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1. Introduction

In the 21st century, vital resources for human beings such as food, energy, and water (FEW)
are being rapidly depleted. Global water scarcity has already become a serious world-wide
problem; “the cheap energy” – fossil fuels – will last only a few decades; and skewed
global food distributions are marked by serious obesity in one region and deadly starvation
in another. The standard role of environmental engineering now vigorously extends
from providing conventional sanitation guidelines to contributing crucial information to
environmental policy-making and futurological issues. Unlike other engineering and closely
related disciplines (such as chemical engineering, electrical engineering, material science,
and computer and information sciences), environmental engineering deals with poorly or
incompletely defined problems whose scientific origins are in multiple sub-categories of
physics, chemistry, biology and mathematics; and spontaneously gives birth to novelties in
interdisciplinary research areas.
In general, medicine is classified into curative and preventive technologies. One can
make an analogy of the curative medicine (alleviating pain from diseases) to conventional
engineering that tries to improve the quality of human life. Preventive medicine is analogous
to the corresponding role of environmental engineering which, in part, is to conserve
the natural environment by eliminating or minimizing environmental risks. The term
“conservation” is often regarded as passive human responses to return a degraded system
to its original state after accidents. Prevention refers to keeping something from unexpected
happening or arising. Active engineering responses can include designing new paradigms
for environmentally friendly, green, or zero-emission processes to eliminate potential adverse
effects on nature from undesired technological by-products.
A question arises to researchers in environmental engineering and science,

“What do we prevent and how, if we do not know what is really happening?”

Perhaps this question may be a senseless one, if one develops new products such as
cellular phones, computer chips, or sign-recognition software, because market demands truly
control developers’ objectives to generate better money-making commercial products. As an
environmental engineer, how do we choose probably the most urgent and long-term-impact
problems; and then clearly define probably beneficial outcomes for human beings by solving
the uncertain problems? Considering these questions and above issues, don’t we have enough
reasons to deal with fundamentals of probability and statistics and see how these are used in
thermodynamics in order to deeply understand natural and engineered phenomena? What
are the likelihood, chances, and probabilities in nature?

Albert S. Kim
Civil and Environmental Engineering, University of Hawaii at Manoa

USA
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1.1 Probability

The primary objective of this chapter is to introduce how to use statistical mechanics to
deal with engineering problems, specifically with environmental engineering applications.
In physics, subjects of conservation laws include mass-energy, (translational and rotational)
momentum, electric charge, and (more importantly?) probability, which are kept constant
during the time in a closed system. Excluding conversion between mass and energy which
rarely happens in practical engineering processes, one can explain energy conservation,
indicating total energy as the sum of the kinetic energy and potential energy, which is always
the same number. However, one should notice that this relationship stems from Newton’s
second law and energy is nothing but a constant generated by integrating

F = ma = −∇V(r) (1)

with respect to the object’s position r in a conservative field where F is a force acting on an
object, m is the object mass, a is the acceleration, and V(r) is the potential energy. In one
dimension, multiplying v on both sides of Eq. (1) yields

mv
dv

dt
= −dx

dt

dV

dx
(2)

which is integrated as

m
∫ v2

v1

vdv = −
∫ x2

x1

dV (3)

1

2
mv2

2 −
1

2
mv2

1 = −V(x2) + V(x1) (4)

assuming that the particle of mass m is at x1 having velocity v1 at time t = t1 and moves to x2
having velocity v2 at time t = t2. Thus,

1

2
mv2

1 + V(x1) =
1

2
mv2

2 + V(x2) = E = Constant (5)

which implies that the sum of kinetic and potential energies is a constant, denoted as E.
Feynman et al. (1963) indicated that

“It is important to realize that in physics today, we have no knowledge of what energy
is. We do not have a picture that energy comes in little blobs of a definite amount. It
is not that way. However, there are formulas for calculating some numerical quantity,
and when we add it all together it gives ‘28’ – always the same number. It is an abstract
thing in that it does not tell use the mechanism or the reasons for the various formulas.”

As noted above, we do not know what energy is exactly but we know that it has a constant
character with respect to time. Similar to Feynman’s description about energy, probability is
assumed to be implicitly understood by readers; and sometimes a more non-technical word,
“chance”, is alternatively and widely used. If a sales person signed an important contract
today, he might ask to himself: What is the chance that I will get a promotion call from
my boss next week? A Hawaii politician might be interested in the question: What is my
chance of being elected mayor of Honolulu? These chances are hard to estimate because the
questioners do not have enough information, and the knowledge is sometimes too uncertain
to be quantified.
Without exception, the probability is a fraction, i.e., a dimensionless number between 0 and 1,
often measured as percentage. The widely used examples in the study of probability include
tossing a coin and rolling a dice, and the following questions are often asked: What is the
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Number 1 2 3 4 5 6

Regular 1/6 1/6 1/6 1/6 1/6 1/6

Modified 0/6 1/6 1/6 1/6 2/6 1/6

Table 1. Probability distribution of the regular and modified dice.

probability of heads when tossing a coin?; and, what is the probability getting a 2 when
rolling a dice?. The answers to the first and second questions are 1/2 and 1/6, respectively,
which almost nobody refutes. But, why? More specifically, why do heads and tails have
the same chances of 1/2? Or, why do the six consecutive numbers of a dice have the same
probability of 1/6 to be thrown? A simple answer is that we assigned an equal chance
to all probable outcomes. If so, again, why do we do that? Perhaps, it is because we
do not have any better knowledge than that of the equal distribution. This was called the
“principle of incomplete reasons” (PIR). A similar concept, “equipartition principle”, can be
found in statistical mechanics, i.e, putting exactly 1/3 of the total energy to each direction of
homogeneous and isotropic three-dimensional space. Note that homogeneity and isotropy
are also our great assumptions.
These are excellent pedagogical examples but truly ideal. What if someone has a damaged
coin that is not flat enough, so that we cannot convince ourselves of the equal probabilities of
heads and tails? What if someone added four more dots on the surface of the dice with one
dot and now it displays 5 (see Figure 1 ), but we keep throwing the dice without knowing
about the significant change in the probability distribution. Then, sample space, technically
called “ensemble”, was modified, so that the uniform distribution fails to statistically describe
the system.

