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Nicolae D.V 
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South Africa    

1. Introduction  

Generally, some electric machines such as induction machines and synchronous reluctance 
motors require reactive power for operation. While the reactive power required by a 
synchronous machine can be taken from the power source or supplied by the machine itself 
by adjustment of the field current, the power factor of an induction machine is always 
lagging and set by external quantities (i.e., the load and terminal voltage).  Poor power 
factor adversely affects the distribution system and a cost penalty is frequently levied for 
excessive VAr consumption.  
Power factor is typically improved by installation of capacitor banks parallel to the motor. If 
the capacitor bank is fixed (i.e. that it can compensate power factor only for a fixed load), 
when the load is variable, then the compensation is lost. Some authors (El-Sharkawi et al, 
1984, Fuchs and Hanna, 2002) introduced the capacitors using thyristor/triac controllers; by 
adjusting the firing angle, the capacitance introduced in parallel with the motor becomes 
variable and thus compensating the power factor for any load. Other works (Suciu et al, 
2000.) consider the induction motor as an RL load and power factor is improved by inserting 
a variable capacitor (through a bridge converter) which is adjusted for unity according with 
the load. For the above methods, the capacitive injection is directly into the supply.  Another 
method conceived for slip ring induction motor was to inject capacitive reactive power 
direct into the rotor circuit (Reinert and Parsley, 1995; Suciu, et al. 2002). 
The injection of reactive power can be done through auxiliary windings magnetically 
coupled with the main windings (E. Muljadi et al. 1989; Tamrakan and Malik, 1999; 
Medarametla et al. 1992; Umans, and H. L. Hess, 1983; Jimoh and Nicolae, 2006, 2007). This 
compensating method has also been applied with good results not only for induction 
motors but also for a synchronous reluctance motor (Ogunjuyigbe et al. 2010).  

2. Method description 

2.1 Physical solution 

The method described in this chapter makes use of two three-phase stator windings. One 
set, the main winding (star or delta), is connected directly to the source. The other set of 
windings - auxiliary, is only magnetically coupled to the main winding. All windings have 
the same shape and pitch, but may have different turn numbers and wire sizes; usually 
smaller in order to be accommodated in the slots together with the stator. The windings are 
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arranged in slots such that there is no phase shift between the two windings. Figure 1 shows 
a possible arrangement of the windings for a four pole induction machine. 
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Fig. 1. High Power factor induction machines-windings arrangement 

2.2 Auxiliary windings connections 

As mention above, the main winding can have delta or star connection. Figure 2 shows the 
main winding connected in star and the auxiliary windings connected in generic (a), star (b) 
and delta (c) to the capacitor bank via a static switch. 
Figure 3 shows a simpler way to inject capacitive reactive power. In this method, the 
auxiliary windings are in “single –phase connection” with the apparent advantage of using 
only one capacitor and static switch. 

2.3 Variable Capacitors 

In order to achieve a compensation for various loading of the machine, the compensating 
capacitor should be able to be varied. This capability is obtained through connecting a fixed 
capacitor via a static switch. The static switch can be achieved using thyristors or IGBTs in 
bidirectional configuration. 
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Fig. 2. Auxiliary windings: a) generic connection; b) star connection; c) delta connection 
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Fig. 3. Auxiliary windings: “single –phase connection” 
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2.3.1 Thyristor-based variable capacitor 

Figure 4 shows the use of thyristor to accomplish a variable capacitor. The inductor Lr is 
introduced to reduce – limit the surge current; it is relatively small and does not affect the 
overall capacitive behaviour. 
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Fig. 4. Variable capacitor using bidirectional thyristor 

The equivalent capacitance depends on the delay angle. Due to the phase angle control, the 
device introduces harmonic currents. 

2.3.2 IGBT-based variable capacitor 

The above drawback can be address using IGBTs in bidirectional configuration (Figure 5) 
and a switching frequency higher then operational frequency (50 Hz). 
 

