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1. Introduction  

Induction machines are more rugged, compact, cheap and reliable in comparison to other 
machines used in similar applications. Vector controlled induction motor drive outperforms 
the dc motor drive because of higher transient current capability, increased speed range and 
lower rotor inertia.  
Sensors widely used in electric drives degrade the reliability of the system especially in 
hostile environments and require special attention to electrical noise. Moreover, it is difficult 
to mount sensors in certain applications in addition to extra expenses involved. Therefore, a 
lot of researches are underway to develop accurate speed estimation techniques. With 
sensorless vector control we have a decoupled control structure similar to that of a 
separately excited dc motor retaining the inherent ruggedness of the induction motor at the 
same time. Speed sensorless control technique first appeared in (Abbondante & Brennen, 
1975). The commonly used methods for speed estimation are Model Reference Adaptive 
System (MRAS) (Schauder, 1992; Tajima & Hori, 1993; Peng & Fukao, 1994; Choy et al., 
1996), Neural Networks (Simoes & Bose, 1995; Fodor et al., 1995; Ben-Brahim & Kudor, 1995; 
Kim et al., 2001; Toqeer & Bayindir, 2003; Haghgoeian et al., 2005), Extended Kalman Filter 
(EKF) (Kim et al.,1994, Comnac et al., 2001; Ma & Gui, 2002; Du et al., 1995; Thongam & 
Thoudam, 2004) and Nonlinear Observer (Bodson et al., 1995; Liu et al., 2001, Pappano et al., 
1998).  
The aim of this chapter is to provide with a brief overview of high performance sensorless 
induction motor drive. There exist two approaches to speed estimation for sensorless control 
of induction machine: non model based approach and model based approach. The non 
model based technique tracks a machine anisotropy: either saturation for flux estimation or 
rotor slotting for rotor position estimation, whereas the model based technique rely mostly 
on back emf voltage associated with fundamental component excitation of the machine.  
Model-based observers are considered very well adapted for state estimation and allow, in 
most cases, a stability proof and a methodology to tune observer gains. Among the 
observers the reduced order observers are more frequently implemented than the full order 
ones as they don’t require heavy computations. Two sensorless vector control strategies 
using machine model-based estimation are presented in this chapter.   
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2. Speed estimation 

Rotor speed has been considered as a constant by many researchers in speed estimation 
problem (Schauder, 1992; Tajima & Hori, 1993; Peng & Fukao, 1994; Kim et al., 1994;  
Comnac et al., 2001; Ma & Gui, 2002; Du et al., 1995; Minami et al., 1991; Veleyez-Reyes & 
Verghese., 1992; Veleyez-Reyes et al., 1989). The idea is that the speed changes slowly 
compared to electrical variables. Adopting such an approach allowed speed estimation 
without requiring the knowledge of mechanical parameters of the drive system such as load 
torque, inertia etc. In (Schauder, 1992; Tajima & Hori, 1993; Peng & Fukao, 1994) speed was 
estimated using model reference adaptive system considering it as an unknown constant 
parameter. In (Kim et al., 1994; Comnac et al., 2001; Ma & Gui, 2002; Du et al., 1995) the 
speed was considered as an unknown constant state of the machine and extended kalman 
filter (EKF) was used to estimate it. Recursive least square estimation method was used in 
(Minami et al., 1991; Veleyez-Reyes & Verghese, 1992; Veleyez-Reyes et al., 1989) for speed 
estimation considering speed as an unknown constant parameter and found out the value of 
estimated speed that best fits the measured and calculated data in the dynamic equations of 
the motor. 
In this section we present a sensorless vector control strategy using machine model-based 
speed estimation (Thongam & Ouhrouche, 2007).  The proposed method does not require 
taking derivative of the measured signals unlike that of (Peng & Fukao, 1994; Minami et al., 
1991; Veleyez-Reyes & Verghese, 1992; Veleyez-Reyes et al., 1989). The method is also 
simpler to implement than implementing EKF. In this method the model of the motor used 
for estimation is derived by introducing a new variable which is a function of rotor flux and 
speed assuming that rotor speed varies slowly in comparison to electrical states and hence 
its derivative can be conveniently equated to zero in the machine model used for estimation.  
The sensorless method presented here in this chapter is based on observing this new 
variable. A reduced order observer is implemented for estimating the new variable using 
which the rotor speed is estimated. 

