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1. Introduction 

Modeling is the applications of methods to analyze complex, real-world problems in order 

to make predictions about what might happen with various actions. When it is too difficult, 

time consuming, costly or dangerous experiments, the modeler resort to computer 

simulations, or having a computer program imitate reality, in order to study situations and 

make decisions. Mathematical modeling is being used extensively in the field of polymer 

reaction engineering to ascertain various parameters. The use of mathematical modeling 

reduces the need for costly and time consuming experimentation. Mathematical models 

have been useful tools to enhance the understanding of polymerization processes and have 

been essential for process design, parameter estimation, sensitivity analysis, process 

simulation and optimization. Moreover, they are also useful for education and training 

purposes. [1-4] For example, several models have been proposed to simulate free-radical 

homopolymerization. The majority of these models predicting only averages molecular 

properties, but not complete distributions.  

 Various modeling techniques have been used in the field of polymer engineering 

depending on the suitability and on the targeted parameters. The most commonly used 

techniques are namely: 1) Instantaneous distributions, 2) Population balances with the 

method of moments, and 3) Monte Carlo method. The three methods have their own 

advantages and disadvantages. For examples, the method of moments cannot predict the 

molecular weight distribution (MWD) while the instantaneous distribution and Monte Carlo 

method can easily predict the MWD. In the case of copolymerizations, Monte Carlo 

technique is capable of predicting both average results and the full distribution. The focal 

point of this chapter would be on the Monte Carlo method since this technique can give full 

understanding about the polymerization processes. The modeler of the Mote Carlo 

simulation have full understanding of the molecular behavior in the reactor and use its 

programming skills to translate this understanding into valuable results.  

Monte Carlo simulation is a probabilistic model involving an element of chance. Monte 
Carlo method provides approximate solutions to a variety of mathematical problems by 
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performing statistical sampling experiments on a computer. Dynamic Monte Carlo (DMC) is 
a method for modeling the dynamic behaviors of molecules by comparing the rates of 
individual steps with random numbers. Unlike the Metropolis Monte Carlo method, which 
has been employed to study systems at equilibrium, the DMC method is used to investigate 
non-equilibrium systems such as a reaction, diffusion, and so-forth.  
 The synthesis and design of polymers with well-defined chain structures is a topic of high 
interest in academia and industry. Controlled radical polymerization (CRP) is fast becoming 
an important tool for producing polymers with customized microstructures.[1-2] The most 
well-established mechanisms of CRP are: (1) atom transfer radical polymerization 
(ATRP),[3,4] (2) nitroxide-mediated polymerization (NMP),[5,6] and (3) reversible addition-
fragmentation chain transfer (RAFT).[7,8] Although the application of CRP processes is still 
limited to academia, they are promising techniques for the industrial production of specialty 
polymers. At this stage of CRP research, it is imperative to develop reliable mathematical 
models in order to better understand and improve CRP processes. 
Since 1995, significant effort has been made towards the development, understanding, and 
application of ATRP to a wide range of monomers. In addition to its ability to control 
polymer micro-structural details, ATRP is very useful towards different reaction conditions. 
[9-11] ATRP can also copolymerize a variety of vinyl monomers to form  random, gradient, 
 block, and graft copolymers.[12-14] Among these previous chain architectures, gradient 
copolymers have received considerable interest because  they form a new class of materials 
that have intermediate properties between random and block copolymers.[11]  
Several research groups have developed mathematical models for ATRP.  The method of 
moments has been used to study the effect of reactant concentration and rate constants on 
polymer properties,[15,16] and also used to study the effect of diffusion-controlled reactions 
using the free volume theory.[17,18] Mathematical models using the concept of pseudo-kinetic 
rate constants and the method of moments have also been developed to describe ATRP.[19,20]  

 Even though the method of moments can predict average molecular weights (Mn, Mw, and 
Mz, for instance) and the polydispersity index (PDI), it cannot predict the complete 
molecular weight distribution (MWD) and it is well-known that the final properties of the 
polymer are not only a function of the average properties, but depend on distributions of 
molecular structural properties such as MWD, copolymer composition distribution (CCD), 
and sequence length distribution (SLD). The commercial software package PREDICI can be 
used to model polymerization processes and predict several polymer microstructural 
distributions, but it is only available to licensed users, while Monte Carlo simulation is an 
equally powerful technique that is relatively easy to implement, as demonstrated in this 
paper.  PREDICI has been used to study the kinetics of ATRP, and to model chain end 
functionality.[21-24]  
Several publications show the use of Monte Carlo models for different polymerization 
processes [25-30]. The focus of this chapter will be on ATRP in batch and semi batch reactors. 
Several case studies are presented to show the ability of DMC in predicting the full 
distributions. 

