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1. Introduction

The process controlling the diferentiation of stem, or progenitor, cells into one specific
functional direction is called lineage specification. An important characteristic of this process
is the multi-lineage priming, which requires the simultaneous expression of lineage-specific
genes. Prior to commitment to a certain lineage, it has been observed that these genes exhibit
intermediate values of their expression levels. Multi-lineage differentiation has been reported
for various progenitor cells (Akashi et al., 2003; Graf, 2002; Hu et al., 1997; Kim et al., 2005;
Loose & Patient, 2006; Miyamoto et al., 2002; Patient et al., 2007; Swiers et al., 2006), and it has
been explained through the bifurcation of a metastable state (Chickarmane et al., 2009; Huang
et al., 2007; Roeder & Glauche, 2006). During the differentiation process the dynamics of the
core regulatory network follows a bifurcation, where the metastable state, corresponding to
the progenitor cell, is destabilized and the system is forced to choose between the possible
developmental alternatives. While this approach gives a reasonable interpretation of the cell
fate decision process, it fails to explain the multi-lineage priming characteristic. Here, we
describe a new multi-dimensional switch-like model that captures both the process of cell
fate decision and the phenomenon of multi-lineage priming. We show that in the symmetrical
interaction case, the system exhibits a new type of degenerate bifurcation, characterized by
a critical hyperplane, containing an infinite number of critical steady states. This critical
hyperplane may be interpreted as the support for the multi-lineage priming states of the
progenitor. Also, the cell fate decision (the multi-stability and switching behavior) can be
explained by a symmetry breaking in the parameter space of this critical hyperplane. These
analytical results are confirmed by Monte-Carlo simulations of the corresponding chemical
master equations.

2. Stem cell differentiation

The processes describing the interactions in systems like transcriptional regulatory networks
are extremely complex. Genes can be turned on or off by the binding of proteins to regulatory
sites on the genome (Ozbundak et al., 2002; Ptashne & Gann, 2002). The proteins are known
as transcription factors, while the DNA-binding sites are known as promoters. Transcription
factors can regulate the production of other transcription factors, or they can regulate their
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Fig. 1. The architecture of the self-excitation and inhibition mechanisms in the binary cell fate
decision circuit.

own production. The transcription process can be described by a sequence of reactions, in
which RNA polymerase (R) binds to a gene’s promoter leading to the transcription of a
complete messenger RNA molecule. The genetic information transcribed into messenger RNA
molecules is then translated into proteins by ribosomes. Thus, the general assumption is that
the genes can be excited or inhibited by the products of the other genes in the network,
generating complex behavior like multi-stability and switching between different steady
state attractors. Based on these general assumptions, it has been shown that a simple gene
regulatory circuit (Fig. 1) in which two transcription factors, X and Y, inhibit each other, and
in the same time activate themselves, can be used as a model of binary cell fate decision in
multipotent stem or progenitor cells (Chickarmane et al., 2009; Huang et al., 2007; Roeder &
Glauche, 2006). This circuit can generate multistability and explains the symmetric precursor
state, in which both factors are present in the cell at equal (low) amounts. This circuit typically
produces three stable attractor states that correspond to observable cell states. The state 1, with
the expression pattern X ≫ Y, and the state 2, with the opposite pattern Y ≫ X represent
the cell fates, while the state 3, with a balanced expression X ≃ Y represents the undecided
multipotent state. This simple model provides a conceptual framework for understanding cell
fate decisions, and it will be used as a starting point in the development of our model.