2.1 Induction machine model 

The induction motor model in stationary stator reference frame α β−  may be written in 

vector matrix form as 

 11 12= +r
r s

d

dt
A A i

ψ ψ  (1) 

 21 22 23
s

r s s

d

dt
= + +

i
A A i A vψ  (2) 

where ( )11 r rR / L ω= − +A I J , ( )12 m r rL R / L=A I , ( ){ }21
m

r r
s r

L
R / L

L L
ω

σ
= −A I J , 

( ) ( ){ }2 2
22 / /s s r m s rR L R L L Lσ σ= − +A I , ( )23 1 s/ Lσ=A I , 

1 0

0 1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I , 
0 1

1 0

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

J , 

T

r r rα βψ ψ⎡ ⎤= ⎣ ⎦ψ is the rotor flux, 
T

s s si iα β⎡ ⎤= ⎣ ⎦i is the stator current, 
T

s s sv vα β⎡ ⎤= ⎣ ⎦v is 

the stator voltage and 21 /( )m s rL L Lσ = − is the leakage coefficient. 
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Now, we introduce a new quantity into the motor model which when introduced will make 
the right hand side of conventional motor model given by equations (1) and (2) independent 
of the unknowns – the rotor flux and speed.  Let’s define the new quantity as 

 11 r= −Z A ψ  (3) 

A new motor model is obtained after introducing the new quantity as given below: 

 12 14
r

s

d

dt
= +A i A Z

ψ
 (4) 

 22 23 24
s

s s

d

dt
= + +

i
A i A v A Z  (5) 

 32 34s

d

dt
= +

Z
A i A Z  (6) 

where 14 = −A I , ( ){ }24 /m s rL L Lσ=A I ,  ( ) ( )2 2
32 / /m r r m r rL R L L R Lω= −A I J  and 34 11=A A . 

2.2 Observer structure and speed estimation 

The proposed speed estimation algorithm is based on observing the newly defined quantity 
which is a function of rotor flux and speed. Equation (5) and (6) are used for constructing a 
Gopinath’s reduced order observer (Gopinath, 1971) for estimating the newly defined 
quantity. The observer is as given below 

 32 34

ˆˆ
ˆ s s

s

d dd

dt dt dt

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠

i iZ
A i A Z G  (7) 

where 1 2

2 1

g g

g g

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

G  is the observer gain. Using equation (5) for 
ˆ
sd

dt

i
 the observer equation 

becomes 

 32 34 22 23 24

ˆ
ˆ ˆs

s s s

dd
v

dt dt

⎛ ⎞= + + − − −⎜ ⎟
⎝ ⎠

iZ
A i A Z G A i A A Z  (8) 

The observer poles can be placed at the desired locations in the stable region of the  
complex plane by properly choosing the values of the elements of the G matrix. In order to 
avoid taking derivative of the stator current in the algorithm we introduce another new 
quantity 

 ˆ
s= −D Z Gi  (9) 

Finally, the observer is of the following form: 

 ( ) ( )32 34 22 24 23 34 24s s

d

dt
= + − − − + −F A A G GA GA G i GA v A GA D ` (10) 
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 ˆ
s= +Z D Gi  (11) 

The block diagram of the Z observer is shown in Fig. 1. 

 

Fig. 1. Block diagram of Z observer 

Assuming no parameter variation and no speed error, the equation for error dynamics is 
given by 

 ( ) ( )34 24
ˆd d

dt dt
= − = −Z Z Z A A G Z# #  (12) 

Eigenvalues of ( )34 24−A A G are the observer poles which are as given below: 

 1,2 1 2
m mr

obs
r s r s r

L LR
P g j g

L L L L L
ω

σ σ
⎛ ⎞ ⎛ ⎞

= − + ± −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (13) 

The desired observer dynamics can be imposed by proper selection of observer gain G.  

