
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

12

An Application of Fuzzy Controllers:
Autonomic Computing Systems

Harish S. V., Reader, Dept. of CS&E,1 and
Chandra Sekaran K., Professor, Dept. of CS&E,2

1Manipal Institute of Technology, Manipal - 576 104,
2National Institute of Technology – Karnataka, Surathkal, Mangalore – 575 025,

India

1. Introduction

The difficulty of managing today’s computing systems goes well beyond the administration
of individual software environments. The need to integrate several heterogeneous
environments into corporate-wide computing systems, and to extend that beyond company
boundaries into the Internet, introduces new levels of complexity. Relying solely on further
innovations in programming methods will not get us through the present complexity crisis.
The only option remaining is Autonomic Computing – computing systems that can manage
themselves given high level objectives from administrators.
An autonomic system has four major characteristics: self-configure, self-heal, self-optimize
and self-protect (Salehie & Tahvildari, 2005).
Self-configuring is the capability of adapting automatically and dynamically to
environmental changes. This characteristic has two aspects
1. installing, (re-)configuring and integrating large, complex network intensive systems
2. adaptability in architecture or component level to re-configure the system for achieving

the desired quality factors.
Self-healing is the capability of discovery, diagnosing and reacting to disruptions. Such a
system must be able to recover by detecting a failed component, taking it off-line to be fixed,
and replacing the fixed component into the system without any apparent disruption.
Self-optimizing is the capability to efficiently maximize resource allocation and utilization
for satisfying requirements of different users. While, in a short term, self-optimizing can
address the complexity of managing system performance, in a long run its components will
automatically and proactively seek ways to tune their operations and make themselves
more cost efficient.
Self-protecting is the capability of reliably establishing trust, and anticipating, detecting and
recovering from the effects of attacks with two aspects
1. defending the system against correlated problems arising from malicious attacks or

cascading failures that remain uncorrected by self-healing measures
2. anticipating problems based on early reports from sensors and taking steps to avoid or

mitigate them.
The autonomic computing architecture (explained later) provides a blue print for
developing feedback control loops for self-managing systems. This observation suggests

www.intechopen.com

 Fuzzy Controllers, Theory and Applications

226

that control theory might provide guidance as to the structure of and requirements for
autonomic managers.
Intelligent control emerged as a viable alternative to conventional model-based control
schemes because issues such as uncertainty or unknown variations in plant parameters and
structure can be dealt with more effectively. This improves the robustness of the control
system. One of the ways of developing an intelligent control system is through Fuzzy
control. Fuzzy logic offers the important concept of fuzzy set theory, fuzzy if-then rules and
approximate reasoning which deals with imprecision and information granularity.
E-commerce is an area where an Autonomic Computing system could be very effectively
deployed. E-commerce has created demand for high quality information technology (IT)
services and businesses seek ways to improve the quality of service (QoS) in a cost-effective
way. Properly adjusting tuning parameters for best values is time-consuming and skills-
intensive.
The objectives of this chapter are to minimize response time by maximizing system
utilization and also to maximize the profit of an e-commerce system by maximizing system
utilization. The outline of the chapter is as follows. Initially the basic concepts of Autonomic
Computing, Fuzzy Control and applications of Fuzzy Control to e-commerce system are
explained. Then the contributions made in these areas are clearly explained focussing on the
methods used.

1.1 Concepts of autonomic computing system

Figure 1.1 depicts the components and key interactions for a single autonomic manager and a

single resource. The resource, sometimes called a managed element, is what is being made

more self-managing. This could be a single system (or even an application within a system), or

it may be a collection of many logically related systems. Sensors provide a way to obtain

measurement data from resources, and effectors provide a means to change the behavior of the

resource. Autonomic managers read sensor data and manipulate effectors to make resources

more self-managing. The autonomic manager contains components for monitoring, analysis,

planning, and execution. Common to all of these is knowledge of the computing environment,

service level agreements, and other related considerations. The monitoring component filters

and correlates sensor data. The analysis component processes these refined data to do

forecasting and problem determination, among other activities. Planning constructs workflows

that specify a partial order of actions to accomplish a goal specified by the analysis component.

