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1. Introduction 

Sintering of powders is one of the most important processes for the development of 
polycrystalline materials. The microstructure of a material is of fundamental importance in 
the processing of ceramics and metals since it affects the physical properties of the final 
product. Progress in our ability to satisfactorily predict microstructure and its properties has 
been quite slow owing to complexity of physical processes involved. The complete 
prediction of microstructural development in polycrystalline solids as a function of time and 
temperature is a major of objective in materials science. 
Grain size is a very important characteristic for evaluating properties of the materials, 
especially when we need to balance different ones [1]. During the sintering of 
polycrystalline materials the normal grain growth obeys the basic law 

 ,nR k t= ⋅  (1) 

where R is an average grain size, k is a constant with Arrhenius temperature dependence, t 
is sintering time and  n is a kinetic grain growth exponent. However the grain growth is 
influenced by many other input parameters. 
Recently, computer simulation techniques have been developed, which can successfully 
incorporate many aspects of the grain interactions and can predict the main features of the 
microstructure [2-10]. The aim of simulation of polycrystalline grain growth is to 
approximate to the highest degree to the real structures. Relations between Monte Carlo 
simulations and real structures have been studied in [11]. A procedure for the simulation 
and reconstruction of real structures in crystalline solids has been presented in [12]. 
Experimental and computational studies of grain growth for other various types of 
materials have been carried out, e.g. in [13-14]. 
The most realistic correspondence between the evolution of real and simulated structure 
was achieved by Monte Carlo simulations. Monte Carlo simulation is a stochastic Markov 
process that generates a sequence of configurations of lattice site states. Trial states are 
generated from a random distribution and are either accepted or rejected with a probability 
given by the Bolzman factor.  
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The generalized Q -state Potts spin model is applied to the simulation procedure. The 

structure development is mapped onto the two-dimensional or three-dimensional discrete 

simulation lattice. An area element of microstructure is represented by one lattice site and is 

assigned a random number iQ  ( )1 iQ Q< <  called orientation or spin. Grain boundary lies 

between two adjacent sites with different orientation. The energy of a lattice site is given by 

the Hamiltonian 

 ( )
1

1
i j

n

Q Q
j

E J δ
=

= −∑ , (2)                          

where J is a positive constant, iQ  is the orientation of the i -th lattice site, jQ is the orientation 

of the j -th neighboring lattice site,
i jQ Qδ is the Kronecker delta. The sum is given over n  

vicinal lattice sites. 

During the simulation procedure the i -th lattice site orientation is generated randomly and 

its energy 1E  is calculated according to (2). Then a new random orientation is given to the 

i -th lattice site and energy 2E  after reorientation is again calculated. The reorientation is 

accepted when 2 1E E< . Otherwise the reorientation is accepted with the probability 

 { }expP E kT≈ −Δ , (3)                          

where  

 2 1E E EΔ = − , (4)                          

k is the Boltzman constant and T is the temperature. The term J kT can be replaced byα  

also called temperature factor and for the final probability of the reorientation acceptance 

one obtains                                                                                                          

 { }exp .P dα≈ −  (5)                          

If the 2D lattice consists of N N× lattice sites, N N× reorientation attempts represent a time 

unit called Monte Carlo step (MCS). On the other hand for 3D simulation array N N N× ×  

reorientation attempts represent one MCS. In all simulation types described in the 

contribution the lattice sites can be arranged either in square or hexagonal configuration. 

The type of the simulation lattice is one of the input parameters before the simulation starts. 

The influence of this parameter on simulated structure and average grain size was studied 

in [15]. 
As mentioned above the initialization of the simulation lattice can be based on random 

number orientations. However, instead of random number one can employ also 

experimental orientation. Then the input microstructure can be an experimental one 

measured either by EBSD (Electron Back Scattered Diffraction) [16] to simulate grain growth 

or by TEM (Transmission Electron Microscope) to simulate primary recrystallization [17]. 

Then because the grain orientation is known the grain boundary nature is also known and 

then its energy can be adjusted (see e.g. [18]). The simulation procedure is universal and the 

initial simulation lattice can be obtained also from other devices e.g. from REM (Reflection 

Electron Microscope) [15]. 
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2. Normal grain growth simulations 

2.1 Monophase grain growth 

Generally, the simulation algorithm of grain growth is based on the tendency of lattice 
points to achieve minimum energy. This elementary algorithm of monophase structure 
development was described in detail, e.g. in [15], [19-20]. An example of grain growth 
simulation on the 3D square simulation lattice with input parameters N = 100, Q = 50,  
α = 5, t = 1000 MCS is shown in various display modes in Fig 1. 
 