Next, let’s see how the rotor speed is computed. It can be seen that the observed quantity is 

a function of rotor flux and speed. Performing matrix multiplication of T
rψ J  with equation 

(3) we have 

 ( )2 2
r r r rZ Zα β β α α βψ ψ ψ ψ ω− = +  (14) 

This is a simple equation which does not involve derivative or integration. To use it directly 

for speed computation we need to know the rotor flux; and as for Zα and Zβ  we can use the 

estimated values. The required flux is obtained from the reference. Rearranging the above 

equation we have the equation used for rotor speed computation as given by 

 
* *

2 2* *

ˆ ˆ
ˆ

r r

r r

Z Zα β β α

α β

ψ ψ
ω

ψ ψ

−
=

+
 (15) 

The coefficient matrices A32  and A34 in the observer equation are updated with the estimated 
values of rotor speed.  

34 24−A GA

32 34 22 24+ − −A A G GA GA G

sv  

si  

 G  

_ 

+ 

+ 

+

+ 

Ẑ  
23GA

D
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It is to be noted here that the model of the motor used in implementing the observer 

algorithm has been developed assuming that the derivative of the rotor speed is zero. It is 

valid to make such an assumption since the dynamics of rotor speed is much slower than 

that of electrical states. Moreover, such an assumption allows estimation without requiring 

the knowledge of mechanical quantities of the drive such as load torque, inertia etc. 

2.3 Simulation results 

Simulation is carried out in order to validate the speed estimation algorithm presented. The 

block diagram of the sensorless indirect vector controlled induction motor drive 

incorporating the proposed speed estimator is shown in Fig. 2. The results of simulation are 

shown in Fig. 3 - Fig. 5. 

 
 

 
 

Fig. 2. Sensorless indirect VC induction motor drive 

Initially, the drive is run at no load. It is accelerated from rest to 150 rad/s at 0.15 sec. and 

then, the speed is reversed at 2.5 sec. The speed is reversed again at 5.5 sec. The speed of the 

motor ( )ω , estimated speed ˆ( )ω and reference speed *( )ω are shown in Fig. 3 (a). Fig. 3 (b) 

shows speed estimation error ˆ( )ω ω− .  The newly defined quantity ( )Z   and its estimated 

value ˆ( )Z  are shown in Fig. 3 (c) and its estimation error ˆ( )Z Z− is shown in Fig. 3 (d).   
The estimation algorithm and the drive response are then verified under loading and 

unloading conditions. The unloaded drive is started at 0.15 sec and full load is applied at 1 

sec; then load is completely removed at 2 s. Later, after speed reversal, full load is applied at 

4 sec and the load is completely removed at 5 sec.  Fig. 4 shows the speed estimation result 

and response of the sensorless drive system. 

Then, the sensorless induction motor drive is run under fully loaded condition at various 

operating speeds. The drive is started at full load at 0.15 s to 150 rad/s and the speed is 

reduced in steps in order to observe the response of the loaded drive at various speeds. Fig. 

5 shows the estimation results and response of the loaded drive. 
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Fig. 3. Acceleration and speed reversal at no load; (a) reference, actual and estimated speeds; 

(b) speed estimation error; (c) actual Z  and estimated Z  and (d) Z estimation error  

 

0 1 2 3 4 5 6
-200

-100

0

100

200

Time [ s ]
     ( a )    

S
p

e
e
d

 [
 r

a
d

/s
 ]

0 1 2 3 4 5 6
-15

-10

-5

0  

5

10

15

 Time [ s ]
        ( b )      

S
p

e
e
d

 e
st

im
a
ti

o
n

 e
rr

o
r 

 [
 r

a
d

/s
 ]

0 1 2 3 4 5 6

0

20

40

60

80

100

120

Time [ s ]
       ( c )      

Z

0 1 2 3 4 5 6
-3

-2

-1

0 

1

2 

3 

 Time [ s ]
       ( d )      

Z
 e

st
im

a
ti

o
n

 e
rr

o
r

Reference speed

Estimated speed

Actual speed

Actual Z

Estimated Z

 

