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1. Introduction

In this chapter we propose a Monte Carlo approach for pricing barrier options when analytical
pricing formulas are unavailable. Barrier options are among the most commonly used options
in the financial market and our approach should therefore be of interest. Based on numerical
examples presented in the chapter, it seems likely that our approach reduces the computation
time by a factor between 236,000 and 94,000,000.1 To put this in perspective, assume we have
a computer that uses one second to estimate the price using our proposed pricing algorithm.
To obtain comparable price estimates using standard Monte Carlo simulations would require
a computation time between three days and three years!
Plain vanilla put and call options give the owner the right to sell or buy an asset at a pre
specified price at some future point in time. Barrier options are either of knock-out or knock-in
type. If the price of the underlying asset crosses some barrier H, a knock-out option becomes
worthless, i.e., the option contract is canceled. For a knock-in option the option is invoked
when the underlying asset crosses the barrier. Thus, a knock-in option expires worthless if the
price of the underlying asset never crosses the barrier during the option’s life.
Analytical pricing formulas for barrier options are readily available when the value of the
underlying asset follows a geometric Brownian motion and interest rates are deterministic.
Here we have in mind a situation where the underlying asset follows a process that precludes
the derivation of an analytical pricing formula for the option. In particular we focus on the
situation where interest rates are stochastic. Other situations could be where the underlying
asset follows more complicated price processes.
We propose a Monte Carlo approach to value the barrier option. Estimating the market
value of barrier options by Monte Carlo simulations is know to be rather time consuming
(see e.g., Broadie et al. (1997)). First, a relatively high number of simulations is needed in
order to reduce the standard error of the price estimates. Second, since the barrier option is
path-dependent, the whole price path for the underlying asset is needed to determine whether
the barrier H has been crossed or not. Approximating the price path with few monitoring
points, results in biased estimates. In fact, somewhat surprisingly many monitoring points
is needed to get unbiased price estimates. Both these facts make estimation of barrier option

1 Using other parameter values will change these factors, but we think they give a reasonable picture of
the merits of our simulation approach.
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prices by Monte Carlo simulation very computational intensive. Our simulation approach
simultaneously handles these two issues. We exploit the analytical pricing formula for the
option when the underlying asset follows a geometric Brownian motion and interest rates
are deterministic, and include this price as a control variate in the simulations. This gives a
significant reduction in the number of simulations needed to get estimates with a given level
of the standard error. Also, and more important, by including the control variate the number
of monitoring points needed to reduce the problem with biased estimates is considerably
reduced. These two effects make the proposed Monte Carlo approach highly efficient. It is also
easy to implement. Related use of the control variate technique for Asian options is considered
in Fu et al. (1998) and for different price processes by Lindset & Lund (2007).
The chapter is organized as follows: In section 2 we present the economic set-up. In section 3
a short description of barrier options is given. The simulation approach is described in section
4, while the barrier option under stochastic interest rates is analyzed in section 5. Numerical
examples are given in section 6 and the chapter is concluded in section 7.

2. The economic model and preliminaries

We assume a frictionless financial market with two primary traded assets; a non-dividend
paying stock and a money market account.2 We further assume that there exists a unique
equivalent martingale measure Q, also known as the risk-neutral measure. The price dynamics
of the stock under the equivalent martingale measure Q are given by3

dSt = rtStdt + σ(t)⊤StdW
Q
t ,

where rt is the short-term interest rate at time t, σ(t) is a d-dimensional, possibly time

dependent volatility function, W
Q
t is a standard d-dimensional Brownian motion under the

equivalent martingale measure Q, and ⊤ means transpose. In what follows we let d = 2.
It will be convenient to divide the time interval [0, T] into N time periods of equal length.
We let time period n be the interval [tn−1, tn], where in particular t0 = 0 and tN = T. The
accumulated log-return on the stock over the future time period n ∈ {1, 2, . . . , N} is given by