3. Monte-Carlo simulation approach

The Monte-Carlo simulation approach employed here is based on the well known Gillespie
algorithm (Gillespie, 1977), which is a variety of a dynamic Monte Carlo method. The
traditional continuous and deterministic description of biochemical rate equations, modeled
as a set of coupled ordinary differential equations, relies on bulk reactions that require the
interactions of millions of molecules. In contrast, the Gillespie stochastic algorithm simulates
every reaction explicitly, and calculates the time evolution of the system by determining
the probabilities of each discrete chemical reaction and the resulting changes in the number
of each molecular species presented in the system. This algorithm has rigorous theoretical
foundations, and gives the exact solution for a system of elementary chemical reactions in
the approximation of a well-mixed environment. When simulated, a Gillespie realization
represents a random walk that exactly represents the distribution of the chemical master
equation. The algorithm is computationally expensive and several modifications have been
proposed to speed up computation, including the next reaction method, tau-leaping, as well
as hybrid techniques where abundant reactants are modeled with deterministic behavior
(Gibson & Bruck, 2000; Rathinam et al., 2003; Slepoy et al., 2008). These adapted techniques
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provide a compromise between computational speed and the exactitude of the theory behind
the algorithm as it connects to the chemical master equation. Here we use the standard
stochastic simulation algorithm, known as the Gillespie’s direct method. The rigorous
derivation of the algorithm has been given elsewhere and it has been shown to remain "exact"
for arbitrary low number of molecules (Gillespie, 1977).
Consider a system composed of N chemical species Xν (ν = 1, ..., N), interacting through M
reactions Rµ (µ = 1, ..., M) in the cell volume V. Every chemical reaction Rµ is characterized
by its stochastic rate constant kµ, which depends on the physical properties of the molecules
taking part in the reaction. The product kµdt is the probability that one elementary reaction Rµ

happens in the next infinitesimal time interval dt. The main steps of the Gillespie algorithm
consist of:

(a) calculating the waiting time τ for the next reaction to occur;

(b) determining which reaction µ in the system actually will occur.

These quantities are computed by generating two random numbers according to the following
probability density function:

P(τ, µ) = aµ exp(−a0τ), (1)

where
aµ = mµkµ, (2)

and

a0 =
M

∑
µ=1

aµ. (3)

Here, mµ is the number of distinct reactant combinations available for the reaction Rµ at the
given state of the system. The coefficient aµ is called the propensity of reaction Rµ. Thus,
P(τ, µ) is the probability that the next reaction will occur in the infinitesimal time interval dt
and that it will be the Rµ reaction. After determination of τ and µ, the numbers of molecules
in the system are adjusted according to the reaction Rµ. Also, the time t is advanced to t + τ.
The larger the propensity is, the greater is the chance that a given reaction will happen in the
next step of the simulation. It is worth noting that there is no constant length for a time-step in
the simulation. The length of each time-step is determined independently in every iteration,
and takes different values depending on the state of the system.
The implementation of the Gillespie algorithm is straightforward, and one can find excellent
descriptions of it in the literature (Adalsteinsson et al., 2004; Kierzek, 2002). Below we give the
pseudo-code of the algorithm:

#Gillespie’s direct method
1. Set initial numbers of molecules, set time t ← 0;
2. Calculate the propensities, aµ, for all µ = 1, ..., M;
3. Choose µ with the probability:

Pr(reaction = µ) =
aµ

∑
M
µ=1 aµ

; (4)

4. Choose τ with the probability:

Pr(time = τ) =

(
M

∑
µ=1

aµ

)
exp

[
−τ

(
M

∑
µ=1

aµ

)]
; (5)
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5. Change the number of molecules to reflect execution of reaction µ;
6. Set t ← t + τ, and go to step 2.

4. 2-Dimensional model

We consider the two gene circuit shown in Figure 1. We will focus on the elementary processes
that must occur, such as the promoter binding of the transcription factors X and Y to the
promoters, A and B, respectively, and the activation and degradation of transcription factors.
Also, we propose a general approach to integrate the two inputs to each gene, which does not
depend on the assumption of cooperativity or other explicit modeling. In order to provide a
quantitative model of this genetic circuit, we employ a formalism originally developed for the
mean-field description of the stochastic interactions in transcriptional regulatory networks
(Andrecut & Kauffman, 2006; Andrecut et al., 2008). The promoter binding and unbinding,
subsequent self-activation, inhibition, dissociation and the degradation reactions for X, and
respectively Y, are:

kAR

A + R −→ A + R + X
(6)

k+
AX

A + X −→ AX
(7)

k−AX

AX −→ A + X
(8)

k+
X

AX + R −→ AX + R + X
(9)

k+
AY

A + Y −→ AY
(10)

k−AY

AY −→ A + Y
(11)

k−X
X −→ ∅

(12)

kBR

B + R −→ B + R + Y
(13)

k+
BY

B + Y −→ BY
(14)

k−BY

BY −→ B + Y
(15)

k+
Y

BY + R −→ BY + R + Y
(16)

k+
BX

B + X −→ BX
(17)

k−BX

BX −→ B + X
(18)
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k−Y
Y −→ ∅

(19)

