths of 0.4--0.6 μm (however, since the parameter 
2
maxǅ  in this part of the table is not small enough, the accuracy of these estimates is low). 

Toward the infrared region, the surface impedance Ǉ  of the aluminum coating decreases 

(see Table 1), while the excitation constant sharply increases, reaching values of tens.  

5.6 Anormalous reflection of an extraordinary wave 
Now we touch upon the specific features of the resonance excitation of an ordinary 
polariton by an incident extraordinary pumping wave. As mentioned above, such an 

excitation is possible only in optically positive crystals (γ > 1). The resonance arises under 
the perturbation of the geometry in which a bulk polariton of the ordinary branch (54) and 
simple reflection (44)-(46) in the extraordinary branch exist independently of each other.  

Let us slightly "perturb" the orientation of the crystal surface by rotating it through a small 

angle 2arcsincθ �=  with respect to the optical axis: c = (c1,  ,c2

�
 c3). The structure of the 

corresponding perturbed wave field is determined by formula (5) at 0=i

oC  in which the 

appropriate vector amplitudes (6), (7) are substituted. The perturbed polarization vectors 

are found from formulas (14), (15), and the geometrical meaning of the parameters p, pe, and 

po is illustrated in Fig. 2a. The refraction vectors, which determine the propagation direction 

of the incident and reflected waves, are present in (10). In the considered case the horizontal 

component n of the refraction vector is close to the limiting parameter oo ǆn =ˆ  (Fig. 3), and 

the parameter pe is close to the limiting value of ep̂ : n = on̂  + Δn, eee ppp Δ+= ˆ . Here the 

parameter ep̂  is given by the exact expression 
22

1

2
)1)(( /AcAǄpe −−=ˆ  and p is defined by 

Eq. (11) as before. The angle of incidence eǂ  of the extraordinary wave ( Fig. 2a) is now close 

to the angle )arctan( ppǂ ee −= ˆˆ : eee ǂǂǂ Δ+= ˆ . The relation between the increments Δn, epΔ , 

and eǂΔ  has the form  

 0 2 2
1 3

ˆΔ ( )Δe o en p n c / Ǆ c ǂ= − + ,    2 2
1 3Δ ( )Δe ep c Ǆc ǂ= + ,                               (130)  

where 0ˆ
ep  relates to the unperturbed c2 = 0 : 0

3
ˆ | | 1ep c Ǆ= − . Another important 

characteristic of the resonance is the angle of reflection βo,  

 βo = arctanpo,      
Δ Δ 0,

Δ Δ 0,

e e
o o e

e e

ǂ , ǂ
p ǆ ǋ

i ǂ , ǂ

⎧ ≥⎪≈ ⎨
− <⎪⎩

                         (131)  

 0 2 2
1 3

ˆ2 ( / / )e e e oǋ p c ǆ c ǆ= + .                                                   (132)  

Introduce a small parameter 2 3/ǅ c c= �
, which is the inverse of (98)2. Now, instead of (96) 

and (97), we have the following expressions for the reflection coefficients:  

 
0

2 0

ˆ2
( Δ )

ˆ ˆ Δ

r
e eo

oe e i
e e o e e

p ǅ / ǆC
r ǅ, ǂ

C ǅ p / n ǋ ǂ Ǉ
≡ =

+ +
 ,                                     (133)  

 
2 0

2

2 0

ˆ ˆ Δ
( Δ )

ˆ ˆ Δ

r
e o e ee

ee e i
e e o e e

ǅ p / n ǋ ǂ ǇC
r ǅ , ǂ

C ǅ p / n ǋ ǂ Ǉ
− −

≡ =
+ +

.                                    (134)  
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These expressions exhibit the same structure of dependence on the small parameters δ and 

Δ eǂ  as formulas (96) and (97) for optically negative crystals. Naturally, the main features of 

the reflection resonance considered above nearly completely persist under new conditions.  
By analogy with (99), let us introduce the excitation factor of an ordinary polariton,  

 
22

0
( Δ ) / (| |/| |) ( Δ )r i r i

e o e o o e
y

oe oeK ǅ , ǂ r ǅ, ǂ
=

= =P P u u ,                        (135) 

where r
ou  and i

eu  are the group velocities (3) of the excited and incident waves (in zero 

approximation): ˆ| | /r
o oc n=u , ˆ| | /i

oe c B n=u . 
The analysis of expressions (133)--(135) shows that, when  

 2 0ˆ ˆ
max o eǅ n Ǉ / p′= ,        2Δ max

e eǂ |Ǉ | /ǋ′′= − ,                                       (136)  

a conversion occurs (ree = 0); i.e., the amplitude of the extraordinary reflected wave strictly 

vanishes. As a result, again a pumped polariton--plasmon arises in which the primary mode 

is the localized mode (an ordinary polariton in the crystal and a plasmon in the metal) 

whose intensity on the interface is much greater than the intensity of the incident pumping 

wave, which is clear from the expression for the absolute maximum of the excitation factor:  