δn =
∫ tn

tn−1

(

rv −
1

2
||σ(v)||2

)

dv +
∫ tn

tn−1

σ(v)⊤dW
Q
v ,

where || · || is the Euclidean norm.
Let f (t, s), t ≤ s, be the instantaneous forward rate at time s prevailing at time t. Intuitively,
we can think of f (t, s) as the interest rate we can agree upon at time t to be paid on “very
short-term" borrowing or received from “very short-term" deposits at time s. Adopting the
framework of Heath et al. (1992), we have that the arbitrage free dynamics of the forward rate
are given by

d f (t, s) = σ f (t, s)
⊤

∫ s

t
σ f (t, u)dudt+ σ f (t, s)

⊤dW
Q
t ,

where σ f (t, s) is a time dependent d-dimensional volatility function. The short-term interest
rate is obtained by setting s = t, i.e., rt = f (t, t). The money market account is an asset that
accrues the short-term interest rate and has the following price dynamics

dMt = rtMtdt, M0 = 1.

2 Strictly speaking, we also assume that there is a continuum of zero-coupon bonds traded in the market.
3 Vectors and matrices are written in bold fonts.
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Note that the accumulated log-return on the money market account over the future time
period n is given by

βn =
∫ tn

tn−1

rvdv = − ln F(0, tn−1, tn) +
1

2
σ2

βn
+

n−1

∑
k=1

ck,n

+
∫ tn−1

0

( ∫ tn

tn−1

σ f (v, u)du
)⊤

dWv +
∫ tn

tn−1

( ∫ tn

v
σ f (v, u)du

)⊤
dWv,

where

F(0, tm, tn) =
B(0, tn)

B(0, tm)
,

σ2
βn

=
∫ tn−1

0
||

∫ tn

tn−1

σ f (v, u)du||2dv +
∫ tn

tn−1

||
∫ tn

v
σ f (v, u)du||2dv,

and

cm,n =
∫ tm−1

0

( ∫ tm

tm−1

σ f (v, u)du
)⊤( ∫ tn

tn−1

σ f (v, u)du
)

dv

+
∫ tm

tm−1

( ∫ tm

v
σ f (v, u)du

)⊤( ∫ tn

tn−1

σ f (v, u)du
)

dv.

Here B(t, T) is the time t market value of a zero coupon bond maturing at time T ≥ t with
unit face value, i.e., B(T, T) = 1, σ2

βn
is the variance of βn , and cm,n is the covariance between

βm and βn, 1 ≤ m < n.
Future cashflows (defined under the equivalent martingale measure Q) to be received from

the options at time T are discounted back to present (time 0) with the discount factor e−∑
N
i=1 βi .

To obtain numerical results, we need a closer functional specification for the volatility
structure. Throughout the chapter we assume that

σ(t) = σS

⎡

⎣

1

0

⎤

⎦

and

σ f (v, u) = σe−κ(u−v)

⎡

⎣

ϕ

√

1 − ϕ2

⎤

⎦ ,

where σS, σ, κ, and ϕ are constants. This specification corresponds to the model of Hull &
White (1990), also known as the extended Vasicek (1977) model, and is Gaussian since the
volatilities are only time dependent. Here κ is the force at which the short-term interest rate
reverts to some long-term mean level.
For technical details, see e.g., Heath et al. (1992) and Amin & Jarrow (1992).

3. Barrier options

There are four types of plain barrier options:

1. down and out option
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2. down and in option

3. up and out option

4. up and in option.

In this chapter we have chosen to focus on the first of these; a down and out option, or more
precisely, a down and out call. The results we present apply equally well, given appropriate
adjustments, for the other three options.
A down and out call is a regular call option with the extra feature that it is knocked out
if the value of the underlying stock at some point in time during the option’s life crosses
the barrier H from above. When the option matures at time T, the payoff of the option is
BT = max(ST − X, 0)I, where X is the exercise price and

I = 1 if min
t∈[0,T]

St > H

and I = 0 otherwise. Let B0 be the time zero market value of the barrier option and C0 the
corresponding call value. It is then the case that B0 = C0 − J0, where J0 is the non-negative
knock-out discount.4