Here, k+
AX , k−AX, k+

BY, k−BY, describe the binding and release rates between the transcription

factor and the promoter element, k+
AY, k−AY, k+

BX, k−BX correspond to the cross inhibition rates,

while k+
X , k−X , k+

Y , k−Y reflect the activation and the degradation rates of the transcription
factors. We assume that the role of the first reaction for each transcription factor, Equation
6 and respectively Equation 13, is just to provide a small "basic level of expression" (with
the rates kAR, and respectively kBR), in order to avoid their complete extinction. It’s effect is
equivalent to a positive noise term ηX,Y in the differential equation describing the dynamics of
the transcription factor. Therefore, in the following analysis we will neglect the contribution of
this reaction, since it doesn’t really have an influence on the "logic functionality" of the circuit.
The dynamical behavior (rate of change of active levels of the proteins) of the isolated
transcription factors is therefore described by the stochastic differential equations:

d

dt
[X] = k+

X [AX]− k−X [X] + ηX , (20)

d

dt
[Y] = k+

Y [BY]− k−Y [Y] + ηY, (21)

where [.] denotes concentration. Assuming that the reversible binding-unbinding processes
are in equilibrium, we have:

kAX[A][X] = [AX], (22)

kBY[B][Y] = [BY], (23)

kAY[A][Y] = [AY], (24)

kBX[B][X] = [BX], (25)

where kAX = k−AX/k+
AX, kBY = k−BY/k+

BY, kAY = k−AY/k+
AY, kBX = k−BX/k+

BX. Also, since the
promoters can be in three different states we have:

[AX] + [AY] + [A] = [A0], (26)

[BY] + [BX] + [B] = [B0], (27)

where [A0] and [B0] are the total concentrations of the two promoters. From the above
equations, and neglecting the noise terms, we obtain the following system of deterministic
differential equations:

d

dt
x = αx

(
a3

a1x + a2y + 1
− 1

)
, (28)

d

dt
y = βy

(
b3

b1x + b2y + 1
− 1

)
, (29)

where we assumed that: x = [X], y = [Y], α = k−X , β = k−Y , a1 = kAX, b1 = kBX, a2 = kAY,

b2 = kBY, a3 = [A0]kAXk+
X /k−X , b3 = [B0]kBYk+

Y /k−Y .
We are interested in the symmetrical case, where α = β, a1 = b2, a2 = b1, a3 = b3, such that
the system becomes:

d

dt
x = αx

(
a3

a1x + a2y + 1
− 1

)
, (30)

d

dt
y = αy

(
a3

a2x + a1y + 1
− 1

)
. (31)
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The steady states of the above differential system of equations are given by the solutions of
the non-linear system:

d

dt
x = 0 ⇔ F(x, y, α, {a}) = αx

(
a3

a1x + a2y + 1
− 1

)
= 0, (32)

d

dt
y = 0 ⇔ G(x, y, α, {a}) = αy

(
a3

a2x + a1y + 1
− 1

)
= 0. (33)

In this case, one can easily verify that the system has four steady states:

(x0, y0) = (0, 0), (34)

(x1, y1) =

(
a3 − 1

a1
, 0

)
, (35)

(x2, y2) =

(
0,

a3 − 1

a1

)
, (36)

(x3, y3) =
1

a1 + a2
(a3 − 1, a3 − 1) , (37)

corresponding to the extinction, exclusive and coexistence equilibria. These fixed points are
positively defined if a3 > 1.
In order to evaluate the local stability we calculate the eigenvalues, λ and µ, of the Jacobian
matrix at these steady states:

J(x, y, α, {a}) =

[
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]
= α

⎡
⎣

a3(a2y+1)
(a1x+a2y+1)2 − 1 − a3a2x

(a1x+a2y+1)2

−
a3a2y

(a2x+a1y+1)2

a3(a2x+1)
(a2x+a1y+1)2 − 1

⎤
⎦ . (38)