Fig. 4. Application and removal of load; (a) reference, actual and estimated speeds; (b) speed 

estimation error; (c) actual Z  and estimated Z  and (d) Z estimation error 
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Fig. 5. Operation at full load at various speeds; (a) reference, actual and estimated speeds; 

(b) speed estimation error; (c) actual Z  and estimated Z  and (d) Z estimation error 

2.4 Improvement in speed estimation 

It is observed that the estimation algorithm presented above gives good estimation accuracy 

under both dynamic and steady state conditions. However, it is found that the estimation 

accuracy decreases with decrease in speed. This is because of the fact that the estimation 

algorithm uses the command flux for speed estimation and not the actual rotor flux which 

however is little bit different from the command value.  With the reduction in speed Z 

decreases and therefore the flux error is more prominently visible in the estimated speed. The 

problem is overcome in this section by using a rotor flux observer based on the voltage model 

of the machine along with the observer of the newly defined quantity. This allows accurate 

speed estimation in various operating ranges. The speed is computed using (15) after replacing 

the command flux by the estimated one. Further, due to the obvious advantages of dc current 

regulators over ac current regulators as regards its robustness, and load and operating point 

independence (Rowan & Kerkman, 1986) the control system uses dc current regulators. The 

rotor flux estimator and the control scheme are presented in the following subsections. 

2.4.1 Flux estimation 

The voltage model of induction motor is given by 

 { }( )r
r s s s s s

m

L
R dt L

L
σ= − −∫ψ v i i  (16) 

The rotor flux can be estimated using (16). However, the integration in (16) produces a 
problem of dc off-set and drift component in low speed region. Therefore, a first order low 

www.intechopen.com



 Electric Machines and Drives 

 

84 

pass filter (LPF) is used instead of integration. The phase error in the low speed region 
produced due to LPF is approximately compensated by adding low pass filtered reference 
flux with the same time constant as above, and producing the estimated rotor flux (Ohtani et 
al., 1992). The estimator equation is given as 

 * 1
ˆ ( )

1 1 1

r
r s s s s s r

m

L s
R L

L s s s

τ τσ
τ τ τ

⎧ ⎫= − − +⎨ ⎬
+ + +⎩ ⎭

ψ v i i Ψ  (17) 

where τ is the LPF time constant. The command rotor flux *
rΨ  in (17) is obtained as follows: 

 
* * *
r r*

r * * *
r r

cos

sin

α

β

Ψ Ψ ρ

Ψ Ψ ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

Ψ  (18) 

where * *
r m sdL iΨ =  and *ρ , the command rotor flux angle,  is as given by 

 * *
e dtρ ω= ∫  (19) 

*
eω , the command rotor flux speed, is computed as given below 

 * *
e sl ˆω ω ω= +  (20) 

The command slip speed *
slω  is given by 

 
*

*

*

r qs
sl

r ds

R i

L i
ω =  (21) 

2.4.2 Speed estimation 

The equation (15) after modification is used for speed computation. In place of reference 
flux, estimated flux is used for speed computation as given below  

 
2 2

ˆ ˆˆ ˆ
ˆ

ˆ ˆ

r r

r r

Z Zα β β α

α β

ψ ψ
ω

ψ ψ

−
=

+
 (22) 

2.4.3 Simulation results 

Simulation is carried out in order to verify the accuracy of the estimation algorithm and to see 

the response of the sensorless drive system. The block diagram of sensorless vector controlled 

induction motor drive incorporating the flux and speed estimators is shown in Fig. 6.  