 

 

Fig. 5. IGBT in bidirectional topology 

Figure 6 shows a configuration to achieve a variable capacitor using two bidirectional static 
switches. The main capacitor C1 is introduced in the auxiliary winding circuit, via a 
bidirectional switch Sw1, for a period of time depending on the duty cycle (├) of the 
switching frequency; in this time the bidirectional switch Sw2 is OFF. When Sw1 is OFF, the 
capacitor is discharged. The reactor Lr limits the capacitive surge current without affecting 
the capacitive behaviour. 
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Fig. 6. Variable capacitor using two IGBTs in bidirectional topology 
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The capacitor C2, much smaller than C1 is connected to mitigate the voltage spikes during 
switching off the main capacitor. Thus, the equivalent capacitor can be written as: 

 eq 1 2C =δ×C +C  (1) 

2.3.3 Variable capacitor H-topology 

Figure 7 shows a single-phase H topology to achieve a variable capacitor. This 
configuration using H-bridge bidirectional topology obtains a higher equivalent capacitance 
for the same fixed one as reference. In this configuration, the reactor Lr has the same 
purpose of limiting the surge capacitive current, while C2 also of small value mitigates the 
voltage spikes. The equivalent capacitance could be express as: 

 
( )

1
eq 2 2

C
C =C +

2δ-1
 (2) 

It can be notice that the equivalent capacitance could increase significant when the duty 
cycle approaches 50 %. In practice, the switches are not ideal and there is no “infinite 
increase” of the equivalent capacitance. 
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Fig. 7. Variable capacitor using H-bridge bidirectional topology 
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Fig. 8. Variable capacitor using three-phase H-bridge topology 
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Another solution to achieve a variable capacitance, or rather to generate a capacitive current 
was proposed using a three-phase H topology as PWM inverter (E. Muljadi, et al 1989; 
Tamrakan and Malik, 1999) as presented in Figure 8. The converter injects capacitive 
reactive power into auxiliary windings and thus improving the power factor of the motor. 

3. Mathematical model 

The machine is treated as having two three-phase windings and the voltages equations 
system can be written as: 

 abcs 1 abc abc

d
[V ]=[R ][I ]+ [λ ]

dt
 (3) 

 2 xyz xyz xyz

d
0=[R ][I ]+ [λ ]+Vc

dt
 (2) 

 r abcr abcr

d
0=[R ][I ]+ [λ ]

dt
 (5) 

where  

 
T

abc a b cV = V V V⎡ ⎤⎣ ⎦  (6) 

 
T

abcs a b cI = I I I⎡ ⎤⎣ ⎦ ;  
T

abc a b cλ = λ λ λ⎡ ⎤⎣ ⎦  (7) 

 
a

1 b

c

r 0 0

[R ]= 0 r 0

0 0 r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  
x

2 y

z

r 0 0

[R ]= 0 r 0

0 0 r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(8) 

Note that indices “1” refer to the main winding and “2” to the auxiliary winding. 

 

abc abcsxyz abcsrabcs abcs

xyz xyzabcs xyz xyzabcr xyz

abcr abcrs abcrxyz abcr abcr

L L Lλ I

λ = L L L I

λ L L L I

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (9) 

The inductances in eq. (9) are time dependent, and this make the equation difficult and time 
consuming to solve. In order to obtain constant parameters, the voltage equations (3-5) are 
then transformed to the rotor reference frame. To achieve this, the equations are multiplied 
with an appropriate transformation matrix K(θ) to obtain: 

 abcs 1 abcs abcs

d
[K(θ)][V ]=[R ][K(θ)][I ]+ [K(θ)][λ ]

dt
 (10) 

 2 xyzs xyzs cxyzs

d
0=[R ][K(θ)][I ]+ [K(θ)][λ ]+ Kθ V

dt
⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  (11) 
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r r abcr r abcr

d
0=[R ][K(θ )][I ]+ [K(θ )][λ ]

dt
 (12) 

When these equations are expanded, after substantial matrix manipulations, it resolves to:  

 
qdo1 s1 qdo1 qd01 qdo1

d
V = R I + λ + λ

dt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ϖ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (13) 