The execute component controls the execution of such workflows and provides coordination if

there are multiple concurrent workflows. (The term “execute” may be broadened to

“enactment” to include manual actions as well.) Scaling is achieved by having a single

autonomic manager control multiple resources and by applying the architecture recursively so

that lower level managers are treated as resources by higher level managers. In essence, the

autonomic computing architecture provides a blue print for developing feedback control loops

for self-managing systems. This observation suggests that control theory might provide

guidance as to the structure of and requirements for autonomic managers.

1.2 Fuzzy logic concepts

Fuzzy logic refers to a logical system that generalizes classical two valued logic for
reasoning under uncertainty. In a broad sense fuzzy logic refers to all the theories that
employ fuzzy sets which are classes with boundaries that are not sharply defined.

www.intechopen.com

An Application of Fuzzy Controllers: Autonomic Computing Systems

227

Analyze Plan

Monitor Execute

Sensor

Resource

Effector

Autonomic Manager

Knowledge

Fig. 1.1. Autonomic Computing architecture

Fuzzy logic is a technology for developing intelligent control. It achieves machine
intelligence by offering a way for representing and reasoning about human knowledge that
is imprecise by nature. Even though fuzzy logic is not the only technique for developing AI
systems, it is unique in its approach for explicit representation of the impreciseness in
human knowledge and problem solving techniques. Fuzzy logic offers a practical way for
designing nonlinear control systems. It achieves nonlinearity through piece wise linear
approximation. The basic building block of a fuzzy logic control system is a set of fuzzy if
then rules that approximates a functional mapping.
Fuzzy logic can be used for controlling a process that is too nonlinear or too ill understood
to use conventional control designs. It also enables control engineers to easily implement
control strategies used by human operators. Briefly fuzzy logic is mainly to deal with
complex systems and also for the ease of describing human knowledge.
Fuzzy logic has emerged as a viable alternative to conventional model-based control
schemes because issues such as uncertainty or unknown variations in plant parameters and
structure can be dealt with more effectively. This improves the robustness of the control
system. Fuzzy logic offers the important concept of fuzzy set theory, fuzzy if-then rules and
approximate reasoning which deals with imprecision and information granularity.
The three main steps that are part of any fuzzy control system (Yen & Langari, 2005) –
i) Fuzzification ii) Inference mechanism iii) Defuzzification
The heart of the fuzzy controller involves a set of IF-THEN rules stored in a rule base. The
rules are expressed using linguistic variables and linguistic values. For example, “IF
temperature IS high THEN speed IS high”. This means, increase the speed of the fan if
temperature is high. The terms temperature and speed are linguistic variables, while high is a
linguistic value. Linguistic variables exist in one-to-one correspondence with numeric
variables. Linguistic variables take on linguistic values that correspond to the values of the
corresponding numeric variables. For example, temperature can take on values high, medium

www.intechopen.com

 Fuzzy Controllers, Theory and Applications

228

or low corresponding to the numeric variable for temperature. Converting the input
numeric variables into linguistic values of linguistic variables is known as fuzzification.
Membership functions are used for the conversion. Next the inference mechanism invokes
each appropriate rule, generates a result for each, then combines the results of all the rules.
Defuzzification involves converting the combined result back into a specific numeric output
value.

1.3 Application of fuzzy control to e-commerce – an overview

E-commerce is one area where an Autonomic Computing system could be very effectively
deployed. E-commerce has created demand for high quality information technology (IT)
services. For example, a “buy” transaction that takes more than a few seconds may cause
the customer to abandon the purchase. As a result, businesses are seeking quality of service
(QoS) guarantees from their service providers. (Diao et al., 2002a). These guarantees are
expressed as part of service level agreements (SLAs). SLA is a part of a service contract
where the level of service is formally defined. It is a contract that exists between customers
and their SP, client or between SPs. Many SLAs include specifications (Diao et al., 2001) of:
- revenue that is accrued to the SP for services delivered and
- costs that are incurred by the SP in the form of rebates to customers if previously agreed