 ( )2 0ˆ ˆΔ max max
oe max e oe e o eK ǅ , ǂ K p n / ǆ Ǉ B′≡ = .                                      (137)  

Substituting here 0
3

ˆ 1ep |c | Ǆ= − , we can easily see that again the factor max
oeK  is optimized 

for c1 = 0 when c3 ≈ 1. In this case,  

 
1max e o

eo
o e

ǆ ǆ
K

Ǉ ǆ ǆ
−

=
′

.                                                        (138) 

Formulas (138) and (126) turn into each other under the interchange e ↔ o.  
The penetration depth of the polariton into the crystal in the pumped configuration is  

 0 / 2o od ǌ πǆ |Ǉ |′′= .                                                       (139)  

In the neighborhood of coordinates (136) of the absolute maximum (137), a peak of the 

excitation factor Koe(
2ǅ , ǂΔ e) is formed whose configuration is qualitatively correctly 

illustrated in Figs. 8 and 9. The half-widths of the curves that arise in two sections of this 

peak 
max

ee ǂǂ ΔΔ ≡  and 
22

maxǅǅ ≡  are, respectively, given by  

 2 0
1/2

ˆ ˆ(Δ ) 4 2 o eǅ n Ǉ / p′= ,   1/2(Δ ) 8 /e eǂ Ǉ |Ǉ | ǋ′ ′′= .                               (140)  

 

The excitation resonance of a bulk polariton in the crystal for ǂΔ e ≥ 0 is also completely 

analogous to the resonance described above. Again the excitation factor is the larger, the 

smaller is the deviation angle ǂΔ e , and again a peak arises with respect to δ 2:  

 
2 0 2

2

2 0 2 2

ˆ4 ( ) /
( ,0)

ˆ ˆ( )
e e

oe

e o

ǅ p ǆ B
K ǅ

ǅ p / n Ǉ Ǉ
=

′ ′′+ +
,                                            (141)  
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the coordinate of whose maximum is given by  

 2 0 0ˆ ˆ ˆ ˆ/ /max o e o eǅ n |Ǉ| p n |Ǉ | p′′= ≈ ,                                               (142)  

and the peak height (the absolute maximum) is given by an analog of (125):  

 2 0ˆ ˆ0 / ( )max
oe oe max o e eK K (ǅ , ) 2n p ǆ B |Ǉ | Ǉ′′ ′= ≈ + .                                   (143)  

As above, the choice of the geometry c1 = 0 optimizes the factor max
eoK  and reduces (143) to 

the following analog of (126):  

 
2max e o

eo
o e

ǆ ǆ
K

|Ǉ | Ǉ ǆ ǆ
−

=
′′ ′+

.                                                   (144)  

The maximum intensity (143), (144) of the bulk wave attained for Δ eǂ = 0 is again 

accompanied by zero integral energy in this wave, because the main part of the incident 

extraordinary wave (except for the absorption in metal) is transferred to a reflected 

extraordinary wave. However, as is shown in Subsection 5.5, even a small increase in the 

angle of incidence from the value Δ eǂ = 0 substantially improves the energy distribution 

between reflected waves with a small loss in the amplitude of the excitation factor. This fact 

can easily be verified quantitatively by analyzing formulas (127) and (128) upon the 

interchange of the indices o ↔ e.  

6. Recommendations for setting up an experiment 

The resonance discussed is completely attributed to the anisotropy of the crystal and the 

shielding of the wave field in the crystal by metallization of the surface. Therefore, one 

should choose a crystal with large anisotropy factor | Ǆ  -- 1| and a metal with low surface 

impedance Ǉ . This will guarantee the maximum intensity of the wave excited during 

reflection (see formulas (112), (140) and (128), (145)).  
The orientation of the working surfaces of a sample is determined by the optical sign and 
the permittivities of the crystal and by the impedance of the metal coating at a given 
wavelength. As shown above, the optical axis should be chosen to be orthogonal to the 
propagation direction x: c1 = 0 (Fig. 1). In optically positive and negative crystals, this axis 

should make angles of θmax and 90° -- θmax , respectively, with the metallized surface. When a 
surface polariton--plasmon is excited in an optically positive crystal, we have  

 arctanmax maxθ ǅ= ,         2 o
max

e o

Ǉ ǆǅ
ǆ ǆ
′

=
−

.                                        (145)  