 
2 qdo2 qd02 qdo2 qd02

d
0= R I + λ + λ + Vc

dt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ϖ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (14) 

 
r qdor qd0r r qdo1

d
0= R I + λ + λ

dt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ϖ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦   (15) 

where  

 

0 1 0

1 0 0

0 0 0

⎡ ⎤
⎢ ⎥ϖ = ω −⎢ ⎥
⎢ ⎥⎣ ⎦

;

0 1 0

( ) 1 0 0

0 0 0

⎡ ⎤
⎢ ⎥ϖ = ω−ω −⎢ ⎥
⎢ ⎥⎣ ⎦

r r
  (16) 

and  

 
qdo2 qd02 qd02

1
Vc = I dt+ Vc

C
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ϖ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫  (17) 

Neglecting the ‘0’ sequence since we initially are assuming a balanced system, the 
expression for the stator and rotor flux linkages, resolves into the matrix: 

 

q1 q1ls1 m lm m m

d1 d1ls1 m lm m m

q2 q2lm m ls2 m m

lm m ls2 m md2 d2

m m lsr mqr qr

m m lsr mdr dr

λ IL +L 0 L +L 0 L 0

λ I0 L +L 0 L +L 0 L

λ IL +L 0 L +L 0 L 0
=

0 L +L 0 L +L 0 Lλ I

L 0 L 0 L +L 0λ I

0 L 0 L 0 L +Lλ I

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (18) 

4. Equivalent model 

4.1 Symmetrical loaded auxiliary windings 
When each phase of the auxiliary windings is loaded with equal capacitors (C), eventually 
star connected, the entire circuit is having a symmetrical behaviour and the equivalent 
circuit is very simple as shown in Figure 9.  
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Fig. 9. Equivalent circuit for symmetrical loading auxiliary winding 
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This equivalent circuit has two branches, each having separate resistance (R1 – main and R2 - 
auxiliary) and leakage reactance (Ll1 – main and Ll2 – auxiliary) together with a common 
mutual leakage inductance Llm, which occurs due to the fact that the two set of windings 
occupy the same slots and therefore mutually coupled by their leakage flux. The mutual 
inductance that occurs between main winding and rotor is represented by Lm. 
Other parameters of the equivalent circuit are: main winding resistance R1, auxiliary 
winding resistance R2, main winding leakage reactance L1, auxiliary winding leakage 
inductance L2; mutual leakage inductance Llm, rotor leakage inductance Llr; and the rotor 
resistance Rr and “s” is the slip. 
In this analysis there is no need to refer the auxiliary winding quantities to the main 
winding, because the two sets of windings are wound for the same number of turns with a 
transformation ratio of one. 
The above equivalent circuit helps us to determine the input impedance seen from the 
supply and the condition for unity power factor. 

 
( ) ( )

( ) ( )
2 3 2 3 2 3 3 3

in 1 l1

2 3 2 3

R R -X X +j X R +X R
Z =R +jX +

R +R +j X +X
 (19) 

Where: R1 and jXl1 are the components of the main winding (per-phase impedance), X2 is the 
equivalent reactance of the auxiliary winding including the compensating capacitor, R2 is 
the resistance (per-phase) of the auxiliary winding, R3 and X3 are the equivalent resistance 
and reactance of the paralleling the rotor branch with magnetizing branch: 

 2 l2

1
X = -X

Cω
  (20) 

 ( ) ( ){ }3 lm r lr mX =Im jX + R /s +jX // jX⎡ ⎤⎣ ⎦  (21) 

 ( ) ( ){ }3 r lr=Re R /s +jX // jXm⎡ ⎤⎣ ⎦R  (22) 

The condition for unity power factor is: 

 { } 0inIm Z =  (23) 

Which, after some mathematical manipulation can be written as: 

 2
2 2┙X +┚X +┛=0  (24) 

With: 

 3 l1┙=X +X  (25) 

 ( )2 3 1 2 3 3 l1┚=-R R + R +R R +2X X  (26) 

 ( ) ( )2 2
3 2 3 2 3 2 l1 2 3 3┛=-X R R - R +R R +X R +R +X⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  (27) 

www.intechopen.com



Electric Motor Performance Improvement Using Auxiliary Windings and Capacitance Injection   

 

33 

The equation (24) together with relations (25) to (27) produces two solutions, which means 
for a given slip (s) there are two values for the capacitor satisfying the condition for unity 
power factor. The practical/recommended value is the high X2 or small C connected to the 
auxiliary winding in order to have a small current through it. 