  

(a)                                                              (b) 

 

                                            (c) 

Fig. 1. Grain growth simulated on the 3D square simulation lattice with input parameters 
N = 100, Q = 50,α = 5, t = 1000 MCS shown in simple display mode a), in shaded grains 
mode according to Q  b), and shaded surface mode c). 

2.2 Grain growth with presence of static second phase 
The static second phase do not participate in the energy interaction. If during the simulation 
the lattice point with the orientation Qs is randomly chosen this trial is ignored. The 
simulation continues with another trial. Consequently the positions of the static second 
phase lattice sites before and after simulation procedure are the same [22-31]. The static 
second phase lattice points can be arranged either in the form of grain inclusions, whiskers, 
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fibers. The influence of the input parameters on the simulated microstructure development 
in Monte Carlo simulations for both monophase materials and materials containing static 
second-phase particles has been studied in [32]. An example of 3D grain growth simulation 
with the static second phase in the form of grains (5%) a., in the form of whiskers (5%) b., 
and in the form of fibers (10%) c. is given in Fig. 2. 
 

  

                                         (a)                                                                              (b) 

 

                                             (c) 

Fig. 2. Grain growth simulated on the 3D simulation lattice with input parameters N = 100, 
Q = 50,α = 5, t = 1000 MCS with the static second phase in the form of grains (5%) a), in the 
form of whiskers (5%) b), and in the form of fibers (10%) c). 

2.3 Grain growth in two-phase materials 

When simulating grain growth in two-phase materials two types of grains with two 
different melting temperatures should be taken into account [28-29]. These parameters are 
represented by two temperature coefficientsα  ( J kTα = ), one for each phase. Then the 
simulation is carried out analogously to that described, e.g. in [15], [19] with differentα for 
each phase. An example of biphase grain growth simulation is illustrated in Fig. 3. Due to 
both, smaller volume of the second phase grains and smallerα the grains of the second 
phase are smaller. 
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                                         (a)                                                                               (b) 

Fig. 3. Biphase grain growth simulated on the 3D simulation lattice with input parameters 
N = 100, Q = 50, t = 1000 MCS with the second phase volume = 50%, 1 2α α= = 5 a), and with 
the second phase volume = 20%, 1 25, 1α α= = b). 

2.4 Grain growth with presence of liquid phase 
There are many materials, which are prepared by the sintering process under the existence 
of a liquid phase [30]. In what follows the computer simulation algorithm of the grain 
growth in the presence of liquid phase is proposed: 

• the required percentage of lattice points belonging to the solid phase is initialized 

randomly with the orientations from the interval 1,Q . The rest of lattice points 

belonging to the liquid phase are initialized with the orientation LQ ; 

• if the chosen lattice point belongs to the solid phase the reorientation trial follows the 
algorithm given in [15]; 

• if the chosen lattice point belongs to the liquid phase with coordinates ( )1 1,i j  so called 

“mass transfer algorithm” is applied : 

a. using “random walking algorithm without back step” algorithm [30] we find the 

first point of the solid phase with coordinates ( )2 2,i j  and orientation SolQ ; 

b. the energy balance at the liquid phase point ( )1 1,i j  is calculated - 1AE ; 

c. the energy balance at the solid phase point ( )2 2,i j  is calculated - 2AE ; 
d. 1 2A A AE E E= + ; 

e. temporarily the solid phase point ( )2 2,i j  is replaced by liquid point and energy 

balance 2BE  is calculated; 

f. successively for 1,k Q∈  we calculate the energy balance at the point ( )1 1,i j  and 

find the smallest 1 ( )B optE k ; 

g. 1 2( )B B opt BE E k E= + ; 

h. if B AE E<  the exchange is accepted. Otherwise the old orientations are left 

unchanged. 