(a) (b)

Fig. 1. Dice with (a) 1 to 6 and (b) 1 replaced by 5

Now, heads and tails have different probabilities of occurrence due to the uneven shape; and
by tossing the modified dice, the probability of throwing 1 is zero, and that of 5 is 2/6, not
1/6. How do we evaluate the expected values of the two examples after the changes? The
dice case would be easier to reconstruct the probability distribution as shown in Table 1. After
a large number of tosses, the average outcome, i.e., expectation value, is

1 × 0

6
+ 2 × 1

6
+ 3 × 1

6
+ 4 × 1

6
+ 5 × 2

6
+ 6 × 1

6
=

25

6
= 4.167

Note that we still use the principle of incomplete reasons by assigning equal probability of 1/6
to rolling 2, 3, 4 or 6; and moving the probability 1/6 from 1 to 5. The expectation value of the
regular dice is 3.5, which is similar to 4.167. If our number of tosses is not large enough, then
the modified probability distribution would not be achieved and the expectation value can be
accepted within a reasonable(?) range of tolerance error. In the above case of the modified
dice, we implicitly assume that the shape is a regular cubic. When a coin is damaged, i.e.,
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curved and/or stretched, then the uneven probability distribution must be made even and is
not easy to build.
We do not have enough information at the micro-mechanics level from which we can

definitely say that “The probability of tossing heads on the damaged coin is
√

2/2 and that of

tails is 1 −
√

2/2.” There are many important features in tossing the damaged coin: tosser’s
specific way of flipping the coin into air, the number of spins before landing, the landing
conditions such as falling velocity and bouncing angle, all of which were ignored for the
undamaged coin. To average out these specific impacts on the probabilities of throwing heads
or tails using the damaged coin, we need to have the number of tossings much more than
that of tossing a regular coin. In other words, we cannot equally distribute the probabilities
to heads or tails, and we do not know how much the two probabilities are different from 1/2.
So, we do a large number of tossing experiments to estimate probabilities of landing on heads
and tails, keeping the fact that a sum of the two equal probabilities is always 1, no matter
how much the coin was damaged. Note that we used our basic belief of equal probability
distribution for tossing the modified dice; and on the other hand, we actually did a number
of tossing experiments of the damaged coin to estimate the probability distribution. This is
because it is mathematically formidable to calculate probability distribution of the damaged
coin; and we still believe the probabilities to throw 2, 3, 4 and 6 of the modified dice are equally
1/6.

1.1.1 Conventional point of view: Frequency

Reif (1965) indicated in his book that the probability of the occurrence of a particular
event is defined with respect to a particular ensemble consisting of a very large number of
similarly prepared systems; and is given by the fraction of systems in the ensemble which
are characterized by the occurrence of the specific event. Therefore, the fraction, called
frequency probability, is the ratio of a certain occurrence of our interest to the total number
of possible occurrences. This surely implies that unless we do a large number of experiments,
the measured frequency fraction is not accurate enough. In general, spanning all the possible
cases is a formidable task, especially for a complex system.

1.1.2 Bayesian Point of view: Distribution

An alternative approach is the conditional probability, which allows one to localize the sampling
space and provide a new probability distribution. The probability that both a and b occur is
expressed as

P(a ∩ b) = P (a|b) P (b) = P (b|a) P (a) (6)

indicating that P(a ∩ b) is equal to

1. the probability of a occurring, P(a), times the probability of b occurring given a has
occurred, P(b|a), and

2. the probability of b occurring, P(b), times the probability of a occurring given b has
occurred, P(a|b).

so that P (a|b) is written as

P (a|b) =
P (b|a) P (a)

P (b)
(7)

The proof for Eq. (6) uses two basic probability relationships: the sum rule and the product
rule, i.e.,

P(a|b) + P(ã|b) = 1 (8)

and
P(a ∩ a′|b) = P(a|b)P(a′|b) (9)
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respectively. Eq. (8) indicates that, given b has occurred, the sum of probabilities of a
occurring, P(a|b), and not a occurring (i.e., ã), P(ã|b), is equal to 1. The product rule of Eq. (9)
means the probability of occurring a and a′ given that b has occurred, P(a ∩ a′|b), is equal to
the probability of a, given b, P(a|b), multiplied by the probability of a′ given b, P(a′|b).

1.1.3 Examples

In this section, well-known examples are selected and solved using the frequency and
conditional probabilities. In addition, logical ways of solving the example problems are
included. The purpose of this section is to show that the conditional probability method is
as powerful as the other two methods.

A. Monty Hall dilemma

Suppose you’re on a game show, and you’re given the choice of three doors. Behind one door
is a car; behind the others, goats. You pick a door, say #1, and the host, who knows what’s
behind the doors, opens another door, say #3, which has a goat as behind it. He then says to
you,

“Do you want to switch to door #2, or stay with door #1?"

Is it to your advantage to change your choice? It is better to stay with door #1 or is it better to
switch to door #2 or is the probability of winning the same for either choice?

Fig. 2. The Monty Hall paradox first appeared in 1975 on the American television game show
Let’s Make a Deal, hosted by Mr. Monty Hall (1921 – present). The game show aired on NBC
daytime from December 30, 1963, to December 27, 1968, followed by ABC daytime from
December 30, 1968, to July 9, 1976, along with two primetime runs. It also aired in
syndication from 1971 to 1977, from 1980 to 1981, from 1984 to 1986, and again on NBC
briefly from 1990 to 1991. Historical records from Wikipedia
(http://en.wikipedia.org/wiki/Monty_Hall) and special thanks to Tae Chun for
the illustration.

(a) Solution using logical thinking

When you selected door #1, the probability of winning the car is 1/3. No question at all!
But there are also two other doors. The host opened door #3, showing a weird-looking goat.
This makes the original probability assigned to door #3 equal to zero. Where has it gone
since the sum of the probability of all possible events should always be one. You don’t think
the winning probability on door #1 has changed. Then, there is only one possibility, i.e., the
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probability of door #3 moved to that of door #2. So, if you switch to door #2, your winning
chance will be doubled: from 1/3 to 2/3. So, you are switching now!

(b) Solution using conditional probability

Perhaps the logical solution above might not be clear enough. So let’s calculate the conditional
probability using Bayes’ rule (Bayes and Price, 1763). The game show can be mathematically
described as three sets with possible cases:

• S = my Selection = {1, 2 or 3}
• H = Host open = {1, 2 or 3} /∈ S
• C = Door for car = {1, 2 or 3} /∈ H

You want to know the probability of winning after switching from door #1 to #2. Without
loosing generality, this probability can be written as P (C2|S1 ∩ H3), which is the probability
that the car is behind door #2 given that you selected door #1 and the host opened door #3
showing a goat (not a car!). By substituting a = C2 and b = S1 ∩ H3 into Eq. (7), one can write
in a symmetric form

P (C2|S1 ∩ H3) =
P (S1 ∩ H3|C2) P (C2)

P (S1 ∩ H3)
(10)

of which each probability can be addressed as follows.
First, P (C2) is the probability that the car is behind door #2, which is equal to

P (C2) =
1

3
= P (C1) = P (C3) (11)

because the probability of finding the car is equally distributed among the three doors. This
resembles the energy equipartition principle.
Second, P (S1 ∩ H3|C2) is the probability of S1 and H3 given C2 so substituting into Eq. (9)
yields

P (S1 ∩ H3|C2) = P (S1|C2) P (H3|C2) (12)

where C2 confines a sub-domain of probability for S1 and H3. Because we do not know which
door will reveal the car, our first selection of a door is independent of the probability of the
car being behind door #2:

P (S1|C2) = P (S1) =
1

3
(13)

However, the host knows that the car is behind door #2 and he also saw that you selected door
#1. Therefore, given C2 (that the host is aware of), the probability that the host opens door #3
is

P (H3|C2) = 1 (14)

so that

P (S1 ∩ H3|C2) =
1

3
× 1 =

1

3
(15)

Third, you need to calculate P (S1 ∩ H3), the probability that S1 and H3 (and vice versa) will
happen, which is simply equal to the probability of S1 multiplied by the probability of H3, i.e.,

P (S1 ∩ H3) = P (S1) P (H3) =
1

3
· 1

2
=

1

6
(16)

because we select one door out of three and the host opens one out of the two remaining doors.
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Finally, the winning probability after switching from door #1 to #2 is calculated as

P (C2|S1 ∩ H3) =
P (S1 ∩ H3|C2) P (C2)

P (S1 ∩ H3)
=

1

3
· 1

3
1

6

=
2

3
(17)

and the winning probability by staying with door #1 is calculated using the the sum rule:

P (C1|S1 ∩ H3) = 1 − P (C3|S1 ∩ H3) − P (C2|S1 ∩ H3) = 1 − 0 − 2

3
=

1

3
(18)

Note that the probability of the car being behind door #3 after the host opened #3 is zero, i.e.,
P (C3|S1 ∩ H3) = 0. This indicates if you stay in door #1, then the probability of winning
the car is 1/3, i.e., P (C1|S1 ∩ H3) = 1/3, but if you switched to door #2, the probability is
doubled! So, always switch your door! Additional analysis of the conditional probability can be
found in section 5.1.

(c) Solution using frequency probability

Let’s assume that the car is behind door #1.

1. If you select door #1, the host will open either door #2 or #3. Let’s say, door #3. If you
switch your door, then you won’t get the car.

2. If you select door #2, there is no question at all that the host will open door #3. If you
switch from door #2 to #1, then you will win the car.

3. If you select door #3, the host will open door #2. If you switch from door #3 to #1, then you
will win the car.

So among the three possible cases above with unconditional switch no matter which door is
selected, two cases give car-winning opportunities. Therefore, the probability of winning the
car by switching to the other door is 2/3. This solution method seems to be easier than that of
the conditional probability above, but building a complete sample space is not always easy.

B. Prisoner’s Dilemma

This example is taken from a book written by Mosteller (1965). “Three prisoners, A, B, and C,
with apparently equally good records have applied for parole. The parole board has decided
to release two of the three, and the prisoners know this but not which two. A warder friend of
prisoner A knows who will be released. Prisoner A realizes that it would be unethical to ask
the warder if he, A, is to be released, but thinks of asking for the name of one prisoner other

than himself who is to be released. He thinks that before he asks, his chances of release are 2
3 .

He thinks that if the warder says “B will be released,” his own chances have now gone down

to 1
2 , because either A and B or B and C are to be released. And so A decided not to reduce

his chances by asking. However, A is mistaken in this calculations. Explain.”

(a) Solution using logical thinking

The probability that A will be released is 2
3 because two out of the three will be released. The

decision of the parole board is independent of A’s knowledge. Therefore, A still has a 2/3
chance of being released.
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(b) Solution using conditional probability

The probability of A being released, given that B will be released, can be expressed as

P(A|B) =
P(B|A)P(A)

P(B)
(19)

One calculates P(A) = 2/3, P(B) = 1, and P(B|A) = P(B) = 1 because A does not affect B.
Therefore,

P(A|B) =
1 · 2

3

1
=

2

3
(20)

indicating that no matter whether A knows about B’s fate or not, the probability of A’s release
is 2/3.

(c) Solution using frequency probability

The possible pairs to be released are AB, BC, and AC, which have equal probability of 2/3.
Then, the probabilities of possible cases in the sample space are calculated as

Released Warder says Probability
AB B 1/3
AC C 1/3
BC B 1/6
BC C 1/6

Thus, the probability of A being released is equal to

Probability of AB to be released

Probability of AB to be released + Probability of BC to be released

given that B will be released. Therefore, A’s probability of being released is

1
3

1
3 + 1

6

=
2

3
(21)

As shown above in the two examples, conditional probability is as powerful as frequency
probability and has mathematical elegance. Now we will see how conditional probability is
efficiently used in statistical physics when dealing with a large population.

1.2 Thermodynamics and statistical mechanics

1.2.1 Heat and work

Statistical mechanics, as a branch of theoretical physics, studies macroscopic systems from
a microscopic or molecular point of view, dealing with systems in equilibrium. It is often
referred to as statistical thermodynamics as it links (classical) thermodynamics with molecular
physics. Thermodynamic laws describe the transport of heat and work in thermodynamic
processes.

• The 0th law of thermodynamics: If two thermodynamic systems are each in thermal
equilibrium with a third, then they are in thermal equilibrium with each other. In other
words, if A = B and B = C, then A = C.

• The 1st law of thermodynamics: Energy is neither created nor destroyed. Increase in the
internal energy E of a system is equal to the heat Q supplied to the system subtracted by
the work W done by the system, i.e., dE = d̄Q −d̄W. The symbol “d̄” indicates that the
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differential is inexact. Q and W are path functions, and E is a state function. Specifically
in equilibrium, dE = TdS − PdV, where the temperature T and pressure P are integral
factors of dS and dP, respectively.

• The 2nd law of thermodynamics: Spontaneous natural processes increase entropy overall.
In other words, heat can spontaneously flow from a higher-temperature region to a
lower-temperature region, but not the other way around:

∆S = ST − S0 =
∫ T

T0

dQ

T
≥ 0 (22)

where ∆S = 0 is for the reversible process.

• The 3rd law of the thermodynamics: As the temperature approaches absolute zero, the
entropy of a system approaches a constant minimum. Briefly, this postulates that entropy
is temperature dependent and results in the formulation of the idea of absolute zero. At
S0 = 0, T is defined at 0K.

The heat absorbed by the system from the surroundings during the change from state A to
state B is

Q =
∫ B

A
d̄Q =

∫ B

A
TdS (23)

where T is the absolute temperature and S is the entropy. The pressure-volume work done by
a thermodynamic system on its surroundings that goes from state A and state B is

W =
∫ B

A
d̄W =

∫ B

A
PdV (24)

where P is the pressure exerted by the surroundings on the system and dV is an infinitesimal
change in volume. The work Q and heat W have different values for different paths from state
A to B so that Q and W are path functions. However, the first law of thermodynamics states
that the infinitesimal difference between Q and W is independent of the path, i.e.,

dE =d̄Q −d̄W (25)

where E is a state function and called the internal energy. The second integrals in Eqs. (23)
and (24) are valid for reversible processes in which there exist integral factors: T for d̄Q and P
ford̄W. Therefore, dS and dV are exact differentials: S and V are state functions. Thus,

∆S =
∫ B

A

d̄Q

T
≥ 0 (26)

where the equals sign is for a reversible process. Eq. (26) indicates the second law of
thermodynamics. In an irreversible process, the entropy of the system and its surroundings
increase; in a reversible process, the entropy of the system and its surroundings remains
constant. In other words, the entropy of the system and its surroundings never decreases!
The third law of thermodynamics allows us to calculate the absolute entropy of a substance:

S − S0 =
∫ T

0

d̄Q

T
(27)

where S0 = 0 at T = 0K. For simple systems, the first law of Eq. (25) can be expressed as

dE = TdS − PdV (28)
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1.2.2 Microstates in phase space

The number of possible cases that N particles exist in m distinct microstates in phase space is

W =
N!

n1! n2! · · · ni! · · · nm!
=

N!