4.2 Asymmetrical loaded auxiliary windings. 

If the auxiliary windings are connected as “single-phase configuration”, then the system has 
an asymmetrical behaviour. This connection is obtained by connecting in series the three 
auxiliary windings and thus we can write: Ix = Iy = Iz = IX. Using this condition of current in 
the expansion that results to equations (3) – (18) it can be written: Id2 = Iq2 = 0, thus the 
resulting expression from this can be represented in a d-q-0 equivalent circuit of Figure 10 
shown below. 
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Fig. 10. The “d-q-0” equivalent circuit: a) “d” – equivalent circuit; b) “q” – equivalent circuit; 
c) “0” – equivalent circuit 
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The particularity of connecting the auxiliary windings in a single phase winding creates an 
asymmetrical situation which brings about the relevance of the zero sequence. 
The power factor of the machine could be defined by the argument of Za, which is Va/Ia. 
And this is expressed as: 

 q1 01a
a

a q1 01

V +VV
Z = =

I I +I
 (28) 

 01 lm
01 02 02

lm

(Z +Z )
V (C)=(-jωC+Z )×I ×

Z
 (29) 

As can be observed from the equations (28) and (29), the power factor of the machine depends 
on C and thus it can be brought to unity by means of adjusting the equivalent capacitance. 
It should be also noticed that the asymmetrical behaviour of the auxiliary windings 
connected as “single-phase configuration” has got a significant draw-back namely creating 
torque ripple. This disadvantage should not be overseen by the simplicity of the physical 
solution. Given this, further in this, we will consider only the symmetrical loading of the 
auxiliary winding. 

5. Concept validation 

For the validation of this concept of improving performances of the induction motor 
injecting capacitive reactive power via auxiliary windings, a standard 4 kW, 380V, 50Hz, 4 
pole, 36 slots with frame size DZ113A induction motor have been used. The stator was 
rewound with two full-pitches, single layer windings (see Figure 1).The main windings – 
delta connected have same number of turns like in the original motor but the size of the wire 
has been reduced to accommodate the auxiliary windings. The auxiliary windings were 
connected in delta in order to reduce current through them. For this study, the auxiliary 
windings have the same number of turns as main windings. The rotor is unchanged. Table 1 
shows the parameters of the modified motor under test obtained using the IEEE test 
procedure. The mutual leakage inductance Xlm is very small compared to the other 
reactance’s (E. Muljadi et al, 1989).  
 

Description of data Values 

Main Winding Rated Voltage 380 V 

Auxiliary Winding Rated Voltage 380V 

Number of poles 4 

Magnetizing Reactance (Xm) 37.86 Ω 

Main winding phase resistance (R1) 4.33 Ω 

Auxiliary winding phase resistance (R2) 18.1 Ω 

Main winding leakage reactance (Xl1) 6.97 Ω 

Auxiliary winding leakage reactance(Xl2) 6.97 Ω 

Rotor resistance (Rr) 1.35 Ω 

Rotor leakage reactance (Xlr) 1.97 Ω 

Full load main winding current 8.6 A 

Table 1. Specific parameters of the induction motor under test 
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Firstly, the motor was tested without compensation; the results are presented in Table 2. 
 