The eigenvalues of the Jacobian for the extinction state (x0, y0) are:

λ = α(a3 − 1) > 0, (39)

µ = α(a3 − 1) > 0. (40)

Thus, this steady state is always unstable, since a3 > 1. The eigenvalues for the exclusive
steady states, (x1, y1) and (x2, y2), are:

λ = −α
a3 − 1

a3
, (41)

µ = −α
(a3 − 1)(a2 − a1)

a1 + a2(a3 − 1)
, (42)

and respectively:

λ = −α
(a3 − 1)(a2 − a1)

a1 + a2(a3 − 1)
, (43)

µ = −α
a3 − 1

a3
. (44)
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Therefore, the exclusive equilibria are stable if a2 > a1, and unstable if a2 < a1. In contrast,
the eigenvalues for the coexistence equilibrium (x3, y3) are:

λ = −α
(a3 − 1)(a1 + a2)

a3(a1 + a2)
, (45)

µ = −α
(a3 − 1)(a1 − a2)

a3(a1 + a2)
. (46)

Since λ < 0, this steady state is stable if µ < 0, and it looses stability if µ > 0. One can easily
see that the stability condition, µ < 0, is equivalent to a2 < a1. Thus, a change in the ratio
ρ = a1/a2, triggers a bifurcation from one stable steady state (x3, y3), when ρ < 1, to two
stable steady states (x1, y1) and (x2, y2), when ρ > 1.
In Fig. 2 and Fig. 3 we give the results of the Monte-Carlo simulations. The initial
concentrations and the main reaction constants are set as: R = 100, A0 = B0 = 1, X0 = Y0 = 0,
k−X = k−Y = 0.01, kA = kB = 0.01, k+

X = k+
Y = 0.01, k+

AX = k+
BY = 1, k+

AY = k+
BX = 1. Fig. 2 gives

the trajectories x(t) = X(t)/R and y(t) = Y(t)/R for ρ < 1, when there is one noisy attractor,
corresponding to the coexistence equilibrium, (x3, y3) (Fig. 2(a)), and for ρ > 1, when there
are two noisy attractors, corresponding to the exclusive equilibria, (x1, y1) and (x2, y2) (Fig.
2(b)). Also, in Fig. 3 we have represented graphically the probability density distribution,
P(x, y), of the transcription factors (obtained by averaging over M = 104 trajectories with
T = 107 reactions events). One can see that for ρ < 1, the system has only one noisy attractor,
corresponding to the stable fixed point (x3, y3) (Fig. 3(a), a1 = 1, a2 = 2), while for ρ > 1,
the system exhibits two noisy attractors corresponding to the stable fixed points (x1, y1), and
respectively (x2, y2) (Fig. 3(b), a1 = 2, a2 = 1). We should note that the absolute values of the
rate constants do not play a critical role in the simulation, as long as their ratios satisfy the
bifurcation constraints.
An important case of the above analysis corresponds to the critical bifurcation parameter ρ =
1. In this case the system has the form:

d

dt
x = αxΦ(x, y, {a}), (47)

d

dt
y = αyΦ(x, y, {a}), (48)

where
Φ(x, y, {a}) =

a3

a1(x + y) + 1
− 1. (49)

One can easily verify that in this case, the exclusive and coexistence equilibria disappear, and
the system has an infinite number of steady states Ω = {(x, y) ∈ R

2|Φ(x, y, {a}) = 0}, which
are practically equivalent to the positive segment of the linear equation: x + y = (a3 − 1)/a1.
These steady states have the following eigenvalues:

λ = 0, (50)

µ = −(a3 − 1)/a3 < 0. (51)

Therefore, the steady states Ω are stable, and the system undergoes a degenerate bifurcation
(see Appendix). This situation is presented in Fig. 2(c) and Fig. 3(c), for a1 = a2 = 1. One can
see that the stochastic system is "undecided", exploring every point of the critical line with
non-zero probability. The line is attracting, except along itself, that is, there is no "longitudinal"
force on this line. Therefore every state on it is indifferently stable. Thus, the critical line
becomes an ergodic attractor.
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 (a) 

 (b) 

 (c) 

Fig. 2. Monte-Carlo simulation of the 2-dimensional circuit: (a) ρ < 1, one attractor
(k−AX = k−BY = 0.5 and k−AY = k−BX = 1); (b) ρ > 1, two attractors (k−AX = k−BY = 1 and

k−AY = k−BX = 0.5); (c) ρ = 1, the critical case of the degenerate bifurcation

(k−AX = k−BY = k−AY = k−BX = 1).