Assuming constant interest rates, the market value of the barrier option can be calculated
in closed form. Once we allow for stochastic interest rates, there is, to the best of our
knowledge, no known analytical formula for the market value of the option. We therefore
turn to numerical methods to estimate the market value. More precisely, we use Monte Carlo
simulations.
As is well known in the literature (see e.g., Broadie et al. (1997)), estimating the market value of
barrier options by Monte Carlo simulations can be extremely computational intensive. To see
if the option is knocked out, and therefore has zero value, requires the entire sample path for
the stock price over the option’s life time to be observed. By simulation, the best we can do is to
have discrete observations of the price path. We can therefore possibly miss observing where
the stock price crosses the barrier (at least) twice between two monitoring points. Simulating
many stock prices for each price path is more time consuming than simulating few stock
prices. However, simulating few stock prices gives a higher probability of missing stock prices
that cross the barrier. This results in problems with bias. For a knock-out option, the expected
bias in the estimated option price is positive but decreases in the number of monitoring points.
In figure 1 we illustrate the relative slow convergence rate in terms of number of monitoring
points for the case with deterministic interest rates.5

Of course, if we only have one monitoring point (at the maturity date for the option, i.e., at
time T), this corresponds to the plain European call option. As we see from figure 1, even 1,000
(103) and 10,000 (104) monitoring points lead to some bias.

4. The simulation procedure

Under the equivalent martingale measure Q, the stock price at time tn, n ∈ {1, 2, . . . , N} is
given by

Stn = Stn−1
eδn .

4 Expressions for B0, C0, and J0 can be found in books on option pricing, for instance in Musiela &
Rutkowski (1997).

5 The calculations are performed using Ox, see e.g., Doornik (1999).
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Fig. 1. The figure shows the estimated market value of the barrier option for different
number of monitoring points when interest rates are deterministic (downward sloping line).
The upper straight line shows the market value of the corresponding European option, while
the lower straight line shows the market value of the barrier option (both estimated with
analytical pricing formulas). Parameter values are: S0 = 100, X = 95, H = 90, r = 0.05,
σ = 0.2, and T = 0.5, where X is the exercise price and H is the knock out barrier. The prices
are estimated using 1,000,000 simulations.

Notice that the log-return on the stock in period n can be written as

δn = βn
︸︷︷︸

an

−
1

2

∫ tn

tn−1

||σ(v)||2dv +
∫ tn

tn−1

σ(v)⊤dWv

︸ ︷︷ ︸

bn

.

Both an and bn are random variables with Gaussian distributions. In order to simulate price
paths for the stock and the discount factor, we simultaneously simulate all the 2N random
variables an and bn, n ∈ {1, 2, . . . , N}. To this end, we first calculate the variance-covariance
matrix, Σ, for the 2N variables and Cholesky decompose this matrix into a new matrix A, i.e.,

Σ = AA
⊤.

Each of the variables has a deterministic part that we denote D. We include the 2N Ds in a
2N-dimensional vector D. Finally, letting R be a vector containing all the random variables,
we calculate R as follows:

R = D + Aε,
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Fig. 2. The figure shows the estimated market value of the barrier option for different
number of monitoring points (the two downward sloping lines). The dotted lines are option
prices under deterministic interest rates, while the solid lines are under stochastic interest
rates. The two straight lines at the top show the market values of European options, while
the lower straight line shows the market value of the barrier option (these are estimated by
analytical pricing formulas). Parameter values are: S0 = 100, X = 95, H = 90, σS = 0.2,
σ = 0.03, κ = 0.1, ϕ = −0.5 and T = 0.5. The initial term structure of interest rates is
assumed flat and equal to 0.05. The prices are estimated using 1,000,000 simulations (they are
also reported in table 1).

where ε is a 2N-dimensional vector with nth element εn ∼ N (0, 1) and where εn and εm ,
n �= m, are independent.

5. Barrier options and stochastic interest rates

As already mentioned, we are not aware of any analytical pricing formulas for barrier options
in the presence of stochastic interest rates, and a simulation approach for estimating the option
value can therefore make sense. As figure 2 illustrates, also under stochastic interest rates the
convergence rate is slow (note that we do not know the true value of the barrier option).
Notice in particular that the differences between the price estimates under deterministic and
stochastic interest rates are about the same for different number of monitoring points.
The idea in this chapter is to exploit the analytical pricing formula that exists under
deterministic interest rates when we simulate under stochastic interest rates. We use the case
with deterministic interest rates as a control variate for the estimation of the option value
under stochastic interest rates. We benefit from the control variate in two ways.
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First, for realistic parameter values the major part of the uncertainty in the state variable,
i.e., in the future stock prices, comes from the bn-parts, not the an-parts. Under deterministic
interest rates the an-parts are of course non-random. Thus, future stock prices will be highly
correlated under stochastic and deterministic interest rates, and so will also the discounted
future payoffs from the options be. As we show later in the chapter, this gives a significant
reduction in the standard errors of the price estimates.
Second, let g be the option price calculated under deterministic interest rates with the
analytical pricing formula. Let further fi and gi be the ith simulated unbiased discounted payoff
of the barrier option under stochastic and deterministic interest rates, respectively. The ith
simulated value using the control variate then becomes