IL(A) TL(Nm) P(W) S(VA) PF Slip RPM 

5.43 1.83 678.6 3568.7 0.17 0.0026 1496 

5.56 4.73 1734 3655.1 0.43 0.0060 1491 

6.02 5.49 1992 3957.5 0.49 0.0086 1487 

6.88 7.53 2709 4522.9 0.61 0.0153 1477 

7.74 9.89 3540 5088.2 0.70 0.0213 1468 

8.61 12.1 4179 5653.6 0.74 0.056 1416 

Table 2. Experimental data for the motor under test 

5.1 Simulation results 

Based on Matlab platform, a simulation model has been built (Figure 11). The parameters 
from Table 1 have been used for Matlab model after delta-star transformation. 
The rotor resistor was simulated using a variable resistor depending on slip. The model was 
run firstly to show the capability of adjusting the power factor via the static switch. 
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Fig. 11. Basic simulation model 

5.1.1 Thyristor-based variable capacitor 

One of the first solutions to introduce a variable capacitor was to use an “ac-ideal” switch 
based on two thyristors anti-parallel connected. The test was done using a 100 µF and a 
delay angle of 450 for a slip of 0.0026 (no load). This results in a reduction of reactive power 
drawn by the motor from 1193 VAr to 46 VAr. The main drawback of this switching solution 
is the strong distorting currents introduced as could be seen in Figure 12. 
As could be noticed, both currents main and auxiliary are very much distorted. Obviously, 
the power factor compensation is accompanied with degrading of all other performances of 
the motor. 
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Fig. 12. Electric parameters (va, ia and ix) for compensated model using thyristor-based 
variable capacitor 

5.1.2 IGBT-based variable capacitor 

The other solution tested to obtaining variable capacitor was that of Figure 6. The values for 
the two capacitors were chosen as: C1 = 100 µF and C2 = 1 µF. The validation simulation was 
done for a slip of s = 0.0026; the switching frequency was 1 kHz and then the duty cycle 
manually adjusted. Figure 13 shows the main and auxiliary currents toward supply voltage 
for a duty cycle of 40 % (Fig.13. a) and 80% (Fig.13. a). 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Fig. 13. Main and auxiliary currents for s = 0.0026, 1 kHz and: a) ├ = 40 %; b) ├ = 80 %. 

As can be noticed a duty cycle of 40 % does adjust the shift between the main current and 
voltage marginally increasing the power factor from 0.15 to 0.32 lagging. When the duty 
cycle was increased to 80%, then the main current arrived in phase with the voltage. It can 
also be noticed a relative high ripple especially for low duty cycle. 
Figure 14 shows the same simulation conditions, but now the switching frequency was 
raised to 4 kHz. As can be noticed the ripple has been reduced significant. 
The other methods of producing variable capacitive reactive power, meaning the H-bridge 
topologies require a more complex control system and are not addressed in this study. 
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Fig. 14. Main and auxiliary currents for s = 0.0026, 4 kHz and: a) ├ = 40 %; b) ├ = 80 %. 

5.1.3 Capacitance versus slip for unity power factor 

Now, the model was run for each value of the slip (speed) given in Table 2. The result of 
these simulations is the capacitance producing unity power factor (see Table 3). 
 

s 
(n) 

CY 
(µF) 

Ia 
(A) 

Pa 

(W) 
Qa 

(VAr) 
Sa 

(VA) 
PF 

0 5.49 184 1193 1207 0.152 0.0026 
(1496) 81 1.65 362 9 363 0.999 

0 5.65 366 1187 1242 0.295 0.006 
(1491) 81 2.57 565 11 565 0.999 

0 5.86 505 1186 1289 0.392 0.0086 
(1487) 81.6 3.27 718 15 719 0.999 

0 6.71 855 1200 1473 0.58 0.0153 
(1477) 87 5.21 1143 1 1143 0.999 

0 7.68 1160 1229 1689 0.686 0.0213 
(1468) 90 6.82 1499 17 1499 0.999 

0 8.31 1330 1252 1826 0.728 0.056 
(1491) 90.6 7.66 1684 27 1686 0.999 

Table 3. Simulation results: capacitance versus slip for unity power factor 

It is interesting to observe that the capacitance producing unity power factor does not vary 

so much as presented in other studies (E. Muljadi et al. 1989; Tamrakan and Malik, 1999) 

concerning similar method of injecting capacitive reactive power.  