For illustration we introduce the structure development in the presence of liquid phase 

(shaded lattice points) that was simulated for N = 200, Q = 50, t = 100 MCS,α = 5,  

SLγ =  50, SSγ = 50 with 10 % (Fig. 4a) and 40 % (Fig. 4b) of liquid phase L , respectively. In 

Fig. 5 we present an example of 3D simulation with liquid phase. 

www.intechopen.com



 Applications of Monte Carlo Method in Science and Engineering 

 

568 

  
                                        (a)                                                                              (b) 

Fig. 4. Grain growth in the presence of liquid phase simulated on the square simulation lattice 
with input parameters N = 200, Q = 50,α = 5, t = 100 MCS, SLγ = 50, SSγ = 50, L = 10 % a) and 
L = 40 %, b). 

 

 

Fig. 5. 3D grain growth simulation in the presence of liquid phase with input parameters 

N = 100, Q = 50,α = 5, t = 200 MCS, L = 20 %, SLγ = 50, SSγ = 50. 

2.5 Grain growth in the presence of gaseous phase 
During the simulation of the structure development of the materials with the presence of 
dynamical pores, we considered simultaneously the energy balance point of view of solid 
particles sites as well as the direction of the pores motion aspect [31], [33-35]. In other words 
along with the simulation of the grain growth through the use of the above given 
procedures we have to simulate the migration of pores as well. The algorithm of the pore 
migration involves  
- the determination of  the direction of the motion 
- the calculation of eventual change of the pore position in this direction. 
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2.5.1 Energy balance calculation during pore migration 
The kinetics of the pores is realized via the exchange of the orientation of the lattice point A 
by the orientation of some of neighboring points, e.g. by the orientation of the point B. Using 
(2) we calculate the energy of the pore site A – E1A and the energy of the site B -E1B. Then 

 1 1 1A BE E E= + ; (6) 

• we exchange points A and B; 
• again using (2) we calculate the energies of both exchanged points – E2A, E2B. Then 

 2 2 2A BE E E= + ; (7) 

• the difference of the energies before and after the exchange of the points A and B is 

 2 1E E EΔ = − ; (8) 

• if ∆E ≤ 0, the exchange of the sites A and B is accepted with the probability equal to 1, 
otherwise it is accepted with the probability 

 { }exp ,P Eβ≈ − Δ  (9) 

where β is temperature coefficient of the pore motion. 

2.5.2 Direction of the pore motion 

We have studied four models of the pore migrations using different approaches 
determining the direction of the pore motion. In all the algorithms let us assume that during 
the simulation we have randomly chosen lattice site A with A PQ Q= . 
 

 

Fig. 6. A part of square simulation lattice with pore lattice site surrounded by lattice points 
denoted 1 8÷ . Double line denotes the nearest edge of the simulation lattice. 

2.5.2.1  Stochastic model of the pore motion 

In this model, the motion of pores is allowed with equal probability in all directions. The 
algorithm of the pore motion simulation is as follows: 
• in the first step let us denote the 8 lattice points neighboring with the chosen pore site A 

by numbers from 1 to 8 according to Fig. 6. Let us assume that the right side of the 
simulation array (denoted by double line) is the nearest edge (from all 4 edges of the 
array) to the site A. 
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• let us generate the random number (uniform distribution) from the interval 1,8  
determining the point B and thus the direction of the eventual pore motion;  

• then the energy balance calculation is carried out between these two points according to 
the algorithm presented in the section 2.5.1. In this model, the motion of pores is 
allowed with equal probability in all directions. The algorithm of the pore motion 
simulation is as follows: 

2.5.2.2  Probability model of the pore motion 

 

 

Fig. 7. Distribution of the lattice sites neighboring with the pore site A  and  denoted 
4 4k k− ÷ +  in the lattice space, where k  is the direction to the nearest simulation lattice 

edge (double line). 
 

 

Fig. 8. Distribution of the lattice sites neighboring with the pore site A  and  denoted 

4 4k k− ÷ +  according to the Gaussian distribution. 

In this model, the probability of the pore motion is determined by Gaussian distribution 
around the direction to the nearest edge of the simulation lattice. The algorithm of the pore 
motion simulation is as follows: 

• we determine the nearest edge of the simulation lattice. The smallest distance to an 
edge of the lattice is 

 ( )min , , ,A A A Ac X N X Y N Y= − − , (10) 
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where AX , AY  are the coordinates of the point A  (see Fig. 7). The nearest edge is 

denoted by double line on the right side of the simulation lattice. We select the direction 

satisfying (10) and we denote it k ; 

• other lattice points neighboring to the site A  are denoted according to Fig. 7; 

• Gaussian random number generator (withσ  as input parameter) generates random 

number from the interval 4, 4k k− +  according to Fig. 8; 

• based on this number and using the notation from the Fig. 7 we select neighboring 
point B; 

• then the energy balance calculation is carried out between these two points according to 
the algorithm presented in the section 2.5.1. 