First, the sensorless drive is run at no load at various speeds to verify the performance of the 

observer under no load condition. The drive is started at no-load and is run at various 

speeds by increasing it in steps to 10 rad/s, 50 rad/s, 100 rad/s and 150 rad/s at 0.3 sec, 1.5 

sec, 3 sec and 4.5 sec respectively. The speed of the motor ( )ω , estimated speed ˆ( )ω , 

reference speed  *( )ω  and speed estimation error ˆ( )ω ω−  are shown in Fig. 7 (a). Fig. 7 (b) 

shows the actual Z, estimated Z and Z estimation error ( ˆZ Z− ).  
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Fig. 6. Sensorless vector controlled induction motor drive 

Then, the performance of the estimator and drive response are verified on loading and 
unloading. The drive is started at no-load at 0.25 s to a speed of 150 rad/s and full load is 
applied at 1 sec and then the load is removed completely at 2 sec. Later, after speed reversal, 
full load is applied at 4 s and the load is completely removed at 5 sec. The response of the 
drive on application and removal of load is shown in Fig. 8. 
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Fig. 7. No load operation at various speeds; (a) reference, actual, estimated speeds, and 
speed estimation error; (b) actual Z, estimated Z, and Z estimation error 
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Fig. 8. Application and removal of load; (a) reference, actual, estimated speeds, and speed 
estimation error; (b) actual Z, estimated Z, and Z estimation error. 
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Fig. 9. Full load operation at various speeds; (a) reference, actual, estimated speeds, and 
speed estimation error; (b) actual Z, estimated Z, and Z estimation error. 
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The estimator performance and drive response are then verified under fully loaded 
condition of the drive at various operating speeds. The fully loaded machine is accelerated 
to 150 rad/s at 0.3 s, and then the speed is reduced in steps to 100 rad/s, 50 rad/s and 10 
rad/s at 1.5 sec, 3 sec and 4.5 sec respectively. Fig. 9 shows the estimation results and 
response of the drive during the operation. 
Good speed estimation accuracy was obtained under both dynamic and steady state 
conditions under various operating conditions and response of the VC induction motor 
drive incorporating the estimation algorithms was found to be good. The speed estimation 
algorithm presented in this section depends upon the knowledge of the rotor flux, whereas, 
the rotor flux estimator is independent of rotor speed and requiring only the measurable 
stator terminal quantities, the stator voltage and current.  

3. Flux and speed estimation 

Induction machines do not allow rotor flux to be easily measured. The current model and 

the voltage model are the traditional solutions, and their benefits and drawbacks are well 

known. Various observers for flux estimation were analyzed in the work by Verghese and 

Sanders (Verghese & Sanders, 1988) and Jansen and Lorenz (Jansen & Lorenz, 1994). Over 

the years several other have been presented, many of which include speed estimation 

(Tajima & Hori, 1993; Kim et al., 1994; Ohtani et al., 1992; Kubota et al., 1993; Sathiakumar, 

2000; Yan et al., 2000).  

Tajima & Hori (Tajima & Hori, 1993) proposed MRAS (Schauder, 1992) with novel pole 

allocation method for speed estimation while rotor flux estimation was done using 

Gopinath’s observer. Extended Kalman Filter was used in (Kim et al., 1994) for estimating 

the rotor flux and speed using a full order model of the motor assuming that rotor speed is a 

constant. Ohtani et al (Ohtani et al., 1992) used the voltage model for flux estimation 

overcoming the problem associated with integrator and low pass filter while speed was 

obtained using a frequency controller. A speed adaptive flux observer was proposed in 

(Kubota et al., 1993) for estimating rotor flux and speed. Gopinath style reduced order 

observer was used in (Sathiakumar, 2000) for estimating the rotor flux while the speed was 

computed using an equation derived from the motor model. Yan et al (Yan et al., 2000) 

proposed a flux and speed estimator based on the sliding-mode control methodology.  

In this section, we present a new flux estimation algorithm for speed sensorless rotor flux 

oriented controlled induction motor drive (Thongam & Ouhrouche, 2006). The proposed 

method is based on observing the variable Z introduced in Section 2 which when 

introduced makes the right hand side of the conventional motor model independent of 

rotor flux and speed.  Rotor flux estimation is achieved using an equation obtained after 

introduction of the newly defined quantity into the Blaschke equation or commonly 

known as the current model; while, speed is computed using a simple equation obtained 

using the new quantity Z. 