2. Model description 

We have followed Gillespie’s algorithm for dynamic Monte Carlo simulation.[31] First, a 
control volume (V) that contains the reactant molecules is defined at time zero. The reaction 
system is considered homogenous and several reactions can take place in the control 
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volume. The experimental rates of these reactions are transformed into stochastic rates 
based on the number of molecules of each reactant present in the control volume at a given 
reaction time. In the case of copolymerization, the number of monomer molecules, XA and 
XB, in the control volume at a given time is equal to their molar concentrations, [MA] and 
[MB], multiplied by Avogadro’s number (N) and the size of the control volume: 

 [ ]A AX M NV=  (1) 

 [ ]B BX M NV=  (2) 

Similarly, the number of initiator and catalyst molecules, Xi and XC, are calculated as follows: 

 [ ]iX I NV=  (3) 

 [ ]CX C NV=  (4) 

where [I] and [C] are the concentrations of initiator and catalyst, respectively. 
The experimental rate constants are transformed into stochastic rate constants with the 
following equations: 

 expMCk k=  for first order reactions (5) 

 
exp

MC k
k

VN
=   for bimolecular reactions between different species (6) 

 
exp2MC k

k
VN

=  for bimolecular reactions between similar species (7) 

This transformation involves the number of independent combinations of molecules 
participating in each reaction inside the control volume, as explained by Gillespie.[31] 
The probability of any reaction (Pv) taking place at a given time can be calculated with the 
equation 

 

1

v
v N

v
v

R
P

R
=

=

∑
 (8) 

where Rv is the reaction rate of the vth reaction and N is the total number of reactions in the 
polymerization mechanism. The following relation is used to determine which reaction type 
will take place at a given polymerization time 

 
1

1
1 1

μ μ

v v
v v

P r P
−

= =
< <∑ ∑  (9) 

where μ is the number of the selected reaction type and r1 is a random number uniformly 
distributed between [0,1]. Another random number is generated to determine the time 
interval (τ) between two consecutive reactions. The time step is related to the inverse of total 
stochastic rates and the natural logarithmic of r2 according to the equation:[31] 
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The mechanism of ATRP proceeds in the same manner as conventional free radical 

polymerization: initiation, propagation, termination, and transfer reactions. In addition to 

this, it also includes an equilibrium reaction between active and dormant chains. This 

equilibrium reaction is in favor of the dormant chains and hence reduces the frequency of 

polymer radical termination or transfer reactions, thus imparting the living character of 

ATRP. Alkyl halides are frequently used as initiators in ATRP, and complexes between the 

metal halide and a ligand act as a catalyst. The mechanism for the copolymerization of 

comonomers A and B by ATRP is described in Equations (11) to (32). 
Initiation 

 
kaI C PR CX+ ⎯⎯→ +  (11) 

 
kdPR CX I C+ ⎯⎯→ +  (12) 

 1,

kiAA
A APR M R+ ⎯⎯⎯→  (13) 

 1,

kiBB
B BPR M R+ ⎯⎯⎯→  (14) 

 

Equilibrium and propagation 

 ,
, ,

ka A
r A r AD C R CX+ ⎯⎯⎯→ •+  (15) 

 ,
, ,

ka B
r B r BD C R CX+ ⎯⎯⎯→ •+  (16) 

 
,

, 1,

kp AA
r A A r AR M R +• + ⎯⎯⎯⎯→ •  (17) 

 
,

, 1,

k p BB
r B B r BR M R +• + ⎯⎯⎯→ •  (18) 

 
,

, 1,

kp AB
r A B r BR M R +• + ⎯⎯⎯→ •  (19) 

 
,

, 1,

k p BA
r B A r AR M R +• + ⎯⎯⎯⎯→ •  (20) 

 ,
, ,

kd A
r A r AR CX D C• + ⎯⎯⎯→ +  (21) 

 ,
, ,

kd B
r B r BR CX D C• + ⎯⎯⎯→ +  (22) 
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Transfer to monomer 

 ,
,

ktr AA
r A A rR M P R• + ⎯⎯⎯⎯→ + •  (23) 