constraints are violated or the service is unavailable.
An SLA is characterized by a profit model. Consider a profit model described by 3
parameters
1. r, the revenue received for each completed transaction;
2. W, the response time constraint; and
3. c, the cost incurred if a transaction’s response time exceeds W (offending transaction)
Thus, Profit = Revenue – Cost, where
Revenue = r * (number of completed transactions)
Cost = c * (number of offending transactions)
Since demand for services is often unpredictable, providers must sometimes make tradeoffs
between losing revenue and incurring penalties. Making such choices is skill intensive and
time consuming, and the decisions must be made in real time.
An ecommerce system is basically a client server system. The server being the most
important part, it is very advantageous if autonomic computing concepts are incorporated
into the server. The system studied here is the Apache web server. In Apache version 2.2
(configured to use Multi-Processing Module prefork), there are a number of worker
processes monitored and controlled by a master process. The worker processes are
responsible for handling the communications with the web clients, including the work
required to generate the responses. A worker process handles at most one connection at a
time, and it continues to handle only that connection until the connection is terminated.
Thus, the worker is idle between consecutive requests from its connected client.
A parameter termed MaxClients limits the size of this worker pool, thereby providing a kind
of admission control in which pending requests are kept in the queue. MaxClients should be
large enough so that more clients can be served simultaneously, but not so large that
resource contention occurs. The optimal value depends on server capacity and the nature of
the workload. If MaxClients is too small, there is a long delay due to waits in the queue. If it
is too large resources become over utilized which degrades performance as well. The
combined effect is that the response time is a concave upward function of MaxClients (Diao
et al., 2002a).

www.intechopen.com

An Application of Fuzzy Controllers: Autonomic Computing Systems

229

The setting of MaxClients can also be carried out by looking at the profits (Diao et al.,
2002b). Consider an e-commerce system, in which revenues accrue if the admitted requests
are processed within the specified deadline and costs are incurred otherwise. If MaxClients
is too small, the number of requests that can be processed in a given interval is small.
Though the number of violations and hence, costs will be small (mostly zero), profits will be
less because of decreased revenue. As MaxClients increases, revenue increases
proportionately till the point where the server gets saturated. Thereafter there will be no
further increase in revenue but there will be an increase in costs because of increased
violations. The combined effect is that profits are concave downwards in the parameter,
MaxClients.

2. Minimizing response time

2.1 Simulation using M/M/1 queue and processes

Here the client server architecture is simulated using an M/M/1 queue and processes.
Parameter MaxClients is simulated by max-requests. The response time is minimum for an
optimum value of max-requests. In the next subsection, the simulation environment used is
described. Later, the design and implementation of a fuzzy controller for optimizing the
value of max-requests is presented. This ensures that the response time is minimized.

2.1.1 Simulation environment

A workload generator is used to simulate the generation of requests from many clients. The
workload generator generates requests such that the time between generations of
consecutive requests is exponentially distributed. The processing of these requests by the
server is simulated by a program, in which the parent process creates a child process every
time a request is received. Each child process sleeps for a time which is exponentially
distributed before exiting. Thus, the client server architecture is simulated here as an
M/M/1 queue.

2.1.2 Design and Implementation of Fuzzy Controller

The block diagram of the fuzzy control system is shown in Figure 2.1. The fuzzy controller
has two inputs: change-in-response-time (dr) and change-in-max-requests (dm) between

dnm
max-requests

dm

requests

workload

generator

Differentiator

Fuzzy

Controller
Integrator Server

dr

response

-time

Fig. 2.1. Fuzzy control system – minimizing response time

www.intechopen.com

 Fuzzy Controllers, Theory and Applications

230

-1 +10

µ

negsmall zero possmall

neglarge poslarge

change-in-max-requests

-1 +1 0

µ

negsmall zero possmall

neglarge poslarge

change-in-response-time

-1 +10

µ

negsmall zero possmall

neglarge poslarge

next-change-in-max-requests

Fig. 2.2. Membership functions – minimizing response time

intervals. The controller’s output is next-change-in-max-requests (dnm). An integrator
converts this value into max-requests. Next-change-in-max-requests of this interval is taken
as change-in-max-requests for the next interval. The value of change-in-response-time is
obtained from the differentiator.
The triangular membership functions used for the fuzzification of the inputs and