fi(b) = fi − b(gi − g), (1)

for some constant b. From figure 2 we remember that the price estimates behave somewhat
similarly under deterministic and stochastic interest rates when the number of monitoring
points changes. Let g′i and f ′i be the ith simulated discounted payoff of the barrier options that
are biased because too few monitoring points are used. Let further φi and γi be the bias under
stochastic and deterministic interest rates, respectively. These biases are defined as φi = f ′i − fi
and γi = g′i − gi. The expected biases in the price estimates are φ = EQ[φi] and γ = EQ[γi].
Let f ′i (b) be the ith simulated value when using the control variate and the biased values f ′i
and g′i . We then have that

f ′i (b) = f ′i − b(g′i − g)

= ( fi + φi) − b((gi + γi)− g)

= fi − b(gi − g) + (φi − bγi).

In the special case where φ = bγ, it is clear that EQ[ f ′i (b)] = EQ[ fi(b)] is an unbiased estimator
for the value of the barrier option under stochastic interest rates. It seems difficult to analyze
the bias analytically, and we therefore have to rely on numerical calculations. We show by
numerical examples that the use of the control variate in the simulations makes it possible to
reduce the number of monitoring points. The computation time increases quadratically in the
number of monitoring points. Thus, including the control variate in the simulations has the
potential to severely reduce the computation time. In figure 3 we illustrate the computation
time as a function of the number of monitoring points.
The optimal b (see equation (1)) is usually found by regressing the simulated fis on the
simulated gis. The optimality criterion is then to minimize the standard error of the price
estimate. In our setting, as long as |φ − bγ| < φ, the control variate also helps reduce the
problem with bias. The optimal choice of b is now more complicated; one has to balance
increased speed because of variance reduction and because of bias reduction. How to balance
this must be determined by the user of the algorithm. In this chapter we have for simplicity
set b = 1.

6. Numerical examples

In this section we present numerical examples illustrating the use of our proposed pricing
algorithm. As our base-case we use the following parameter values: S0 = 100, X = 95, H = 90,
σS = 0.2, σ = 0.03, κ = 0.1, ϕ = −0.5, and T = 0.5. The initial term structure of interest rates is
assumed flat and equal to 0.05. In table 1 we present the results for the base-case parameters.
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Fig. 3. The figure shows the normalized computation time (ct) for different number of
monitoring points (solid line).The computation time for 10 monitoring points is set to one.
The dottet line shows the fittet function ct(N) = 0.004732N2 with R2 = 0.9995.

We then change the parameter values that are related to the interest rates (σ (table 2), κ (table
3), and ϕ (table 4)).
The simulation results in table 1 indicate that in order to obtain estimates with standard
errors of the same order of magnitude, we only have to do about 4,000 to 5,000 simulations
when including the control variate, compared to 1,000,000 when using standard Monte
Carlo simulations.6 Thus, in terms of standard errors, standard Monte Carlo simulation has
about 200 to 250 times higher computation time than when the control variate is included.
Furthermore, it seems like we can reduce the number of monitoring points from 500 to 10
or 20 and still obtain about the same price estimates. Keep in mind that we are not able
to come up with a good benchmark price to compare our results with. For instance, with
T = 0.5, the Cholesky decomposition failed for 600 monitoring points. However, given the
similarity between the pricing problem under deterministic and stochastic interest rates and
the results in figure 1, we may project that to get unbiased price estimates as much as 10,000
or more monitoring points are needed if raw Monte Carlo simulations are performed in the
model with stochastic interest rates. When we take into account that the computation time
grows quadratically in the number of monitoring points, we estimate that by not including
the control variate in the simulations increases the computation time by a factor between