3.1 Estimation of rotor flux and speed 

The speed computation equation (22) obtained in section 2.4.2 requires the knowledge of 

rotor flux and Z. Here, we present a joint rotor flux and speed estimation algorithm. The 

block diagram of the proposed rotor flux and speed estimation algorithm is shown in 

Fig. 10. 
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Fig. 10. Rotor flux and speed estimator 

Rotor flux may be obtained directly using equation (4) which is obtained after introducing 
the newly defined quantity Z into the Blaschke equation as 

 ( )12 14ˆ r si dt= +∫ψ A A Z  (23) 

However, rotor flux computation by pure integration suffers from dc offset and drift 
problems. To overcome the above problems a low pass filter is used instead of pure 
integrator and the phase error due to low pass filtering is approximately compensated by 
adding low pass filtered reference flux with the same time constant as used above (Ohtani et 
al., 1992). The equation of the proposed rotor flux estimator is given below 

 ( ) *
12 14

1
ˆ

1 1
r s ri

s s

τ
τ τ

= + +
+ +

ψ A A Z Ψ  (24) 

where τ is the LPF time constant. The command rotor flux *
rΨ  is obtained as follows 

 
* * *
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r r m sd* * *
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Ψ  (25) 

The command rotor flux angle *ρ  is obtained by integrating the command rotor flux speed 

as given by 

 * * *
e sl ˆdt ( )dtρ ω ω ω= = +∫ ∫  (26) 

The command slip speed *
slω  is given by 

 
*

*

*

r qs
sl

r ds

R i

L i
ω =  (27) 

We know that the equation of the back emf is given by: 

 ( )12 14
m mr

s
r r

L Ld

L dt L
= = +

ψ
e A i A Z  (28) 
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Fig. 11. Rotor Flux Estimator 

 

 

Fig. 12. Obtaining estimated rotor flux 

Now, equation (24) may also be written as 
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Block diagram of the rotor flux estimator is shown in Fig. 11. Fig.12 explains how estimated 
flux is obtained using equation (29). 

3.2 Simulation results 

Simulation is carried out in order to validate the performance of the proposed flux and 
speed estimation algorithm. The proposed rotor flux and speed estimation algorithm is 
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incorporated into a vector controlled induction motor drive. The block diagram of the 
sensorless vector controlled induction motor drive incorporating the proposed estimator is 
shown in Fig. 13. The sensorless drive system is run under various operating conditions. 

First, acceleration and speed reversal at no load is performed. A speed command of 150 

rad/s at 0.5 s is given to the drive system which was initially at rest, and then the speed is 

reversed at  3 s.  The response of the drive is shown in Fig. 14.  Fig.  14 (a)  shows   reference 

( *ω ),  actual (ω ),  estimated ( ω̂ ) speed, and speed estimation error ( ˆω ω− ). The module of 

the actual ( r| |Ψ ), estimated ( r
ˆ| |Ψ ) rotor flux, and rotor flux estimation error ( r r

ˆ| | | |−Ψ Ψ ) 

are shown in Fig. 14 (b). Fig. 14 (c) and (d) shows respectively the locus of the actual and 

estimated rotor fluxes. 
The drive is then run at various speeds under no load condition. It is accelerated from rest to 
10 rad/s at 0.5 s, then accelerated further to 50 rad/s, 100 rad/s and 150 rad/s at 1.5 s, 3 s 
and 4.5 s respectively. Fig. 15 shows the estimation of rotor flux and speed, and the response 
of the sensorless drive system. 
Then, the drive is subjected to a slow change in reference speed profile (trapezoidal), the 
results of which are shown in Fig. 16. 
 
 

 
Fig. 13. Sensorless vector controlled induction motor drive 
 
Further, the performance of the estimator is verified under loaded conditions at various 

operating speeds. The fully loaded drive is accelerated to 150 rad/s at 0.5 s and then 

decelerated in steps to 100 rad/s, 50 rad/s and 10 rad/s at 1.5 s, 3 s and 4.5 s respectively. 

Fig. 17 shows the estimation results and response of the loaded drive system. 

Then, we test the performance of the estimator on loading and unloading. The drive at rest 

is accelerated at no-load to 150 rad/s at 0.5 s and full load is applied at 1 s; we then remove 

the load completely at 2 s. Later, after speed reversal, full load is applied at 4 s, then, the 

load is removed completely at 5 s. Fig. 18 shows the estimation results and the response of 

the sensorless drive. 