∏
m
i=1 ni!

(29)

where ni is the number of particles in state i running from 1 to m so that

m

∑
i=1

ni = N (30)

or
m

∑
i=1

fi = 1 (31)

where frequency fi is defined as

fi =
ni

N
(32)

Usually, N and ni are large numbers, which allow us to use Stirling’s formula (Reif, 1965):

x! ≈ x ln x − x (33)

to obtain

1

N
ln W =

1

N
ln N! − 1

N
ln

[

∏
i

ni!

]

≈ ln N − 1 − 1

N ∑
i

(ni ln ni − ni)

= −
m

∑
i

fi ln fi (34)

The system energy can be expressed as the sum of the product of the energy of state i and the
number of particles in the state:

m

∑
i=1

fiǫi = E (35)

Our goal is to find function fi that maximizes (ln W)/N with the two constraints of Eqs. (30)
and (35) (Giffin, 2008; 2009). Using Lagrange multipliers, α and β, one can write

1

N
ln W = −

m

∑
i

fi ln fi − α

(
m

∑
i=1

fi − 1

)
− β

(

∑
i

fiǫi − E

)
(36)

and maximize (ln W)/N as

∆

(
1

N
ln W

)
= −∑

i

∆ fi ln fi − ∑
i

fi
∆ fi

fi
− α ∑

i

∆ fi − β ∑
i

(∆ fi) ǫi

= ∑
i

∆ fi (− ln fi − 1 − α − βǫi)

= 0 (37)

10 Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science

www.intechopen.com



Therefore, fi is calculated as

fi = e−(1+α+βǫi) (38)

Eq. (30) indicates the sum of fi should be one:

1 = ∑
i

fi = e−1−α ∑
i

e−βǫi (39)

so that

e−1−α =

[

∑
i

e−βǫi

]−1

=
1

Z
(40)

where Z is partition function, defined as

Z = ∑
i

e−βǫi (41)

The final form of function fi is written as

fi =
e−βǫi

Z
(42)

which makes the mean energy E represented in terms of the partition function:

E = ∑
i

fiǫi =
1

Z ∑
i

ǫie
−βǫi = − 1

Z

∂

∂β

(

∑
i

e−βǫi

)
= − ∂ ln Z

∂β
(43)

1.2.3 Canonical ensemble

In classical thermodynamics, there are seven primary quantities: (1) the number of particles
(or molecules) N, (2) the volume V of the system containing the particles, (3) the temperature
T, (4) the pressure P due to collisions of particles on box walls, (5) the total energy E, (6)
the entropy S measuring the disorderness of the system, and (7) the chemical potential of μ
(i.e., molar Gibbs free energy). An ensemble sets three (out of seven) variables to constants
and defines a characteristic energy-function (i.e., a thermodynamics function that has a unit
of energy) with the three constant variables as arguments. The partition function determines
the characteristic energy-function. The other four variables are determined using the energy
function and its partial derivatives with respect to the three variables chosen for the ensemble.
For example, the canonical ensemble sets N, V, and T as constants and defines the Helmholtz
free energy as

F = E − TS = −kBT ln Z (44)

where kB is the Boltzman constant and Z is the (canonical) partition function:

Z (N, V, T) =
1

N!h3N

∫
e−H(Γ)/kBTdΓ (45)

where h is Planck’s constant, H(Γ) is the Hamiltonian, Γ and dΓ = dNrdNp represent
a specific state and the infinitesimal element, respectively, in the phase space of 3N × 3N
dimension. Given a specific Hamiltonian as the sum of kinetic and potential energies of N
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particles in a conservative field, i.e.,

H =
N

∑
i=1

(−→
Pi ·

−→
Pi

2mi
+ V

(−→ri

)
)

(46)

and using the infinitesimal relationship of the Helmholtz free energy

dF = μdN − PdV − SdT (47)

the rest of four variables in the canonical ensemble are calculated as

μ =

(
∂F

∂N

)

V,T

(48)

P = −
(

∂F

∂V

)

N,T

(49)

S = −
(

∂F

∂T

)

N,V

(50)

E = −kBT ln Z − TS (51)

where subscripts N, V, and T of the partial differentials are kept constant.
On the other hand, one can write mean energy E as an ensemble average of the Hamiltonian:

E = 〈H〉 =
∫

H · ρ(Γ) dΓ (52)

where ρ is the probability density function (PDF) that quantifies the chances of the system
having a specific value of the Hamiltonian:

ρ =
e−βH

Z
(53)

where β = 1/kBT. Using the PDF, the second law of thermodynamics can be revisited by
calculating

∆E =
∫

∆H · ρ dΓ +
∫

H · ∆ρ dΓ (54)

Here, the first term of Eq. (54) indicates the average of the Hamiltonian charge, which must
be heat provided to the system by the surroundings:

∫
∆H · ρ dΓ = δQ (55)

where “δ” has a similar meaning to d̄, implying an inexact differential of which the associated
quantity (e.g., Q) is a path function. The second term of Eq. (54) indicates energy change in
part by variation of probability distributions, ∆ρ. As a response to the applied (infinitesimal)
heat δQ, the system does some work without noticeable change of the total energy; and
their difference is stored as the internal energy change. In a reversible process, this work
accompanies an infinitesimal volume expansion keeping the system pressure invariant. As
the system is heated by the surroundings, the molecules will have more thermodynamic
states because the entropy never decreases. Then, the change in the probability distribution is
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negative and the second integral term of Eq. (54) is expressed as negative (infinitesimal) work:

∫
H · ∆ρ dΓ = −δW (56)

By combining Eqs. (54) –(56), we revisited the second law of the thermodynamics from the
view point of statistical mechanics, i.e.,

∆E = δQ − δW (57)

which is equivalent to Eq. (25).