5. N-Dimensional model

We consider a N−gene circuit, where we denote by Xn the transcription factors and by An the
promoters, n = 1, ..., N. For each gene we assume the following set of equations:

kn

An + R −→ An + R+ Xn
(52)

k+
nm

An + Xm −→ AnXm
(53)

k−nm

AnXm −→ An + Xm
(54)
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Fig. 3. The probability density distribution, P(x, y), of the stochastic trajectory of the
2-dimensional circuit: (a) ρ < 1, one attractor; (b) ρ > 1, two attractors; (c) ρ = 1, the critical
case of the degenerate bifurcation.

k+
n

AnXn + R −→ AnXn + R + Xn
(55)

k−n
Xn −→ ∅

(56)

Thus, the promoter An can bind to any of the N transcription factors. Therefore, the dynamical
behavior of the transcription factors is described by the following system of stochastic
differential equations:

d

dt
[Xn] = k+

n [AnXn] − k−n [Xn] + ηXn
, n = 1, ..., N, (57)
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where ηXn
is the noise term corresponding to the first reaction (52). Assuming that the

reversible binding-unbinding processes are in equilibrium, we have:

knm[An][Xm] = [AnXm], n, m = 1, ..., N, (58)

where knm = k−nm/k+
nm. Also, since the promoters can be in N + 1 different states we have:

N

∑
m=1

[AnXm] + [An] = [A0
n], n = 1, ..., M. (59)

where [A0
n] are the total concentrations of the promoters. From the above equations, and

neglecting the noise terms, we obtain the following system of deterministic differential
equations:

d

dt
xn = αnxn

(
βnknn

∑
N
m=1 knmxm + 1

− 1

)
, n = 1, ..., N. (60)

where we assumed that: x = [Xn], αn = k−n , βn = [A0
n]k+

n /k−n .
Let us consider now the symmetric case:

d

dt
xn = Fn(x1, ..., xN , α, β, κ, γ) = αxn

(
βκ

κxn + γ ∑m �=n xm + 1
− 1

)
, n = 1, ..., N, (61)

where κ = knn and γ = knm for m �= n = 1, ..., N. The steady states corresponds to the
solutions of the nonlinear system:

d

dt
xn = 0 ⇔ Fn(x1, ..., xN , α, β, κ, γ) = 0, n = 1, ..., N. (62)

There are N + 2 steady states:
(

x
(0)
1 , ..., x

(0)
N

)
= (0, ..., 0) , (63)

(
x
(i)
1 , ..., x

(i)
n , ..., x

(i)
N

)
=

(
0, ...,

βκ − 1

κ
, ...0

)
, i = 1, ..., N, (64)

(
x
(N+1)
1 , ..., x

(N+1)
N

)
=

(
βκ − 1

κ + (N − 1)γ
, ...,

βκ − 1

κ + (N − 1)γ

)
. (65)

Again, these states correspond to extinction, N−exclusive and coexisting equilibria, and they
are positively defined if βκ > 1. The stability of these states can be analyzed using the
eigenvalues of the Jacobian matrix:

J(x1, ..., xN , α, β, κ, γ) =

[
∂

∂xi
Fn(x1, ..., xN , α, β, κ, γ)

]

n,i=1,...,N
, (66)

where

∂

∂xi
Fn =

⎧
⎪⎨

⎪⎩

αβκ(γ ∑m �=n xm+1)

(κxn+γ ∑m �=n xm+1)
2 − α i f n = i

−
αβκγxn

(κxn+γ ∑m �=n xm+1)
2 i f n �= i

. (67)

The eigenvalues of the extinction state are:

λn = α (βκ − 1) , n = 1, ..., N, (68)
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which means that this steady state is always unstable, since βκ > 1. For the exclusive
equilibria the eigenvalues are:

λn =

⎧
⎨

⎩
−

α(βκ−1)
βκ i f n = i

−
α(βκ−1)(γ−κ)