2.5.2.3 Motion in directions 2, 2k k− + with equal probability - edge model 

Using (10) we determine the direction k. We shall suppose that the pore point A can 

interact only with one of the five possible lattice sites denoted in Fig. 9 as k-2, k-1, k, k+1, 

k+2. They are symmetrically distributed around the basic direction given by position of 

the site k. 

 

 

Fig. 9. Lattice point A  surrounded by points denoted 2 2k k− ÷ + . To define interacting 

point B  we generate a random number from the interval 1,5  that corresponds to the sites 

2k − , 1k − , k , 1k + , 2k + . Then the energy balance calculation is carried out with this 

point. 

2.5.3 Results of simulations of pore migration 
In Fig. 10a we present final structure after grain growth simulation along with pore 

migration according to the stochastic model. Due to uniform distribution of the pore motion 

in all directions, relatively large clusters of pores were enclosed inside of the material. 

Moreover large amount of small, one point pores (pores of the first generation), remained in 

the material as well. 

In the probability model, it is possible to control the Gaussian distribution of the pores 

motion. An example of the simulation employing this model forσ =2 is given in Fig. 10b. 

Only few clusters of pores remained encapsulated. They have regular elliptical shape. One 

can notice the bent square of solid material in the simulation lattice. 
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Finally in Fig. 11a we show the resulting structure with pores motion simulation according 

to the edge model  (after 1000 MCS, β=1000). The majority of pores left the structure and 

moved to the edges of the simulation lattice. Fewer clusters remained encapsulated inside of 

the solid material than in the stochastic model. This model like probability model allows to 

simulate shrinking of pores along with their motion to the edge of the lattice. We can go on 

with the simulations and change the temperature coefficient of pore migration to β = 2. The 

structures after 1020 MCS, 1040 MCS and after 5000 MCS are shown in the Figs. 11b, 11c, 

and 11d respectively. One can see that the encapsulated pores disappeared from the 

material and the square lattice was straightened. 
 
 

  

Fig. 10. Grain growth with the mobile pores simulated on the square simulation lattice 

according to the stochastic model a), the probability model (σ =2) b)  with input parameters 

N = 150, Q = 40,α = 1000, β = 1000, P = 20%, t = 5000 MCS. 

One can ask why the bent square of the solid material in Fig. 10b is greater than in Fig. 10a 

and why it completely disappears in Fig. 11d. The difference between both models consists 

in different probabilities of pores motion. Consequently every model has different speed of 

the pores motion to the edge of simulation lattice. The aim was to carry out several 

simulations for both models and to find out which model corresponds to real structures. 

Actually the sintered ceramic pellets are in fact bent in a way the proposed simulation 

models indicate. 

In Figs. 11 a, b, and c we decreased the temperature coefficient to β = 2. Due to this the 

pores tend to move to their closest edges of the simulation lattice. In Figs. 11b and c we 

present intermediate results after 1020 and 1040 MCS, respectively. When we increase 

dramatically the simulation time to 5000 MCS all pores leave the solid material. However 

the simulation process of monophase grain growth in solid material goes on. Due to the 

finite simulation lattice the pores cannot move in the perpendicular direction towards the 

edges. They are forced to move along the edges and as a consequence the square lattice is 

straightened. 

www.intechopen.com



Monte Carlo Simulations of Grain Growth in Polycrystalline Materials Using Potts Model.   

 

573 

 

 
 

Fig. 11. Grain growth with the mobile pores simulated on the square simulation lattice 
according to the edge model with input parameters N = 100, Q = 60,α = 1000, β = 1000,  
P = 20%, t = 1000 MCS a), then β = 2, t = 1020  MCS b), t = 1040 MCS c) and t = 5000 MCS. 