defuzzification of the output are shown in Figure 2.2. In each case, the parameter is divided

into 5 intervals called neglarge, negsmall, zero, possmall and poslarge. The measured numeric

values are multiplied by normalized gains. This is the reason why the x-axis shows -1 and 1 for

all the membership functions. Inputs change-in-response-time (dr) and change-in-max-

requests (dm) are multiplied by ng-dr and ng-dm respectively. Output is denormalized by

multiplying by ng-dnm to obtain next-change-in-max-requests (dnm). Response time is a

concave upward function of max-requests. Hence, a gradient descent procedure is used to

minimize response times. This is described using fuzzy rules shown in Table 2.1.

Since the value of max-requests that minimizes the response-time is not known, these rules are

described in terms of changes to max-requests and reponse-times. As an example, consider

rule 5. It means that max-requests has been increased by a large amount (in the beginning of

the current measurement interval) and it is observed that the response-time has decreased by a

large amount by the end of the interval. This means the change to max-requests is in the

correct direction. Hence, it is continued to be changed in the same direction. That is, for the

next interval, max-requests is increased further. Thus, rules 1 through 10 take care of the

correct situations where as rules 16 through 25 handle the incorrect situations. In rules 16

through 25 the previous action caused the response-time to increase, so the direction has to be

“reversed”. Later the consequents from all the activated rules are weighted using the centre of

gravity method to obtain the (normalized) output value.

www.intechopen.com

An Application of Fuzzy Controllers: Autonomic Computing Systems

231

IF THEN
Rule change-in-

max-requests
AND

change-in-
response-time

next-change-in-
max-requests

1
2
3
4
5

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

neglarge
neglarge
neglarge
neglarge
neglarge

neglarge
negsmall
possmall
possmall
poslarge

6
7
8
9
10

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

negsmall
negsmall
negsmall
negsmall
negsmall

neglarge
negsmall

zero
possmall
poslarge

11
12
13
14
15

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

zero
zero
zero
zero
zero

negsmall
zero
zero
zero

possmall

16
17
18
19
20

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

possmall
possmall
possmall
possmall
possmall

poslarge
possmall

zero
negsmall
neglarge

21
22
23
24
25

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

poslarge
poslarge
poslarge
poslarge
poslarge

poslarge
possmall
negsmall
negsmall
neglarge

Table 2.1. Fuzzy rules – minimizing response time

Normally, when one or both inputs are zero, the output is set to zero. But in the rules 3, 11,

15, and 23, the output is set to a small value. This helps the controller to converge faster. As

an example, let us consider rule 23. Without any change in max-requests, there is a large

increase in response-time. This means that the incoming requests need larger service times

and the number of requests admitted should be decreased. Hence, max-requests is

decreased by a small value.

The set-up for the simulation consists of

• a workload generator program to generate requests,

• a server program to service the requests,

• a differentiator routine,

• a fuzzy controller program and

• an integrator routine.

The incoming request from the workload generator is first put into a queue in the server.

When the server becomes free, the first request in the queue is dequeued. Workload

generator is set to generate requests such that the time between arrivals of consecutive

www.intechopen.com

 Fuzzy Controllers, Theory and Applications

232

requests on an average (mean inter-arrival) is 0.2 second. That is 300 requests per minute on

an average. Mean service time is set to 60 seconds.