γ(βκ−1)+κ
i f n �= i

, n = 1, ..., N. (69)

Therefore, these states become stable if γ > κ, and unstable if γ < κ. In the case of coexisting
equilibrium the Jacobian is given by:

∂

∂xi
Fn =

⎧
⎨

⎩

α(1−βκ)
β[κ+(N−1)γ]

i f n = i

−
αγ(βκ−1)

βk[κ+(N−1)γ]
i f n �= i

, (70)

and it has the following eigenvalues:

λn =

⎧
⎨

⎩
−

α(βκ−1)
βκ i f n = i

−
α(βκ−1)(κ−γ)
βk[κ+(N−1)γ]

i f n �= i
, n = 1, ..., N. (71)

Thus, this state becomes stable if γ < κ, and unstable if γ > κ.
In the critical case, κ = γ, the steady state equations are degenerated and we have again an
infinite number of steady states, all of them satisfying the critical hyperplane equation:

N

∑
n=1

xn =
βκ − 1

κ
. (72)

In this critical case the Jacobian takes the simplified form:

∂

∂xi
Fn = −

α

β
xn, (73)

and it has the following eigenvalues:

λn =

{
−

α(βκ−1)
βκ i f n = i

0 i f n �= i
, n = 1, ..., N. (74)

Thus, one eigenvalue is always negative, since βκ > 1, and the other N − 1 eigenvalues are
zero. Therefore, the hyperplane containing the infinite number of steady states is attractive
and marginally stable.
In Fig. 4 we give the simulation results for a circuit consisting of three genes, N = 3. The
initial concentrations are set as R = 150, A1 = A2 = A3 = 1, X1 = X2 = X3 = 0. The
rate constants are the same as for the 2-dimensional circuit. Fig. 4 gives the trajectories xn(t)
for γ < κ, when there is one noisy attractor, corresponding to the coexistence equilibrium,

(x
(3)
1 , x

(3)
2 , x

(3)
3 ) (Fig. 4(a)), and for γ > κ, when there are three noisy attractors, corresponding

to the exclusive equilibria, (x
(1)
1 , x

(1)
2 , x

(1)
3 ) =

(
βκ−1

κ , 0, 0
)

, (x
(2)
1 , x

(2)
2 , x

(2)
3 ) =

(
0,

βκ−1
κ , 0

)
and

(x
(3)
1 , x

(3)
2 , x

(3)
3 ) =

(
0, 0,

βκ−1
κ

)
(Fig. 4(b)), and in the degenerate case when the plane x1 + x2 +

x3 =
βκ−1

κ is the ergodic attractor (Fig. 4(c)).
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 (a) 

 (b) 

 (c) 

Fig. 4. Monte-Carlo simulation of the 3-dimensional circuit: (a) γ < κ, one attractor; (b)
γ > κ, three attractors; (c) γ = κ, the critical case of the degenerate bifurcation.

6. Conclusion

We have presented a new multi-dimensional switch-like model that captures both the
process of cell fate decision and the phenomenon of multi-lineage priming. The previous
attempts to model the coexistence of three discrete stable states are based on a complicated
molecular interaction mechanisms, requiring cooperativity or additional transcription factors
(Chickarmane et al., 2009; Huang et al., 2007; Roeder & Glauche, 2006). Here, we have shown
that very elementary cross-inhibition between two genes and independent autoactivation
can give rise to multistability without cooperativity. It is important to note the obvious
fact that the real molecular mechanisms that govern the dynamics of this gene regulatory
circuit are by orders of magnitudes more complex, involving perhaps thousands of steps not
accounted for in the presented model. However, this simplified description is still able to
capture to qualitative cell fate decision behavior, specifically, the existence of an indeterminate
multi-potent progenitor state with equal levels of transcription factors, and the generation
of stable attractor states with asymmetric expression patterns. Also, we have shown that in
the symmetrical interaction case, the system exhibits a new type of degenerate bifurcation,
characterized by a critical hyperplane containing an infinite number of critical steady states.
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This degeneration of the central attractor state captures the intrinsic heterogeneity of the
undecided multipotent state allowing individual cells to a range of states, and may be
interpreted as the support for the multi-lineage priming states of the progenitor. Also, the
cell fate decision (the multi-stability and switching behavior) can be explained by a symmetry
breaking in the parameter space of this critical hyperplane. It is important to note here that
the critical hyperplane is also ergodic. Thus, in the critical regime, any stochastic trajectory
of the system will be attracted to the critical hyperplane. Also, in this case, the dynamics
will become confined to this region, such that the system will visit all the points of the critical
hyperplane with non-zero probability (the priming phenomenon). However, any perturbation
of this critical hyperplane will force the system to collapse in one of its non-trivial stable steady
states (the cell fate decision process).