3. Oriented grain growth simulations 

3.1 Oriented grain growth in one direction 
During the simulation the excess of energy in preferred direction, which determines the 
grain boundary curvature, can be influenced by changing the value J in the Hamiltonian (2) 
in dependence of the neighboring sites [36-38]. It means that neighboring sites contribute 
with different weights to the Hamiltonian in (2). Hence the Hamiltonian for oriented 
structures can be written as 

 ( )1
i jQ QE J δ= − −∑ , (11)                          
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where 

 
1

N

j
j

J J
=

=∑ . (12)                          

The value PrJ  of the lattice points in the preferred direction equals to the multiple of
iNJ  in 

the non-preferred direction ( PriN ≠ ). In practice the preferential grain growth is given by 

the weights 

 
i

P
i

N

J
W

J
= . (13) 

 

    

     

Fig. 12. Oriented grain growth simulated on the square simulation lattice with input 

parameters N = 200, Q = 50,α = 5, t = 1000 MCS using square model a),  cross model b)  

and elliptical model c). Direction of preferred growth is y. 
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In [15] for the square lattice three various algorithms to specify preferred direction were 
proposed: 
1. two-weights square model - the weight of grain growth in preferred direction is W1, 

(horizontal or vertical) the weights of other lattice points neighboring with the point 
being  evaluated are W2.  

2. two-weights cross model - it allows the evaluated site to interact only with four 
neighboring sites in horizontal and vertical directions - two points in the preferred 
direction have the weights W1 and two points in the other allowed positions have the 
weights W2. The neighbors in diagonal directions do not participate in the energy 
interaction, i.e., their weights are equal to zero.  

3. three-weights elliptical model - in this model we have proposed three directions – 
horizontal, vertical and diagonal. The weight W3 in diagonal directions is defined by 
ellipse with semi-axes W1 and W2 as 

 W3 = W1 W2  sqrt [ 2 / (W1
2 + W2

2) ] . 

To illustrate the influence of the model on the shape of grains in Figs. 12 a - c we present the 
results of the oriented grain growth with preferred direction y simulated with the square (a), 
cross (b) and elliptical (c) models, respectively. In Fig. 13 we present oriented grain growth 
simulated on 3D simulation lattice using elliptical model with preferred direction z (a), and 
and preferred directions y, z (b). 

3.2 Anisotropic grain growth 
3.2.1 Anisotropic grain growth in solid state 
While in the oriented grain growth the preferred direction of the growth is the same for all 
grains in case of anisotropic structures it is related only to a restricted number of grains [39]. 
The geometrical anisotropic grain growth can be due to crystallographic effects [40]. In the 
simulation procedure the direction of growth of an anisotropic grain is random. For each 
anisotropic grain, we assign an arbitrary direction of the growth. For square simulation 
lattice it is one of the four directions and for triangular simulation lattice it is one of the three 
directions. Then we proceed according to the following algorithm: 
 

(a) (b)
 

Fig. 13. Oriented grain growth simulated on 3D simulation lattice with input parameters 

N = 100, Q = 50,α = 5, t = 1000 MCS using elliptical model with weights 1:1:10 a),  

and 1:10:10 b). 
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• orientation Q  is divided into two intervals 1, EQ  and 1,EQ Q+  proportionally to 

desired percentage Ep  of anisotropic grains, i.e., /100E EQ Q p Q= − ⋅ ; 

• anisotropic lattice points are randomly assigned orientations from the interval 1, EQ ; 

• the rest of lattice points, obeying normal gain growth law, are randomly assigned 

orientations from the interval 1,EQ Q+ ; 
• for lattice points belonging to normal grains we apply the algorithm described in [15]; 
• for lattice points belonging to anisotropic grains, we apply the algorithm described in 

section 3.1 with preferred grain growth direction appertaining to the given orientation 
of the anisotropic grain. 

 

 

Fig. 14. Anisotropic grain growth according to the elliptical model simulated on the 

hexagonal simulation lattice with input parameters N = 150, Q = 50,α = 5, A = 10%,  

t = 1000 MCS and 1W : 2W : 3W  = 1 : 1 : 20. 
 

 

Fig. 15. 3D anisotropic grain growth according to the elliptical model with input parameters 

N = 100, Q = 250,α = 50, A = 5%, t = 1000 MCS and 1W : 2W : 3W  = 30 : 1 : 1. 
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In Fig. 14 we show anisotropic grain growth, which was simulated on the hexagonal lattice. 
The elliptical simulation model with weights ratios 1W : 2W : 3W  = 1 : 1 : 20 and with 10% 
of anisotropic grains ( A ) (shaded lattice sites) has been chosen. Similar example of 3D 
anisotropic simulation is given in Fig. 15. 