2. Monte Carlo sampling

2.1 Importance sampling

As the first law of thermodynamics describes energy changes as heat is absorbed or subtracted
by work done, the average energy of canonical ensemble of subsystems in an equilibrium state
is described as its ensemble average (Eq. 52). Constraints embedded in the canonical ensemble
are N, V, and T. The other four thermodynamic variables such as E, P, μ, and S are calculated
using the definition of ensemble average:

〈A〉 =
∫

A · ρ(Γ) dΓ (58)

where A is an thermodynamic variable of interest. Numerical integration of A · ρ(Γ) in phases
space is almost formidable due to the large dimension of 3N × 3N. Another approach is to
generate a number of samples of A where ρ(Γ) is significant.
For example, if a Hawaii researcher tries to build a PDF of shoppers at Ala Moana Shopping

Center1, then the researcher needs to have a number of assistants who stay for a given time
(e.g., 10 minutes) at uniformly distributed stations in the mall areas and count the number
of people passing by them. This is a very direct way to build the shopper PDF throughout
the mall. If the researcher wants to know the average number of shoppers per 10 minutes,
then he/she will multiply the number of shoppers counted at each station to the normalized
frequency of shoppers at each station and sum over all the stations. For simplicity, assume
that a shopper is not simultaneously double counted by assistants at different stations, and
all shoppers are counted. Using this method, construction of a master PDF is a primary,
time-consuming step before calculating any statistical quantity of interest. Isn’t there any
faster method to accurately estimate the mean number of shoppers? Assume the researcher
knows, by previous knowledge, the shopper PDF in the mall. Then, the survey stations can be
distributed following the shopper PDF. Once each station provides the number of shoppers
counted during 10 minutes, then the sum of the numbers of shoppers of all stations can be a
good estimation of the mean shopper number during 10 minutes!
Monte Carlo sampling, called importance sampling, follows the same idea. Instead of
spanning all the possible cases and measuring a quantity of interest, sampling can be done
following a PDF of thermodynamic states. Obviously, this approach to use the PDF for
sampling, which should be obtained by sampling, is controversial. The Hawaii researcher
can use a dynamic sampling method to reduce the sampling number required to build a
trustful PDF. Initially, the survey stations can be distributed with a uniform, random, or mixed

manner throughout the mall. A station assigned to Leia2 is located between a parking lot and

1 The largest shopping mall in Honolulu, Hawaii, the fifteenth largest shopping mall in the United States,
and the largest open-air shopping center in the world

2 Hawaiian female name, meaning child of heaven
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a shopping area. Leia counted the number of people, say s1 at position x1. She randomly
selected a new position x2 (not far away from her original location x1), counted the number
of shoppers, say s2, and found that s2 > s1. Then, she updated her numbers from s1 to s2. Her
third position x3 is chosen randomly near x2. At this time, s3 is less than s2. Now, she thinks
that if she keeps selecting new positions with higher numbers than that at a previous station,
the measurement is not correct and statistics will overestimate the total number of people in
the mall. In this case, she needs a criterion to accept movement to a station where the number
of people counted will be lower.
She decides on a simple protocol as follows:

• If a new position provides more people, then stay at the new position and update the
number.

• If the number of shoppers decreases by moving to a new position, she stay at the new
position if she tosses heads on a coin.

By doing this, she can measure more frequently where there are more shoppers, but not
completely discard data from stations having less shoppers. She can test various criteria to
stay at a new position with a lower number of shoppers. If the ratio of the number of shoppers
at the new station to that of old, i.e, Nnew/Nold is less than 0.5, she returns to the old position,
discarding the number counted at the new position. Because the new position is rejected,
she counts the number of people at the old position one more time before she randomly
selects a new position. Including the random selection of x1, the number of positions used for
measurement should be equal to the number of accepted measurements. Some of positions
must be used multiple times. After a certain number of measurements, let’s say 50, Leia
can assemble a series with the number of shoppers, i.e., {N1, N2, N3, . . . , Ni, . . . , N50}. The
difference between Ni+1 and Ni must be large if i is small. Leia can take an average of the
number of people using only the later half of the data set, i.e, i = 26− 50. If the researcher has
more assistants, he or she can sum the number of shoppers counted by the assistants, divide it
by the number of assistants, and calculate the average number of people seen per 10 minutes
at the shopping mall.

2.2 Formalism

Monte Carlo simulation is in general an integration process in a large dimensional space. As
stated above, the key issue is to reduce the sampling numbers using the importance sampling
technique, i.e., sampling more data where the probability density is higher. The sampling
frequency distribution should resemble the PDF of the thermodynamic states. Monte Carlo
simulation starts at a location in the phase space. The next position is selected to satisfy
that a series of accepted locations follow the frequency distribution of the thermodynamic
state. Therefore, searching probable states in the phase space is a self-consistent process that
supports the PDF.

After integration with respect to N-particle momentum, dpN , the probability distribution
function of a particle configuration state R (= {r1, r2, · · · , ri, · · · , rN}) occurring is

ρ(R) =
e−βV(R)

ZR
(59)

where

ZR =
∫

e−βV(R)dR (60)

Now, we define W(R′|R) as the probability to make a transition from state R to R′, i.e., the
conditional probability of occurring state R given that state R′ has occured. Two constraints
W(R′|R) are:
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(a) sum rule ∫
W(R′|R)dR′ = 1 (61)

(b) detailed balance
W(R′|R) ρ(R) = W(R|R′) ρ(R′) (62)

In Eq. (62), left-hand-side is the probability of state R occurring multiplied by the transition
probability to state R′ given R; and right-hand-side is the probability of state R′ occurring
multiplied by the transition probability to state R given R′. Therefore, each represents the
probability of both configuration states R and R′ occurring in canonical ensemble, i.e., P(R ∩
R′).
The transition probability W is described as

W(R′|R) = A(R′|R) T(R′|R) (63)

where A(R′|R) is the acceptance probability of the move from R to R′ and T(R′|R) is the
selection probability of a new configuration R′ given an old R, chosen to satisfy

∫
T(R′|R)dR′ = 1 (64)

such that R and R′ are accessible to each other.
If configuration R′ is a higher energy state than R, which indicates that a transition from state
R′ to R is always accepted, i.e.,

A(R|R′) = 1 (65)

Substitution of Eq. (63) into Eq. (62) yields

A(R′|R) =
T(R|R′) ρ(R′)
T(R′|R) ρ(R)

(66)

where the form of T(R′|R) can be arbitrarily chosen. Now, we define

q(R′|R) =
T(R|R′)
T(R′|R)

exp
(
−β

[
V(R′) − V(R)

])
(67)

and represent a general form of the acceptance probability:

A(R′|R) = min
[
1, q

(
R′|R

)]
(68)

If V(R′) < V(R), q(R′|R) > 1 and therefore A(R′|R) = 1. Otherwise, A(R′|R) =
q(R′|R) < 1.