6 The squared ratio of the standard errors are about ( 0.0113
0.0007 )2 ≈ 1,000,000

4,000 .
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Number of Deterministic Stochastic Stochastic
Observation Interest Rates Interest Rates Interest Rates

Points Control Variate
1 9.8727∗ – 9.7901∗ – – –
5 9.5563 (0.01137) 9.5460 (0.01123) 8.9019 (0.00119)
10 9.4273 (0.01140) 9.3626 (0.01127) 8.8438 (0.00078)
15 9.3472 (0.01142) 9.2898 (0.01129) 8.8322 (0.00069)
20 9.3061 (0.01143) 9.2320 (0.01130) 8.8294 (0.00067)
25 9.2688 (0.01143) 9.2096 (0.01133) 8.8279 (0.00067)

100 9.1066 (0.01147) 9.0432 (0.01135) 8.8274 (0.00070)
500 9.0215 (0.01150) 8.9266 (0.01136) 8.8269 (0.00073)
∞ 8.9175∗ – – – – –

∗ Estimated by analytical pricing formula.

Table 1. The table shows price estimates for barrier options for different number of
monitoring points for the case with deterministic interest rates, stochastic interest rates, and
for our proposed approach using the control variate. Parameter values are: S0 = 100, X = 95,
H = 90, σS = 0.2, σ = 0.03, κ = 0.1, ϕ = −0.5, and T = 0.5. The initial term structure of
interest rates is assumed flat and equal to 0.05. The prices are estimated using 1,000,000
simulations. Standard errors are reported in parenthesis.

236,000 and 94,000,000!7 If we only use 5,000 simulations with 10 or 20 monitoring points,
the calculations are fast (takes only a fraction of a second).
As we can see from table 2, increasing the interest rate volatility to 0.08, which is much higher
than what we observe in most economies, the option prices decrease and the standard errors
for the cases where the control variate has been used increase. The explanation for the first
observation is that increasing interest rate volatility actually leads to decreased volatility for
the return on the stock under the equivalent martingale measure Q. The second observation
follows because the stock price under deterministic and stochastic interest rates becomes less
correlated. I.e., the interest rate volatility becomes more important. When the price of the
two stocks becomes less correlated, the effect of using the control variate decreases and the
standard errors therefore increase. Notice that the algorithm still reduces the bias and only
using 10 or 20 monitoring points is likely to be sufficient.
By comparing the results in table 1 and table 3 it is clear that doubling the value of the
parameter κ from 0.1 to 0.2 has a negligible impact on the price estimates.
Finally, from table 4 we see that by imposing a positive correlation between the stock return
and the interest rates (i.e., by setting ϕ = 0.5), the option prices under stochastic interest
rates increase. The reason is that the overall volatility in the stock return now increases.
However, most importantly for our analysis is that the standard errors by including the control
variate still are significantly reduced and that we also can use a significantly lower number of
monitoring points.
Finally, it should be mentioned that σ = 0.2 is a low parameter value if the underlying asset
is a share of stock. This value would be more typical for a stock index where most of the
idiosyncratic risk in individual stock returns is diversified away. By using a higher volatility,

7 The first number is estimated as 0.004732 · 5002 · 200 = 236, 600, where the number 200 comes from the
variance reduction. The second number assumes that 10,000 monitoring points are needed: 0.004732 ·
10, 0002 · 200 = 94, 640, 000.
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Number of Deterministic Stochastic Stochastic
Observation Interest Rates Interest Rates Interest Rates

Points Control Variate
1 9.8727∗ – 9.6694∗ – – –
5 9.5563 (0.01137) 9.4194 (0.01102) 8.7743 (0.00169)
10 9.4273 (0.01140) 9.2313 (0.01105) 8.7149 (0.00146)
15 9.3472 (0.01142) 9.1578 (0.01108) 8.7007 (0.00141)
20 9.3061 (0.01143) 9.0994 (0.01108) 8.6986 (0.00143)
25 9.2688 (0.01143) 9.0765 (0.01112) 8.6950 (0.00143)

100 9.1066 (0.01147) 8.9053 (0.01112) 8.6917 (0.00146)
500 9.0215 (0.01150) 8.7993 (0.01114) 8.6883 (0.00148)
∞ 8.9175∗ – – – – –

∗ Estimated by analytical pricing formula.