 ,
,

ktr AB
r A B rR M P R• + ⎯⎯⎯⎯→ + •  (24) 

 ,
,

ktr BB
r B B rR M P R• + ⎯⎯⎯⎯→ + •  (25) 

 ,
,

ktr BA
r B A rR M P R• + ⎯⎯⎯⎯→ + •  (26) 

Termination by combination 

 ,
, ,

ktc AA
r A m A r mR R P +• + • ⎯⎯⎯⎯→  (27) 

 ,
, ,

ktc AB
r A m B r mR R P +• + • ⎯⎯⎯⎯→  (28) 

 ,
, ,

ktc BB
r B m B r mR R P +• + • ⎯⎯⎯⎯→  (29) 

Termination by disproportionation 

 ,
, ,

ktd AA
r A m A r mR R P P• + • ⎯⎯⎯⎯→ +  (30) 

 ,
, ,

ktd AB
r A m B r mR R P P• + • ⎯⎯⎯⎯→ +  (31) 

 ,
, ,

ktd BB
r B m B r mR R P P• + • ⎯⎯⎯⎯→ +  (32) 

In Equations (11) to (32), C and CX are the catalyst in its low and high valence states, MA and 
MB are the comonomers, Rr,A● and Rr,B● are polymer radicals terminated in monomer A and 
B, Pr is a dead polymer chain, Dr is a dormant polymer chain, ki is the initiation rate 
constant, ka is the activation rate constant, kd is the deactivation rate constant, kp is the 
propagation rate constant, ktc is the rate constant of termination by combination, ktd is the 
rate constant of termination by disproportionation, ktr is the transfer rate constant, and the 
subscripts r and mindicate the number of monomer molecules in the chain.  The subscript A 
denotes that the chain ends with monomer A and the subscript B has an equivalent 
meaning.  

3. Polymerization rate constants  

The cross termination rate constants (kt,AB and kt,BA) were calculated using the following 
correlation:[32] 

 
1

2
, , ,/[2( ) ]t t AB t AA t BBφ k k k=   (33) 
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The cross propagation rate constants (kp,AB and kp,BA) were found from the reactivity ratios rA 

and rB and the values of kp,AA and kp BB: 

 
, ,

, ,

  ,   
p AA p BB

A B
p AB p BA

k k
r r

k k
= =  (34) 

The reactivity ratios in free radical copolymerization are function of the type of the 

propagating species and the type of the monomer units and, generally, they do not depend 

on the reaction medium. Similar to the reaction rate constants, the reactivity ratios in ATRP 

are same as in conventional free radical copolymerization. Tables 1 and 2 list the numerical 

values of the kinetic rate constants and reactivity ratios used in our simulations. The rate 

constants were kept constant during the simulations, that is, we neglected diffusion effects. 

 
 

Parameter Value Reference 

kpAA 4.266×107exp(-7769/RT) (L/mol s)  33 

kpBB 4.92×105exp(-4353/RT) (L/mol s) 34 

rA 0.52 35 

rB 0.46  35 

ktcAA (kp11)2×1.1×10-5 exp(12452.2/RT) (L/mol s)  36 

ktdBB 9.80×107exp(-701/RT) (L/mol s) 34 

ktdAA 0 37 

ktcBB 0 37 

ktrA (kp11)×2.198×10-1exp(-2820/T) (L/mol s) 32 

ktrB (kp22) ×((9.48×103×exp(-13880/(RT)))/60) (L/mol s) 32 

kaA 0.45   (L/mol s)                                                                       43 

kdA 1.15×107 (L/mol s)  43 

kaB 0.055 (L/mol s) 43 

kdB 8×107 (L/mol s) 43 

Initial Catalyst  
Concentration 

0.087 mol/L  

Initial Initiator 
Concentration 

0.087 mol/L  

Total Monomer 
Concentration 

8.7 mol/L  

MWA 104.14 (g/mol)  

MWB 100.13 (g/mol)  
 