2.3 Metropolis Monte Carlo (MMC)

In principle, it is possible to make simultaneous N-particle moves. However, in practice,
a one particle move is preferred because the acceptance probability of the N-particle move
is exceedingly small for a reasonable step size. For this reason, we restrict ourselves to the
one-particle move at a Monte Carlo step, and simplify Eq. (68) to

A(r′
i |ri) = min

[
1, q

(
r′

i |ri

)]
(69)

which implies that, during the transition of particle i from ri to r′
i , all other particles will stay

at their original positions rj for j = 1, 2, · · · , i − 1, i + 1, · · · , N.
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To implement the Metropolis solution of the acceptance probability, the selection probability
needs to be specified, which is designed to move particle i from ri into any one of its
neighboring position r′

i in a cubic region R with an equal probability. See Fig. 3 for
details. The cube is centered at ri and has sides of 2δrmax. Then, the random displacement

Fig. 3. Trial movement of particle i from position ri to r′
i that can be any point within the

square domain R of each side 2∆rmax.

∆ri = r′
i − ri is selected via

∆xi = x′i − xi = (2ξ1 − 1.0) × ∆rmax (70a)

∆yi = y′i − yi = (2ξ2 − 1.0) × ∆rmax (70b)

∆zi = z′i − zi = (2ξ3 − 1.0) × ∆rmax (70c)

where ξ1, ξ2, and ξ3 are independent uniform random numbers between 0 and 1. The value
of ∆rmax must be optimally chosen. If ∆rmax is too large, then the acceptance probability can
be small due to physical overlap between rigid particles and/or the energy difference can be
much larger than kBT. The selection probability of r′

i from ri is then

T(r′
i |ri) =

{
τ0 r′

i ∈ R

0 r′
i /∈ R

(71)

where τ0 is a constant, which can be chosen as 1/ (2∆rmax)
3 or 1/NR where NR is the finite

number of a new position. The numerical value of τ0 does not influence the evaluation of the
acceptance probability because the constant character of τ0 implies its intrinsic symmetricity
with respect to the sequence of ri and r′

i , which provides the final form of

q(r′
i |ri) =

τ0

τ0

ρ(r′
i )

ρ(ri)
= e−β[V(r′

i )−V(ri)] (72)

from Eq. (67) and further the acceptance probability of the one-particle move as

A(r′
i |ri) = min

[
1, q

(
r′

i |ri

)]
(73)

as suggested by Metropolis et al. (1953).
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2.4 Force Bias Monte Carlo (FBMC)

Pangali et al. (1978) proposed the modified selection probability along the direction of forces.
The primary reason is that particle movements in (deterministic) molecular dynamics per time
step is usually biased in the direction of the intermolecular forces and torques, whereas the
moves sampled according to the standard Metropolis algorithm are chosen randomly in an
arbitrary direction. Therefore, if the influence of forces acting on a particle can be included
in selecting a new position, then the Monte Carlo can be more accurate, potentially avoiding
congestion near a bottleneck in phase space.
Expansion of the potential function V(ri) around ri gives for the one-particle move

T(r′
i |ri) =

{
C−1 exp [βλFi(ri) · ∆ri] r′

i ∈ R

0 r′
i /∈ R

(74)

where λ is an arbitrary parameter and Fi(ri) = −∇ri V(ri) is a force vector acting on particle
i from all other particles, and C is a normalization constant that depends on λ and Fi. The
normalization condition of Eq. (64) gives

C =
∫ ∫ ∫

r+∆rmax

r−∆rmax

dx′dy′dz′ exp
[
βλ

{
Fx · (x′ − x) + Fy · (y′ − y) + Fz · (z′ − z)

}]
(75)

where the particle index i is omitted since it does not change the final representation of C. The
integration with respect to x′ calculates

∫ x+∆rmax

x−∆rmax

dx′ exp
[
βλFx · (x′ − x)

]
=

2 sinh [βλFx∆rmax]

βλFx

and so

C =
8 sinh [βλFx∆rmax] sinh

[
βλFy∆rmax

]
sinh [βλFz∆rmax]

(βλ)3FxFyFz
(76)

Note that Fx, Fy, and Fz are force components that particle i experiences at r = (x, y, z). The

coefficient C′ of the selection probability of ri from r′
i is accordingly calculated as

C′ =
8 sinh [βλF′

x∆rmax] sinh
[

βλF′
y∆rmax

]
sinh [βλF′

z∆rmax]

(βλ)3F′
xF′

yF′
z

(77)

with F′
x, F′

y, and F′
z at r′ = (x′, y′, z′). So that

q(r′|r) =
T(r|r′)ρ(r′)
T(r′|r)ρ(r)

=
C′

C
exp

(
−β

[
V(r′) − V(r) + λ(F + F ′) · ∆r

])

= exp
(
−β

[
δV + λ(F + F ′) · ∆r + ∆WFB

])
(78)

where
∆V = V(r′) − V(r) (79)

and

∆WFB = kBT ln

(
C′

C

)
(80)
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If the maximum displacement ∆rmax is set to be small, then C′/C can be approximated using
the Taylor expansion. If we consider terms only in the x-coordinate,

(
C′

C

)

x

=
sinh[η + ∆η]

η + ∆η

η

sinh[η]
(81)

where η = βλFx∆rmax and ∆η = βλ∆Fx∆rmax. Using

sinh t

t
= 1 +

1

6
t2 + · · · (82)

one approximates C′/C as

(
C′

C

)

x

≈ 1 + 1
6 (η + ∆η)2

1 + 1
6 η2

=

[
1 +

1

6
(η + ∆η)2

] [
1 − 1

6
η2 + O

(
η4

)]

= 1 +
1

6

[
2η∆η + (∆η)2

]
+ O

(
η4

)

≈ 1 +
1

6

[
2Fx∆Fx + ∆F2

x

]
β2λ2∆r2

max

≈ exp

(
1

6

[
2Fx∆Fx + ∆F2

x

]
β2λ2∆r2

max

)
(83)

so that in general

∆WFB ≈ 1

6
(2F · ∆F + ∆F · ∆F ) βλ2∆r2

max (84)

Finally, a move from r to r′ of i particle is accepted with the probability:

A(r′|r) = min
[
1, q

(
r′|r

)]
(85)

where

q(r′|r) = exp

(
−β

[
δV + λ(2F + ∆F ) · ∆r +

1

6
βλ2∆r2

max (2F + ∆F ) · ∆F

])
(86)

An alternative representation with λ = 1/2 is

q(r′|r) = exp (−β [δV + 〈F 〉 · ∆rFB]) (87)

where 〈F 〉 indicates the average forces between position r and r′:

〈F 〉 =
1

2

(
F + F ′) = F +

1

2
∆F (88)

and ∆rFB is the proposed displacement for a move:

∆rFB = ∆r +
1

12
β∆r2

max∆F (89)

The first and second terms in the RHS of Eq. (89) are under the influence of random forces
(from surrounding solvent molecules) and systematic forces (from other nearby Brownian
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particles), respectively. Note that β−1|∆F |∆rmax has an energy unit. The simplified
representation of the acceptance probability q of Eq. (87) evolves from two conditions: (1)
λ = 1/2, and (2) ∆rmax is small enough (typically in comparison to particle size) to ensure
that βλ|F |∆rmax ≪ 1. With the same conditions, the “Smart Monte Carlo (SMC)” provides
identical representations of Eqs. (87) - (89) developed by Rossky et al. (1978). Northrup and
McCammon (1980) have used SMC to investigate protein structure fluctuations.
In the FB algorithm, ∆r is randomly chosen using a uniform random number generator as
indicated in Eq. (70): however, in the SMC algorithm, ∆r/∆rmax is chosen to have zero mean
and unit variance; in other words,

〈∆r〉 = 0 (90a)

〈∆r · ∆r〉 = ∆r2
max (90b)

and the isotropy indicates

〈∆x〉 = 〈∆y〉 = 〈∆z〉 = 0 (91a)

〈(∆x)2〉 = 〈(∆y)2〉 = 〈(∆z)2〉 =
1

3
∆r2

max (91b)

A Gaussian random number with zero mean and unit variance can be generated using two
typical methods.