Moreover, it could be found a fix value of 75 µF which maintain a high power factor 

irrespective of the load/slip. Table 4 shows the simulation results for the fixed capacitor and 

variable load/slip. 

Figure 15 shows the variation of the power factor versus slip and Figure 16 shows the 

variation of the supply current versus slip for compensated with a fix 75 µF capacitor per 

phase and uncompensated machine. 
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s 
 

CY 
(µF) 

Ia 
(A) 

Pa 

(W) 
Qa 

(VAr) 
Sa 

(VA) 
PF 

0.0026 75 1.57 330 101 345 0.956 

0.006 75 2.47 531 111 542 0.978 

0.0086 75 3.16 683 123 694 0.984 

0.0153 75 4.91 1066 170 1079 0.987 

0.0213 75 6.44 1396 230 1415 0.987 

0.056 75 7.29 1580 272 1603 0.986 

Table 3. Simulation results: capacitance versus slip for unity power factor 
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Fig. 15. Power Factor versus slip 
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Fig. 16. Supply current versus slip 

5.2 Experimental validation 

After rewinding the machine under test with both sets of windings delta connected, three 

identical capacitors were connected to the auxiliary. Then the “compensated” motor was 

loaded gradually to get the same speeds as for the “uncompensated” motor. 

The testing started with a capacitance of 25 µF as found during the simulation: CΔ = CY / 3. 

This did not produce the results found via the simulation. Then a value of 28 µF was found to 

give a relative even power factor of approximate 0.95 in the entire loading range (see Table 4). 

www.intechopen.com



Electric Motor Performance Improvement Using Auxiliary Windings and Capacitance Injection   

 

39 

Figure 17 shows the phase voltage (van) and current (ia) for the uncompensated (Fig. 17.a) 
and compensated (Fig. 17.b) with slip of 0.0026. It can be observed, the power factor 
increased from 0.17 to 0.937 which represent 450% improvement for no load. For full load 
the improvement in power factor is 29%. 
 

IL(A) TL(Nm) P(W) S(VA) PF Slip RPM 

1.71 2.81 1058 1129 0.937 0.0026 1496 

2.71 4.73 1694 1789 0.947 0.0060 1491 

3.49 5.83 2191 2304 0.951 0.0086 1487 

5.46 7.63 2709 3604 0.955 0.0153 1477 

6.92 9.29 3442 4567 0.952 0.0213 1468 

7.85 13.8 4937 5181 0.953 0.056 1416 

Table 2. Experimental data for the motor under test 
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                                          (a)                                                                        (b) 

Fig. 17. Voltage and current for: a) uncompensated motor; b) compensated motor 

6. Comments 

This study proved that direct injecting capacitance reactance through auxiliary winding 
does improve the power factor of the induction motor; it also increases the ratio torque over 
current. What is also very interesting is this method achieves a “flat” variation of power 
factor with respect of load variation. This is a very important improvement given the fact 
that majority of induction motors do not work at constant full load where the classic design 
produces maximum performances. 
However, this method introduces extra copper losses reducing the overall efficiency and 
increasing the operation temperature. 
This study did not intended to elucidate the full effect of the method upon the torque 
especially the existence of the influence produced by the current flowing through auxiliary 
windings. The only aspect clearly noticed was the torque ripple introduced by the “single-
phase” auxiliary winding connection. 
Further more, the same method was applied to a synchronous reluctance motor 
(Ogunjuyigbe et al, 2010). The same type of stator winded similarly as above was used with 
a salient milled rotor obtained from the corresponding squirrel cage induction motor. The 
experimental results show an improvement of the power factor from 0.41-0.69 to 0.93-0.97 
for the entire loading range. 
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va
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The economic benefits are related with the savings on demand especially for places where a 
large number of three-phase induction motors are used under variable loading. 
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