Table 1. Kinetic rate constants and physical properties for styrene (1) -methyl methacrylate 
(2) copolymerization. 
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Parameter Value Reference 

kpAA 1.05×108exp(-3663/RT) (L/mol s)  38 

kpBB 4.92×105exp(-4353/RT) (L/mol s) 33 

rA 0.14 40 

rB  1.3 40 

ktcAA 3.30×1012 exp(-5400/RT) (L/mol s)  41 

ktdBB 9.80×107exp(-701/RT) (L/mol s) 34 

ktdAA 0 37 

ktcBB 0 37 

ktrA 4.62×104×exp(-5837/RT) (L/mol s) 32 

ktrB (kp22)×(9.48×103×exp(-13880/(RT)/60) (L/mol s) 32 

kaA 0.1 (L/mol s)                                                                    43 

kdA 1×108 (L/mol s)                                                                                           43 

kaB 0.5 (L/mol s) 43 

kdB 1×107 (L/mol s) 43 

Initial  Catalyst       

Concentration

0.087 mol/L  

Initial Initiator   

Concentration

0.087 mol/L  

Total  Monomer 

Concentration

8.7 mol/L  

MWA 53.15 (g/mol)  

MWB 100.13 (g/mol)  

 

Table 2. Kinetic rate constants and physical properties for the acrylonitrile (1) - methyl 
methacrylate (2) copolymerization. 

4. Results and discussions  

The DMC model was applied to describe the copolymerization of styrene/methyl 

methacrylate, and of acrylonitrile/methyl methacrylate. These comonomer combinations 

were chosen because they have significantly different reactivity ratios, which will lead to the 

production of copolymers with distinct CCDs and SLDs. Reaction rate constants were kept 

constant during the simulations, that is, we neglected diffusion effects.  

During living polymerization, the polymer average chain length increases linearly with 

monomer conversion, the polydispersity index approaches unity and, as a result, the 

molecular weight distribution is narrow, as shown in Figures 2.a to 2.c.  
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Fig. 2. Monte Carlo simulation results for the copolymerization of styrene and methyl 

methacrylate : (a) number average chain length (rn) as a function of conversion (x), (b) PDI as 

a function of conversion, and (c) chain length distribution when conversion is x = 0.99. The 

initial comonomer molar fractions in the reactor were f0,St = 0.5, f0,MMA = 0.5. 

Figure 3 shows the cumulative molar fraction of methyl methacrylate (MMA) in poly 

(acrylonitrile-co-methyl methacrylate) (AN-MMA) and poly(styrene-co-methyl 

methacrylate) (St-MMA). We can clearly see that in the St-MMA copolymer, the cumulative 

molar fraction of MMA remains almost constant throughout the polymerization. However, 

for the AN-MMA copolymer, the MMA molar fraction decreases from 0.5 to 0.3.  

Figure 4 shows the instantaneous molar fraction of MMA in AN-MMA and St-MMA 

copolymers. The instantaneous molar fraction of MMA in these copolymers differs 

significantly because of the difference in the reactivity ratios of the comonomer pairs. 

Because styrene and methyl methacrylate have very close reactivity ratios (0.53 and 0.46) the 

molar fraction of MMA does not change significantly with conversion. On the other hand, 

the molar fraction of MMA in AN-MMA copolymers decreases with conversion because the 

reactivity ratios (0.14 and 1.3) of the two comonomers are very different. Figure 4 shows that 

no more MMA is incorporated in the chains after a total monomer conversion of 

approximately 0.8. A similar trend is observed when the molar fraction of MMA is plotted 

as a function of the number average chain length. The comonomer composition drift in this 

case leads to the formation of a gradient copolymer with a terminal block composed of only 

acrylonitrile units. 
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Fig. 3. Cumulative molar fraction of MMA in AN-MMA and St-MMA copolymers as a 
function of total comonomer conversion. The initial comonomer molar fractions in the 
reactor were f0,MMA = 0.25 and f0,AN  = 0.75 or f0,St = 0.75. 
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Fig. 4. Instantaneous molar fraction of MMA in AN-MMA and St-MMA copolymers  as a 
function of total comonomer conversion. The initial monomer molar fractions in the reactor 
were f0,MMA = 0.25 and f0,AN  = 0.75 or f0,St = 0.75.  
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In batch copolymerization using controlled/living polymerization, a gradient copolymer is 

only produced if comonomer composition drift is significant, i.e when the difference 

between the reactivity ratios of the comonomers is large and/or the initial comonomer 

concentrations are very different. 

The DMC model also was used to describe the copolymerization of styrene and 

methylmethacrylate (St-MMA) or acrylonitrile and methylmethacrylate (AN-MMA) in a 

semibatch reactor.  We compared the effect of using different initial comonomer 

concentrations and of slowly adding styrene, acrylonitrile or methyl methacrylate into the 

reactor as a side stream during the polymerization. We assumed that the autoclave reactor 

was isothermal and well-mixed.  