A. Box and Muller’s Algorithm

Box and Muller (1958) Let U1 and U2 be independent random variables from the same
rectangular density function on the interval (0, 1). Consider the random variables:

X1 =
√
−2 ln U1 cos 2πU2 (92)

X2 =
√
−2 ln U1 sin 2πU2 (93)

Then, −∞ ≤ X1, X2 ≤ +∞ will be a pair of independent random variables from the same
normal distribution with mean zero, and unit variance. Either X1 or X2 can be used if only
one Gaussian random number is necessary at a time.

B. Summation Algorithm

Allen and Tildesley (1987) This method involves two steps and the generation of 12 uniform
random variates:

1. generate 12 uniform random variables, U1, · · · , U12 in range (0, 1);

2. calculate X = ∑
12
i=1 Ui − 6

This method yields number X’s which are sampled from an approximately normal
distribution (by virtue of the central limit theorem of probability). Clearly, random variates
outside the range (−6, +6) will never be generated using this method, but it is adequate for
most Monte Carlo purposes, and is quite fast.

2.5 Move Bias Monte Carlo (MBMC)

In natural and engineered systems, molecules and particles are considered as point masses
and spherical objects, respectively. However, long polymer chains with finite length are of
great importance in chemical engineering processes. Since a polymer can be viewed as a linear
connection of many identical monomers, trial movement of a polymer requires constraints
such as sequence, bond length, and bond angle of associated monomers.
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Mapping the movement of a polymer chain is an interesting problem. de Gennes (1971)
developed the reptation model where a polymer chain of n monomers moves like a reptile.
When the position of the first monomer is randomly selected and accepted without any
overlap between the other monomers, the second monomer moves to the previous position
of the first, the third monomer moves to the previous position of the second monomer, and

so forth: simply, rold
1 → rnew

1 and ri → ri−1 for i = 2 − n. In programming, this is actually
equivalent to moving the last monomer to the position of the first monomer and updating the
monomer index such that

i → mod(i, m) + 1 (94)

i.e., 1 → 2, 2 → 3, ..., i → (i + 1), (m − 1) → m, and m → 1.
This reptation model is efficient when polymers are in a dense system so that their lateral
movements are restricted by volume exclusion. However, when polymer rheology is of
interest, one can use an isothermal-isobaric ensemble with a constant number of particles
(i.e., monomers in polymer solution), pressure, and temperature. Simulation starts with
a sparse distribution of polymers of random shapes in an arbitrarily chosen large volume.
Configurations of polymers and system volume change during the NPT simulation to reach
an equilibrium state that calculates a mean pressure close to the preset value of the pressure.
While the volume shrinks, polymers find energetically nested positions. In this case, an
effective sampling in the phase space should include lateral movement of monomers within
a polymer in addition to the reptation. To avoid configurational jamming of polymers in a
canonical ensemble, one can use parallel tempering which simulates M replicas of the original
system of interests at different temperatures and swap a pair of configurations comparing
energy between the two subsystems (Earl and Deem, 2005).
A partial polymer can have a new configuration. A terminal section of a chain, let’t say m
monomers, is annihilated and then regrown one by one. Each of the new m monomers can
be created at a random position near the previous one in the sequence. The energy difference
between the new and old terminal sections is calculated, and the standard Metropolis Monte
Carlo scheme is used to accept or reject the new configuration of the terminal section. This
is called configurational bias Monte Carlo (CBMC), originally proposed by Rosenbluth and
Rosenbluth (1955) and further developed by Siepmann and Frenkel (1992) and de Pablo et al.
(1992). As the force bias MC was designed to simulate water and aqueous solutions (Pangali
et al., 1978), it is possible to combine the move bias and force bias Monte Carlo algorithms for
an efficient sampling of polymer configurations in phase space.

3. Hybrid Monte Carlo

The term “hybrid” indicates a combination of two different elements. In general,
thermodynamic states can be classified into equilibrium and non-equilibrium states, often
called “static” and “dynamic”, respectively. The true equilibrium state exists in an isolated
system through which neither mass nor energy can transfer. Therefore, no thermodynamic
quantity in an isolated system changes with respect to time, which is mathematically depicted
as ∂[ ]/∂t = 0. In engineering processes, mass and energy continuously enter and leave from
an operational unit. When the mass/energy transport rate is kept constant, the system is said
to be in a steady state or dynamic equilibrium. Principles and theories of statistical mechanics
developed under pure equilibrium are often adopted to explain and analyze engineering
processes at the steady state.
Particles found in gaseous and liquid flows are influenced by external force fields and
inter-particle interactions. Hydrodynamic drag forces exerted on suspended particles in a
fluid medium contribute to convective (or advective) transport of particles in a plethora of
natural and engineering processes. Brownian motion (Brown, 1828) of particles involves
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a tremendous amount of bombastic collisions of fluid molecules with suspended particles.
Relative motion of particles flowing in fluid media generate resistant forces in the opposite
direction to the particle’s translational motion. To rigorously deal with this phenomena,
Newton’s second law should be numerically solved for positions and velocities of particles as
a function of time. The exerted forces can be classified into conservative and dissipative ones;
the former include external and interparticle forces solely depending on particle positions, and
the latter on hydrodynamic drag force proportional to particle velocities. Because the Monte
Carlo methods described thus far propose efficient ways of sampling in phase space, it should
be ensured that the system to be investigated is in a static equilibrium state of conservative
force field. Then, isn’t there any method to include the dissipative force with the standard
Monte Carlo method and phenomenologically simulate steady-state configurations of many
particles in a fluid system? The answer is the hybrid Monte Carlo.
Arya and Panagiotopoulos (2004) used a coarse-grained lattice Monte Carlo approach to
model surfactants, while the shear is implemented by assigning a “pseudopotential” as
included into the MC acceptance criteria. Their model systems consist of cylindrical micelles
located between two impermeable walls, and each micelle is depicted as 4 head and 4 tail
monomers, i.e., 4H4T lattice surfactants. For the sake of simplicity, they impose attractive
potential energy between only two tail monomers associated in the same or different micelles:
ǫTT/kBT = −2, and ǫTH = ǫHH = 0 where subscripts H and T indicate head and tail,
respectively. A fictitious potential energy gradient ∇Ud to the drag force experience by each
monomer is given by