7. Appendix: Degenerate steady state bifurcation

We consider a 2-dimensional system of stochastic differential equations (SDE), of the following
generic form:

(S)

{
ẋ = α(x̄ − x)Φ(x, y, {γ}) f (x, y, {a}) + ηx

ẏ = β(ȳ − y)Φ(x, y, {γ})g(x, y, {b}) + ηy
, (75)

where Φ, f , g : R
2 → R , x, y, x̄, ȳ, α, β, {γ}, {a}, {b} ∈ R, and ηx , ηy correspond to additive

noise terms. Also, we denote by Ω = {(x, y) ∈ R
2|Φ(x, y, {γ}) = 0} the set of solutions of the

equation Φ = 0, and we assume that: f (x, y, {a}) �= 0 and g(x, y, {b}) �= 0, for any (x, y) ∈ R
2.

Theorem 1: The SDE system (S) exhibits a degenerate bifurcation, (x̄, ȳ) → Ω̃ ⊂ Ω, from one

steady state (x̄, ȳ) to a subset of steady states Ω̃ ⊂ Ω, if:

max{−αΦ(x̄, ȳ, {γ}) f (x̄, ȳ, {a}),−βΦ(x̄, ȳ, {γ})g(x̄, ȳ, {b}} > 0, (76)

and
∇vΦ(x, y, {γ}) = 〈v,∇Φ(x, y, {γ})〉 < 0, (77)

for any (x, y) ∈ Ω̃ and

v = [α(x̄ − x) f (x, y, {a}), β(ȳ − y)g(x, y, {b})]T. (78)

Proof: A first steady state of the system (S) is (x̄, ȳ). Also the system has an infinite number of
steady states Ω, corresponding to the solutions of the equation Φ(x, y, {γ}) = 0. The stability
of the steady states can be analyzed using the eigenvalues, λ0 and λ1, of the Jacobian matrix
J, which are given by the solutions of the equation |J − λI| = 0, where I is the identity matrix.
In general, the eigenvalues are complex numbers, and the distance between the solution of
the system and thesteady state changes at an exponential rate, given by the real part of the
eigenvalue. For simplicity the following discussion is restricted to real eigenvalues, though
steady states with complex eigenvalues have similar properties based on the value of the
real part of the eigenvalue. A negative eigenvalue implies that the solution approaches the
steady state along the corresponding eigenvector, while a positive eigenvalue implies that the
solution moves away from the steady state along the eigenvector. In a 2-dimensional system
there are three possible cases. A stable steady state has two negative eigenvalues, and hence
attracts all the solutions in a surrounding region. An unstable steady state has two positive
eigenvalues and all the solutions in its neighborhood move away from it. A saddle point has
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one negative and one positive eigenvalue. Now let us analyze the stability of the steady states
of the system. The eigenvalues of the Jacobian for (x̄, ȳ) are:

{
λ0 = −α f (x̄, ȳ, {a})Φ(x̄, ȳ, {γ})
λ1 = −βg(x̄, ȳ, {b})Φ(x̄, ȳ, {γ})

. (79)

Thus, this steady state is stable if λ0, λ1 < 0, and it looses stability if λ0 > 0 or λ1 > 0, which
is equivalent to the condition imposed by the Equation 76. The other steady states (x, y) ∈ Ω,
have the following eigenvalues:

{
λ0 = 0

λ1 = α(x̄ − x) f ∂Φ
∂x + β(ȳ − y)g ∂Φ

∂y
, (80)

and they are degenerated, since they have at least one zero eigenvalue. Also, these degenerate
steady states become stable for λ1 < 0. Since λ1 = 〈v,∇Φ〉 = ∇vΦ, this stability condition is
equivalent to the condition imposed by the Equation 77, which requires that the derivative of
Φ in direction v must be negative. The directional derivative of a manifold Φ along a vector v
at a given point (x, y), intuitively represents the instantaneous rate of change of the manifold,
moving through (x, y), in the direction of v. One can easily verify that in this case, v is the
eigenvector of the Jacobian corresponding to the eigenvalue λ1, that is we have: Jv = λ1v.
Thus, any change in the parameters {γ}, such that the stable steady state (x̄, ȳ) becomes

unstable, and the steady states Ω̃ = {(x, y) ∈ Ω|∇vΦ(x, y, {γ}) < 0} become stable, results
in a degenerate bifurcation of the dynamics of the stochastic system (S).
A similar property can be formulated for stochastic discrete maps (SDM) of the following
generic form:

(M)

{
xt+1 = (xt − x̄)[1 − αΦ(xt , yt, {γ}) f (xt, yt, {a})] + x̄ + ηx

yt+1 = (yt − ȳ)[1 − βΦ(xt, yt , {γ})g(xt, yt , {b})] + ȳ + ηy
, (81)

where Φ, f , g : R
2 → R , xt, yt, x̄, ȳ, α, β, {γ}, {a}, {b} ∈ R, and ηx, ηy correspond to additive

noise terms. We denote by Ω = {(x, y) ∈ R
2|Φ(x, y, {γ}) = 0} the set of solutions of the

equation Φ = 0. Also, we assume that: f (x, y, {a}) �= 0 and g(x, y, {b}) �= 0, for any (x, y) ∈
R

2.
Theorem 2: The SDM system (M) exhibits a degenerate steady state bifurcation, (x̄, ȳ) → Ω̃ ⊂

Ω, from one steady state (x̄, ȳ) to a subset of steady states Ω̃ ⊂ Ω, if:

max {|1 − αΦ(x̄, ȳ, {γ}) f (x̄, ȳ, {a})| , |1 − βΦ(x̄, ȳ, {γ})g(x̄, ȳ, {b})|} > 1, (82)

and
|1 −∇vΦ(x, y, {γ})| < 1, (83)

for any (x, y) ∈ Ω̃ and

v = [α(x − x̄) f (x, y, {a}), β(y − ȳ)g(x, y, {b})]T. (84)

Proof: The steady states of the map (P) are (x̄, ȳ), and the set Ω, corresponding to the solutions
of the equation Φ(x, y, {γ}) = 0. As before, the eigenvalues, λ0 and λ1, are given by the
equation |J − λI| = 0, where J is the Jacobian of the discrete map (P). In the case of discrete
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maps, a stable steady state is characterized by |λ0| < 1 and |λ1| < 1, while an unstable steady
state is characterized by |λ0| > 1 or |λ1| > 1. The eigenvalues of the Jacobian for (x̄, ȳ) are:

{
λ0 = 1 − αΦ(x̄, ȳ, {γ}) f (x̄, ȳ, {a})
λ1 = 1 − βΦ(x̄, ȳ, {γ})g(x̄, ȳ, {b})

. (85)

Thus, this steady state is stable if |λ0| < 1 and |λ1| < 1, and it becomes unstable if |λ0| > 1 or
|λ1| > 1, which is equivalent to the condition imposed by the Equation 82. The other steady
states Ω, have the following eigenvalues:

{
λ0 = 1

λ1 = 1 − α(x − x̄) f ∂Φ
∂x − β(y − ȳ)g ∂Φ

∂y
, (86)

and they are degenerated, since they have at least one eigenvalue equal to one. These
degenerate steady states become stable for |λ1| < 1, which is equivalent to the condition
imposed by the Equation 83. Also, one can verify that v is the eigenvector of the Jacobian,
corresponding to the eigenvalue λ1. Thus, any change in the parameters {γ}, such that

the stable steady state (x̄, ȳ) becomes unstable, and the steady states Ω̃ = {(x, y) ∈
Ω| |1 −∇vΦ(x, y, {γ})| < 1} become stable, results in a degenerate bifurcation of the
dynamics of the stochastic discrete map (M).
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