Figure 5 compares the polydispersity index (PDI) of AN-MMA copolymers made in semi-

batch and batch reactors. Two different initial comonomer molar ratios (AN: MMA = 25:75 

and 50:50) were simulated. For the semi-batch simulations, the acrylonitrile concentration 

was kept constant by slowly feeding the comonomer to the reactor as the polymerization 

proceeded. Both the batch and semi-batch reactors made copolymers with PDIs that 

followed the same trend: the PDI was initially high and then approached a value of 

approximately 1.1, as commonly observed in ATRP processes. 

 

1

2

0 10 20 30 40 50 60

P
D

I

Time(min)

Batch 25AN:75MMA

Semibatch 25AN:75MMA

Batch 50AN:50MMA

Semibatch 50AN:50MMA

 

Fig. 5. PDI as a function of time for the copolymerization of AN and MMA in batch and 
semibatch reactors. The AN concentration was kept constant during the simulation of the 
semibatch reactor. 

Figure 6 shows the instantaneous and cumulative molar fraction of AN in the copolymer as 
a function of polymerization time respectively. Figure 6.a shows gradient copolymers are 
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Fig. 6. (a) Instantaneous molar fraction of AN in AN-MMA copolymers as a function of 
polymerization time in batch and semibatch reactors. (b) Cumulative molar fraction of AN-
MMA copolymers as a function of polymerization time in batch and semibatch reactors. 
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not made in the batch reactor when AN:MMA molar ratio is 25:75, but when AN:MMA is 
changed to 50:50, gradient copolymers will be produced for longer polymerization times. 
On the other hand, gradient copolymers are formed in the semi-batch reactor for both initial 
AN:MMA molar ratios at a shorter polymerization time.  
Figure 6.b shows the cumulative molar fraction of acrylonitrile in the copolymer as a 
function of polymerization time. It clearly indicates the formation of gradient copolymers in 
a semi-batch reactor. Both initial molar concentrations show the formation of gradient 
copolymers. The AN:MMA molar ratio of 25:75 does not produce a gradient but when 
AN:MMA is changed to 50:50, gradient copolymers are formed. A longer AN block is 
formed while using a semi-batch than batch reactors as described in Figure 6. Thus, better 
gradient copolymers can be produced using semi-batch reactors. 
Figures 7.a and 7.b compare the chain length distribution (CLD) of AN-MMA copolymers 
made in batch and semi-batch reactors for the two initial comonomer ratios. For an 
AN:MMA molar ratio of 25:75, the CLD of the copolymer made in the batch reactor is 
shifted to lower molecular weights. However, when AN:MMA is changed to 50:50, an 
opposite behavior is observed and the CLD of the copolymer made in the batch reactor is 
shifted to lower values. In the latter case, the semi-batch reactor can be used to produce a 
copolymer with higher molecular weight average without increasing the PDI. This is due to 
the higher propagation constant associated with AN. Hence, when AN content is increased, 
the rate of propagation is also increased thereby producing copolymer with higher 
molecular weight. 
Figure 8 compares the CCDs of AN-MMA copolymers made in batch and semi-batch 
reactors. It is apparent that, the CCDs of copolymers made in the batch reactor are narrower 
than those made in the semi-batch reactor. In addition, the copolymers made in the semi-
batch reactor will always have a higher molar fraction or acrylonitrile, as expected. 
The comonomer sequence distribution is characterized by its diads, triads, tetrads, and 
higher sequences, generally measured by NMR spectroscopy. Our DMC simulation 
program can also predict these sequences. Figures 9 to 14 show model predictions for diads 
and triads of styrene/MMA copolymers as a function of time when styrene is fed 
continuously to the reactor. Long polymerization times are needed to make gradient 
copolymers when MMA is fed to the reactor. Therefore, it is more convenient to produce 
gradient polymer when styrene is fed as the side stream. This could be attributed to the 
reactivity ratio of styrene which is slightly higher than MMA. Figures 9 to 14 clearly show 
that styrene diads and triads increase with increasing time for all initial monomer 
concentrations. The batch results of the present system did not show any formation of 
gradient polymers at all concentrations used while the semi-batch results predict the 
formation of gradient polymers for all the concentrations. Figures 9 to 14 were simulated at 
a maximum polymerization time of 100 minutes to better understand the formation of 
various diads and triads at a shorter timescale. As evident a clear increase in AN-AN blocks 
is found for all concentration except 25-75, but an increase in the timescale would result in 
the formation of gradient. The MMA-MMA blocks decreases for all concentration. 
Considering the homotriads, the AN-AN-AN blocks increases for all concentration within 
the timescale of 100 minutes. While a sharp decrease in the MMA-MMA-MMA triblocks are 
found for all concentration. Increase in the fraction of block copolymers are also found in 
our study. Clearly all the concentration form gradient polymers while a St:MMA molar ratio 
of 50:50 forms better gradient at the least polymerization time. Hence showing semibatch 
process could be very well utilized for making gradient polymers with styrene as the 
sidestream. 
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Fig. 7. Chain length distribution of AN-MMA copolymers made in batch and semibatch 
reactors. (a) AN:MMA = 25/75 (b) AN:MMA = 50/50. Polymerization time = 50 min. 
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Fig. 8. Chemical composition distributions of AN-MMA copolymers made in batch and 
semibatch reactors . Polymerization time = 30 min. 
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Fig. 9. Cumulative diad fraction as a function of total comonomer conversion for St-MMA 
system. The initial comonomer molar fractions are f0,MMA = 0.90 and f0,St = 0.10. 
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Fig. 10. Cumulative fraction of homodiads as a function of total comonomer conversion for 
St-MMA system. The initial comonomer molar fractions are f0,MMA = 0.75 and f0,St = 0.25. 
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Fig. 11. Cumulative diad fraction as a function of total comonomer conversion for St-MMA 
system. The initial comonomer molar fractions are f0,MMA = 0.50 and f0,St = 0.50. 
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Fig. 12. Cumulative triad fraction as a function of total comonomer conversion for St-MMA 
system. The initial comonomer molar fractions are f0,MMA = 0.90 and f0,St = 0.10. 
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Fig. 13. Cumulative triad fraction as a function of total comonomer conversion for St-MMA 
system. The initial comonomer molar fractions are f0,MMA = 0.75 and f0,St = 0.25. 
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Fig. 14. Cumulative triad fraction as a function of total comonomer conversion for St-MMA 
system. The initial comonomer molar fractions are f0,MMA = 0.50 and f0,St = 0.50. 