∇Ud = ζvx (95)

where vx is the fluid velocity in the x direction and ζ is a friction coefficient. In a linear shear
flow, vx = γ̇y where γ̇ is the shear rate and y is the coordinate perpendicular to the slit. The
pseudo-energy difference term of monomer i moving from (x1, y1, z1) to (x2, y2, z2) is given
by

∇Ud,i = −ζγ̇〈y〉 (x2 − x1) (96)

where 〈y〉 = (y1 + y2) /2. The final acceptance criterion for an MC move of an amphiphile
(4H4T monomers) is assigned as

Pacc = min

(
1, exp

[
−

(
∆V +

N=8

∑
i=1

∆Ud,i

)
/kBT

])
(97)

where ∆U is the usual interaction energy contribution, and the shear contribution has been
summed over the 8 monomers per amphiphile. Three dimensional lattice MC simulations
showed various alignments due to the shear rate and dimensionless temperature (defined as
kBT/ǫTT). The shear force breaks micelles perpendicular to the shearing direction into small
ones, and these smaller micelles align and grow in the shearing direction. This approach
can be considered as a hybrid MC which includes dissipative force as an origin of the
pseudo-potential energy.
Kim et al. (2001) already used a similar approach of combining conservative inter-particle
potential energy and dissipative hydrodynamic drag force in a hybrid Monte Carlo to study
shear-induced micellar deformation. Lennard-Jones (LJ) potentials were assumed for TT and
TH pairs with different potential well depths, i.e., ǫTT and ǫTH. The HH pair interaction
include LJ as well as Coulomb potentials to characterize electrostatic repulsion between two
head groups. The shear force exerted on each monomer is calculated as

Fx,j(y) = 3πμσjjγ̇yj (98)
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where j is H or T, σ is diameter, and μ is the solvent viscosity. Shear force is treated as a bias
influence in a trail MC move of a tail or head. The standard force bias MC was employed
by switching the gradient of the pair potential energy with the hydrodynamic force, and a
trial move is accepted following the acceptance probability of Eq. (87). Micellar deformation
was investigated as a function of Peclet number (Pe) and rapid transition from spherical to
oval shapes was observed near Pe = 1. This indicated that if the move displacement is small
enough, then Brownian dynamics, smart MC, and force bias MC are equivalent (Chen and
Kim, 2004).
Kim et al. (2001) and Arya and Panagiotopoulos (2004) used similar approaches of including
hydrodynamic force in the Metropolis MC. One important aspect which was ignored by
both papers was that the microscopic hydrodynamic force is significantly influenced by the
number of neighbors and their relative positions. When particles accumulate and form a
porous media, drag force increases with respect to the particle volume fraction. Then, Stokes’
drag needs to be modified quantitatively. Happel (1958) developed a tangential-stress-free cell
model, which maps a uniform distribution of particles to a sphere embedded in a concentric
spherical cell. On the surface of the cell, tangential stress was assumed to be zero. Then, the
ratio of force exerted on a spherical particle of radius a within a sphere-packed porous media
of volume fraction φ to that on an isolated sphere is given as

Ω =
F(φ)

6πμau
=

6 − 9φ1/3 + 9φ5/3 − 6φ2

6 + 4φ5/3
(99)

where u is the superficial velocity. To calculate the force ratio Ω, the local volume fraction near
a particle that will move should be calculated. Because the potential energy is assumed to be
pairwise, center-to-center distances between a particle and all others need to be calculated.
One can make an equivalent cell whose volume is equal to that of the search domain of

new position, i.e., (2∆rmax)3 of Fig. 3, count the number of particles within the cell, and
calculate the local volume fraction near the particle that is about to move. This technique
was developed to investigate the structure of the cake layer, i.e., boundary layer of rejected
particles, on membrane surfaces by Kim and Hoek (2002) and Chen et al. (2005), and a
comprehensive review can be found elsewhere (Chen and Kim, 2006).

4. Concluding remarks and perspectives

With more than a half century history (Metropolis et al., 1953), Monte Carlo methods are
widely used in science and engineering, focused on the properties and phase equilibria
of polymers, colloids, proteins, biological and synthetic membranes, liquid crystals,
semiconductors, solid-liquid and liquid-liquid interfaces, nano-materials, and materials
for energy production and storage. Use of MC methods in environmental engineering
is still in a burgeoning stage. However, because water and air are primary subjects
of the discipline, MC simulations of particles in air and water or their interfaces can
significantly contribute to a fundamental understanding of natural phenomena. All the
MC simulations are, mathematically speaking, numerical integrations of large dimensions.
Specific phenomenological modeling does not need to include rigor and formalism of
statistical physics. Transition probability leads a system of random initial configuration
to an equilibrium state. Efficient simulation requires advanced sampling techniques using
biased probability and distributed parallel computing can be readily employed for rapid MC
simulations.
In the future, it is expected that rapid and accurate MC algorithms will be generated
and that these algorithms are readily applicable to real situations. Specific ensembles and
thermodynamic properties will be updated as MC algorithms develop. More unified MC
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algorithms will be developed for easier use and a multi-scale version will be available. A more
efficient sampling method is desired by using bias schemes which follows basic statistical
physics as well as carefully mimicking phenomena of interest.

5. Appendix

5.1 Additional analysis of Monty Hall Dilemma

A complex way of calculating P (S1 ∩ H3) of Eq. (16) is as follows.

P (S1 ∩ H3) = P (S1 ∩ H3|C2) + P
(

S1 ∩ H3|C̃2

)
(100)

= P (S1 ∩ H3|C2) + P (S1 ∩ H3|C1 or C3) (101)

= P (S1 ∩ H3|C2) + P (S1 ∩ H3|C1) + P (S1 ∩ H3|C3) (102)

= P (S1 ∩ H3|C2) + P (S1 ∩ H3|C1) (103)

where P (S1 ∩ H3|C3) = 0 because if the car is behind door 3, then the host will not open door
3. Further calculations provide

P (S1 ∩ H3|C2) = P (S1|C2) P (H3|C2) P (C2) (104)

= P (S1) P (H3|C2) P (C2) (105)

=
1

3
· 1 · 1

3
=

1

9
(106)

where P (H3|C2) = 1 because the host has to open door #3 given that the car is behind door
#2 after we selected door #1, and

P (S1 ∩ H3|C1) = P (S1|C1) P (H3|C1) P (C1)

= P (S1) P (H3|C1) P (C1)

=
1

3
· 1

2
· 1

3
=

1

18

where P (H3|C1) = 1/2 because the host can open either door #3 or #2 if I selected door #1.
Therefore, as expected, we here obtain the identical answer to Eq. (16):

P (S1 ∩ H2) =
1

9
+

1

18
=

3

18
=

1

6
(107)
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