3.2.2 Anisotropic grain growth in liquid phase 

The above presented simulation algorithm of the grain growth in the presence of liquid 
phase is dealing with the growth behavior under isotropic energy of solid/liquid interface 

SLγ . However, in polycrystalline materials there exist material systems (ceramics, cermets, 
tungsten carbide, α - alumina, etc), which have the anisotropic behavior of particles during 
liquid phase sintering [30], [41-42]. If the neighbor of a solid particle is the simulation site 
corresponding to the liquid phase the energy balance is calculated according to the 
following algorithm: 
• for energies of the interface between solid particles and a liquid phase SLγ  ( 0,1SLγ ∈ ) 

and between solid and solid particles SSγ  ( 0,1SSγ ∈ ) it holds 

SS SLγ γ> ; 

• let us denote 

SLa γ=  

( ) 3SS SLb γ γ= − ; 

• the direction of the interaction for square lattice 

mod4direction Q=  

and for hexagonal lattice 

mod3,direction Q=  

where Q is the orientation of the solid particle lattice site. The idirection  is chosen according 

to the position of the neighbor and the chart shown in Fig. 16a, e.g. for the point B in Fig. 16b 

the 2idirection = . 
 

 
                                                     (a)                                               (b) 

Fig. 16. The chart of possible positions of the neighbors a) and corresponding point B if the 
position was chosen 2 b). 
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Fig. 17. Anisotropic grain growth in the presence of liquid phase simulated on the hexagonal 
simulation lattice with input parameters N = 200, Q = 50,α = 5, A = 100%, t = 1000 MCS, 

SLγ = 10, SSγ = 90 and L = 20 % a), 40 % b), 60 % c). 
 

 

Fig. 18. 3D grain growth simulation in the presence of liquid phase with input parameters 
N = 100, Q = 50,α = 5, t = 200 MCS, L = 20 %, SLγ = 10, SSγ = 90. 
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• then the increase of the energy in energy balance calculation around the solid particle 
for the directioni is 

( )3 ia b direction direction+ ∗ − − . 

The simulated structures with anisotropic grain growth in liquid phase are shown in Fig. 17 
with concentrations of liquid L = 20 % a), 40 % b) and 60 % c, respectively. In Fig. 18 we give 
an example of 3D anisotropic grain growth simulation in the presence of liquid phase with 
input parameters N = 100, Q = 50,α = 5, t = 200 MCS, L = 20 %, SLγ = 10, SSγ = 90. 

4. Conclusion 

In the contribution, we have given an account of various simulation algorithms of the grain 
growth in polycrystalline materials. We have presented sophisticated algorithms of pore 
migration, simulation of grain growth in presence of liquid, in oriented and anisotropic 
structures. All the algorithms have been extended to the three-dimensional simulation arrays. 
Different input parameters can influence the average grain size, which is very important 
parameter because it is closely connected with many properties of simulated structures. It 
can be obtained by scanning the whole simulation lattice using intercept length method. 
Histograms of the studied parameters are automatically recorded during the simulation.  

The average grain size decreases with increasing number of orientations Q . It is a factor that 
refers to the particle size distribution in real powders. The simulation carried out for small 
value of Q  results in small number of irregular grains. On the contrary, the high value of Q  
gives small and regular grains similar to the monodisperse particle distribution. Another 
important parameter that influences the average grain size is simulation time. The study of 
dependence of this parameter on time has shown that to obtain stable simulation structure 
the simulation time 1000 MCS is sufficiently long. In [32] the detailed study of the 
dependence of the size of simulation lattice, type of simulation lattice (square or hexagonal), 
number of orientations Q , temperature coefficientα , etc. on the average grain size was 
carried out and the results discussed. 
The simulation algorithms presented above were implemented in the software package 
WinSimul, which was developed at the Institute of Physics, Slovak Academy of Sciences. It 
allows to simulate the structure development, to evaluate the simulated structures, to 
display lattice during simulation or to record display frames in time in the form of AVI files. 
It also can display simulation results in the form of average grain size, average area and 
neighbors (topological) histograms or time dependences of these parameters. It is possible to 
display several simulations or simulation results simultaneously for various input 
parameters. 
A modular structure of the program WinSimul provides a great flexibility of simulation 
configurations. Presented work shows only some possible combinations from many others, 
which may occur in practice. 
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