Simulation readings are recorded after every measurement interval. At the end of every
measurement interval, response time of that interval is sent to the differentiator whose
output is the change-in-response-time (dr) between current and previous intervals. The
number of requests accepted by the server, is limited by the parameter max-requests, which
is updated by the integrator at the beginning of every measurement interval. The parameter
max-requests correspond to MaxClients in an Apache web server.
A measurement interval of 3 minutes is used. To ensure that transients do not affect the
readings, readings are taken for the last 1 minute of the 3 minute interval. Response time
values of the requests which entered service in the last 1 minute are noted and the average is
calculated. For the normalizing gains, large values increase the speed of the controller, but
too large values will cause the system to oscillate. After experimenting with a few values,
the values selected were ng-dr = ng-dm = 1/10 and ng-dnm = 10. This means a change of 10
in response-time or in max-requests is considered to be large.

2.2 Results

Here to minimize the response time the client server architecture is simulated as an M/M/1

queue and processes. That is, the time between generations of consecutive requests is

exponentially distributed. Also processing of each request is simulated by a process which

runs for a time which is exponentially distributed. Parameter MaxClients is simulated by

max-requests. The response time is minimum for an optimum value of max-requests. The

controller minimizes the response time by finding an optimum value for max-requests.

The variation of response time with respect to max-requests is plotted in Figures 2.3, 2.4 and

2.5. The mean of the distribution of the inter-arrival times between consecutive requests is

kept constant at 0.2 second. This facilitates easy comparison among the three sets of results.

Figure 2.3 shows the result for the case where mean of the service time distribution is 40

seconds. One can see that there is some oscillation. Parameter max-requests increases to 100,

before settling to a value around 80. The minimum response time obtained is about 49

seconds. Initially change-in-max-requests is positive, while change-in-response-time is

negative. This means the value of max-requests is increasing towards the optimum value.

However there is an overshoot and so the controller decreases max-requests towards the

optimum.

Figure 2.4 shows the result for the case where mean of the service time distribution is 30

seconds. Once again there is some oscillation, but it is reduced. Parameter max-requests

increases to about 104, before settling to a value around 98. The minimum response time

obtained is about 30 seconds. The response time is smaller because of the reduced service

time. As before, there is an overshoot before the controller decreases max-requests towards

the optimum.

Figure 2.5 shows the result for the case where mean of the service time distribution is 20

seconds. There is almost no oscillation. Parameter max-requests settles to a value of about

103. Since the service time is smaller than the previous two cases, the response time obtained

of around 20 seconds is also lesser than that obtained previously.

Thus, it is seen that the controller always adjusts the value of max-requests for minimizing

response-time.

www.intechopen.com

An Application of Fuzzy Controllers: Autonomic Computing Systems

233

Fig. 2.3. With mean of the service time distribution = 40 secs

Fig. 2.4. With mean of the service time distribution = 30 secs

www.intechopen.com

 Fuzzy Controllers, Theory and Applications

234

Fig. 2.5. With mean of the service time distribution = 20 secs

3. Maximizing profit of an e-commerce system

3.1 Simulation using M/M/1 queue and processes

Here also the client server architecture is simulated using an M/M/1 queue and processes.
As before, parameter MaxClients is simulated by max-requests. The profit is maximum for
an optimum value of max-requests. In the next subsection, the simulation environment used
is described. This is followed by the design and implementation of a fuzzy controller for
optimizing the value of max-requests. This ensures that the profit is maximized.

3.1.1 Simulation environment

A workload generator is used to simulate the generation of requests from many clients. The
workload generator generates requests such that the time between generations of
consecutive requests is exponentially distributed. The processing of these requests by the
server is simulated by a program, in which the parent process creates a child process every
time a request is received. Each child process sleeps for a time which is exponentially
distributed before exiting. Thus, the client server architecture is simulated here as an
M/M/1 queue.