Table 2. The table shows price estimates for barrier options for different number of
monitoring points for the case with deterministic interest rates, stochastic interest rates, and
for our proposed approach using the control variate. Parameter values are: S0 = 100, X = 95,
H = 90, σS = 0.2, σ = 0.08, κ = 0.1, ϕ = −0.5, and T = 0.5. The initial term structure of
interest rates is assumed flat and equal to 0.05. The prices are estimated using 1,000,000
simulations. Standard errors are reported in parenthesis.

Number of Deterministic Stochastic Stochastic
Observation Interest Rates Interest Rates Interest Rates

Points Control Variate
1 9.8727∗ – 9.7914∗ – – –
5 9.5563 (0.01137) 9.5474 (0.01123) 8.9033 (0.00119)
10 9.4273 (0.01140) 9.3642 (0.01127) 8.8438 (0.00077)
15 9.3472 (0.01142) 9.2913 (0.01129) 8.8340 (0.00068)
20 9.3061 (0.01143) 9.2480 (0.01131) 8.8307 (0.00065)
25 9.2688 (0.01143) 9.1873 (0.01130) 8.8315 (0.00067)

100 9.1066 (0.01147) 9.0417 (0.01133) 8.8297 (0.00071)
500 9.0215 (0.01150) 8.9283 0.01136) 8.8285 (0.00072)
∞ 8.9175∗ – – – – –

∗ Estimated by analytical pricing formula.

Table 3. The table shows price estimates for barrier options for different number of
monitoring points for the case with deterministic interest rates, stochastic interest rates, and
for our proposed approach using the control variate. Parameter values are: S0 = 100, X = 95,
H = 90, σS = 0.2, σ = 0.03, κ = 0.2, ϕ = −0.5, and T = 0.5. The initial term structure of
interest rates is assumed flat and equal to 0.05. The prices are estimated using 1,000,000
simulations. Standard errors are reported in parenthesis.

say 30%-50%, the bn-parts increase in importance relative to the an-parts. Thus, using a higher
(and more realistic) volatility benefits the relative merits of the pricing algorithm proposed in
this chapter.
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Number of Deterministic Stochastic Stochastic
Observation Interest Rates Interest Rates Interest Rates

Points Control Variate
1 9.8727∗ – 9.9627∗ – – –
5 9.5563 (0.01137) 9.7303 (0.01153) 9.0806 (0.00118)
10 9.4273 (0.01140) 9.5551 (0.01156) 9.0231 (0.00077)
15 9.3472 (0.01142) 9.4646 (0.01158) 9.0145 (0.00068)
20 9.3061 (0.01143) 9.4283 (0.01160) 9.0130 (0.00065)
25 9.2688 (0.01143) 9.3852 (0.01160) 9.0118 (0.00067)

100 9.1066 (0.01147) 9.2266 (0.01162) 9.0136 (0.00071)
500 9.0215 (0.01150) 9.1236 (0.01164) 9.0147 (0.00072)
∞ 8.9175∗ – – – – –

∗ Estimated by analytical pricing formula.

Table 4. The table shows price estimates for barrier options for different number of
monitoring points for the case with deterministic interest rates, stochastic interest rates, and
for our proposed approach using the control variate. Parameter values are: S0 = 100, X = 95,
H = 90, σS = 0.2, σ = 0.03, κ = 0.1, ϕ = 0.5, and T = 0.5. The initial term structure of interest
rates is assumed flat and equal to 0.05. The prices are estimated using 1,000,000 simulations.
Standard errors are reported in parenthesis.

7. Conclusions

We have in this chapter proposed an algorithm for pricing barrier options when analytical
pricing formulas are unavailable. We have analyzed the special case where interest rates are
stochastic and showed that our approach, compared to standard Monte Carlo simulations,
reduces the computation time by a factor of 236,000 to 94,000,000 for realistic parameter
values. Although we have focused on the case with stochastic interest rates, the approach we
propose should also have potential for being used when the underlying asset follows more
complicated price processes. We leave such extensions for future research.
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