*ω  

dcV  

+ +

+
INVERTER 

−

−

−−

+

IM 

*
sdi

*
sqi

abc

ω̂  
dq

ROTOR FLUX 

& 

SPEED          

ESTIMATOR 

abcdq

si

sv

*
sqv

*
sdv

*
sav

*
sbv

*
scv

*ρ

*
rψ  

FLUX VECTOR   
GENERATION 

+

ˆ
rψ

−
sdisqi*

sqi

*
rΨ

si

www.intechopen.com



Sensorless Vector Control of Induction Motor Drive - A Model Based Approach   

 

91 

0 1 2 3 4 5 6
-200

0

200

S
p

e
e

d
 [

 r
a

d
/s

 ]

Time [ s ]

0 1 2 3 4 5 6
-10

0

10

Time [ s ]

      ( a )     

S
p

e
e

d
 e

s
ti

m
a

ti
o

n
 e

rr
o

r
  

  
  

  
  

  
  

 [
 r

a
d

/s
 ]

  
  

  
  

  
  

 

0 1 2 3 4 5 6
0

0.2

0.4

Time [ s ]

F
lu

x
 [

 W
b

 ]

0 1 2 3 4 5 6
-0.2

0

0.2

Time [ s ]

      ( b )     

F
lu

x
 e

s
ti

m
a

ti
o

n
 e

rr
o

r
  

  
  

  
  

  
  

 [
 W

b
 ]

  
  

  
  

  
  

  
 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.2

0

0.2

Actual ψrα
 [ Wb ]

                         ( c )                       

A
c

tu
a

l 
ψ

r β
 [

 W
b

 ]
  

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.2

0

0.2

Estimated ψrα
 [ Wb ]

                            ( d )                          

E
s

ti
m

a
te

d
 ψ

r β
 [

 W
b

 ]

Reference speed
Actual speed

Estimated speed

Actual flux

Estimated flux

 

Fig. 14. Acceleration and speed reversal of the sensorless drive at no-load 
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Fig. 15. No-load operation of the sensorless drive with step increase in speeds 
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Fig. 16. No-load operation of the sensorless drive with trapezoidal reference speed 
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Fig. 17. Operation of the sensorless drive at full load at various speeds 
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Fig. 18. Drive response on application and removal of load 

4. Conclusion and future works 

In this chapter we have presented some methods of sensorless vector control of induction 
motor drive using machine model-based estimation. Sensorless vector control is an active 
research area and the treatment of the whole model based sensorless vector control will 
demand a book by itself.  
First, a speed estimation algorithm in vector controlled induction motor drive has been 
presented. The proposed method is based on observing a newly defined quantity which is a 
function of rotor flux and speed. The algorithm uses command flux for speed computation. 
The problem of decrease in estimation accuracy with the decrease in speed was overcome 
using a flux observer based on voltage model of the machine along with the observer of the 
newly defined quantity, and satisfactory results were obtained.  
Then, a joint rotor flux and speed estimation algorithm has been presented. The proposed 
method is based on a modified Blaschke equation and on observing the newly defined 
quantity mentioned above. Good estimation accuracy was obtained and the response of the 
sensorless vector controlled drive was found to be satisfactory. 
The mathematical model of the motor used for implementing the estimation algorithm was 
derived with the assumption that the rotor speed dynamics is much slower than that of 
electrical states. Therefore, increase in estimation accuracy of the proposed algorithms will 
be observed with the increase in the size of the machine used.      
The machine model developed in this chapter may be used in future for machine parameter 
estimation. The newly defined quantity presented in this chapter contains rotor resistance 
information as well, in addition to that of rotor flux and speed. Therefore, future research 
efforts may be made towards developing rotor resistance estimation algorithm using the 
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new machine model. Further, in the proposed algorithms rotor flux was necessary for speed 
estimation. Future research efforts may also be made towards developing a speed 
estimation algorithm for which the knowledge of rotor flux is not necessary.  
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