5. Conclusion  

DMC model was developed for the simulation of atom transfer radical copolymerization 

using Monte Carlo simulation. The model can predict average molecular weight, 

polydispersity index, MWD, CCD, SLD and copolymer composition as a function of 

polymerization time in semi-batch reactors. Two case studies (styrene-co-methyl 

methacrylate and acrylonitrile-co-methyl methacrylate) were chosen to demonstrate the 

effect of semi-batch method and monomer feed composition. 

The simulations show that the instantaneous molar fraction of methyl methacrylate does not 

change significantly for poly(styrene-co-methyl methacrylate) copolymers made in a batch 

reactor starting with different comonomer molar ratios as methyl methacrylate and styrene 

have close reactivity ratios (0.53 and 0.46) and, therefore, produce nearly random copolymer 

chains. On the other hand, the instantaneous molar fraction of methyl methacrylate in 

poly(acrylonitrile-co-methyl methacrylate) decreases with conversion and reaches zero 

around 80% of the total monomer conversion. There is a clear difference in the reactivity 

ratios (0.14 and 1.3) for this system. Composition drift, in this case, leads to the formation of 

gradient copolymer chains. The simulation for the varying monomer feed composition 

showed that the chance of forming gradient acrylonitrile-methyl methacrylate copolymers 

increases when the initial molar fraction of acrylonitrile is much higher than that of methyl 

methacrylate. 

The simulation clearly showed the impact of using semi-batch for the formation of gradient 

copolymers. The system utilizing styrene as semi-batch showed that increasing the styrene 
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content formed a gradient while increasing MMA content also formed gradient at the 

expense of high polymerization time but produced a narrow molecular distribution. The 

AN-MMA system followed the same trend. Gradient was formed in shorter polymerization 

time while employing AN as the sidestream. Even though batch process also produced 

gradient polymers, the semi-batch process utilized lesser polymerization time and lesser 

concentration of AN than its batch counterpart. The vital fact is the production of gradient 

polymers with great control enhancing the use of semi-batch technology. The model also 

showed its capability to produce tailor-made gradient polymers. 
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