If the goal of the experiment is to obtain an intense bulk reflected wave, then one should 
change 2

maxǅ  to 2 2
max maxǅ ǅ Ǉ | /Ǉ′′ ′=  (i.e., Ǉ |Ǉ |′ ′′→ ) and θmax to maxθ  in (145). For optically 

negative crystals, appropriate angles θmax and maxθ  are defined by the same formulas (145) in 
which the indices o and e should be interchanged. For sodium nitrate crystals, the angles 
θmax and maxθ  are given in Table 2. 
 In an optically positive crystal in which a surface polariton--plasmon is excited, the input 
surface for a normally incident initial wave should be cut at the angle   
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 ˆ Δ max
e e eǂ ǂ ǂ= + ,       

2

2

( 1)(1 )
ˆ arctan

1
max

e

max

Ǆ ǅǂ
Ǆǅ

− +
=

+
,      

2

Δ
2 1

max o
e

|Ǉ | ǆǂ
Ǆ
′′

= −
−

.            (146)  

In the case of excitation of a bulk polariton, one should make the following changes in (146): 
ˆ

eǂ  → ˆ
eǂ  and 2

maxǅ  → 2
maxǅ . The expressions for ˆ

eǂ  and ˆ
eǂ  following from (146) are exact. 

We did not decompose them with respect to the parameters 2
maxǅ  and 2

maxǅ , because they are 

not small enough at some wavelengths. To successfully observe a resonance, one should 

determine the angles of incidence as precisely as possible, especially when the angular 

width of the resonance is small.  
In an optically negative crystal, instead of (146) we have  

 ˆ Δ max
o o oǂ ǂ ǂ= + ,       ˆ arctan 1 1oǂ / Ǆ= − ,       

2

Δ
2 1 1

max o
o

|Ǉ | ǆǂ
/ Ǆ
′′

= −
−

.                (147)  

Here the limiting angle ˆ
oǂ  is insensitive to the perturbation of c3, being the same for the 

excitation of localized and bulk polaritons (see Table 2).  
The output surface for the excited bulk wave should be orthogonal to its refraction vector, 
determined in an optically positive or negative crystal by the angle βo or βe (Figs. 2a and 7b): 

 ( )arctano oǃ |Ǉ | ǆ′′= ,        ( )arctane eǃ |Ǉ | ǆ / Ǆ′′=  .                            (148)  

For optically negative crystals, the angle βe is naturally different from the slope angle φe of its 
ray velocity ue in the reflected beam (see Figs. 7b and 11).  
A correct choice of the polarization of the incident laser beam allows one to avoid the 
occurrence of a parasitic beam as a result of birefringence at the input of the crystal, i.e., 
additional loss of the energy of the incident beam. According to (45) and (50) for c1 = 0, the 
polarization of the wave at the input should be of TE type in zero approximation δ = 0): the 
field ei is parallel to the z axis for crystals of both optical signs. In a more precise analysis  
(δ = δmax), the polarization vector ei should be turned (about the vector ni) through an angle 
ψ. When exciting a surface polariton--plasmon, in the first approximation this angle is given 
by  

 arctan( / )maxǙ ǅ Ǆ≈ ;                                                      (149)  

in optically negative crystals, this rotation is clockwise, whereas, in optically positive 
crystals, counterclockwise. Table 2 shows that the angle ψ is small.  

The situation is changed when one deals with the excitation of a bulk wave. Now the 

optimized polarization of the incident wave is defined by the same Eq. (149) in which δmax is 

replaced by maxǅ . In this case, the rotation angle ψ sharply increases, while the accuracy of 

approximation substantially degrades (at least for the visible range). It seems that in this 

case it is better to choose an optimal polarization of the initial wave experimentally. 

As we have seen, the resonance width with respect to the angle of incidence sharply 

decreases when passing to the infrared region to values of ( ǂΔ o,e)1/2 ≈ 0.1. This imposes a 

constraint on the divergence of the initial laser beam: the higher the divergence of a beam, 

the larger part of this beam goes out of resonance. One should also take into account that, by 

narrowing down the beam at the input, we increase its natural diffraction divergence.  
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