3.1.2 Design and Implementation of Controller

The block diagram of the fuzzy control system is shown in Figure 3.1. The client server
architecture is simulated here as an M/M/1 queue. The number of requests accepted by the
server is limited by the parameter max-requests, which is updated by the integrator at the
beginning of every measurement interval. The parameter max-requests corresponds to

www.intechopen.com

An Application of Fuzzy Controllers: Autonomic Computing Systems

235

MaxClients in an Apache web server. The number of child processes which are able to run
to completion are called completed transactions, while those which are unable to run to
completion are called violating transactions. These two values are sent to the profit module
for calculating profit. This value of profit is input to a differentiator whose output is the
change-in-profit (dft) between current and previous intervals. The fuzzy controller has two
inputs: change-in-profit (dft) and change-in-max-requests (dm) between intervals. The
controller’s output is next-change-in-max-requests (dnm), whose value is taken as the
change-in-max-requests for the next interval. An integrator converts this value into max-
requests.

workload

generator

dnm

dft

dm

completed

transactions
profit

max-requests

Differentiator
Profit

Module

Fuzzy

Controller
Integrator Server

violating

transactions

Fig. 3.1. Fuzzy control system – maximizing profit

The triangular membership functions used for the fuzzification of the inputs and

defuzzification of the output are shown in Figure 3.2. In each case, the parameter is divided

into 5 intervals called neglarge, negsmall, zero, possmall and poslarge. The measured

numeric values are multiplied by the normalized gains. Value change-in-profit (dft) is

multiplied by ng-dft, while change-in-max-requests (dm) is multiplied by ng-dm. The

output value next-change-in-max-requests (dnm) is denormalized by multiplying by the

normalized gain, ng-dnm, to obtain the actual output value. It is previously noted that profit

is a concave downward function of max-requests. Hence, a hill climbing procedure is used

to maximize profit. This is described using fuzzy rules shown in Table 3.1.

Since the value of max-requests that maximizes the profit is not known, these rules are

described in terms of changes to max-requests and profit. As an example, consider rule 25. It

means that max-requests has been increased by a large amount (in the beginning of the

current measurement interval) and it is observed that the profit has increased by a large

amount by the end of the interval. This means the change to max-requests is in the correct

direction. Hence, it is continued to be changed in the same direction. That is, for the next

interval, max-requests is increased further. Thus, rules 16 through 25 take care of the correct

situations where as rules 1 through 10 handle the incorrect situations. In rules 1 through 10

the previous action caused the profit to decrease, so the direction has to be “reversed”. Later

the consequents from all the activated rules are weighted using the centre of gravity method

to obtain the (normalized) output value.

www.intechopen.com

 Fuzzy Controllers, Theory and Applications

236

-1 +10

µ

negsmall zero possmall

neglarge poslarge

change-in-max-requests

-1 +1 0

µ

negsmall zero possmall

neglarge poslarge

change-in-profit

-1 +10

µ

negsmall zero possmall

neglarge poslarge

next-change-in-max-requests

Fig. 3.2. Membership functions – maximizing profit

Normally, when one or both inputs are zero, the output is set to zero. But in the rules 3, 11,
15, and 23, the output is set to a small value. This helps the controller to converge faster. As
an example, let us consider rule 23. Without any change in max-requests, there is a large
increase in profit. This means that the incoming requests need smaller service times and and
more such requests can be admitted. Hence, max-requests is increased by a small value.
The simulation environment consists of

• a workload generator program to generate requests,

• a server program to service the requests,

• a profit module for calculating profit values,

• a differentiator routine,

• a fuzzy controller program and

• an integrator routine.
Simulation readings are recorded after every measurement interval. A measurement
interval of 60 seconds was used.
The profit module contains the profit model which is characterized by r, the revenue per
completed transaction and c, the cost per violating transaction. Three profit models are
defined. P1: r = c, that is, equal weight is assigned to completed and violating transactions;
P2: r = k*c, more weight is assigned to completed transactions; P3: r = c/k, more weight is
assigned to offending transactions. The constant k should be specified in the SLA. In this
work, value for k is taken as 5.
Too large normalizing gains result in the controller oscillating, while too small ones result in
a slow performance. For better performance, different values of normalizing gains were
selected for different profit models. For profit model P1, ng-dft = ng-dm = 1/5 and ng-dnm
= 5. For P2, ng-dft = 1/25, ng-dm = 1/5 and ng-dnm = 5. For P3, ng-dft = 1/10, ng-dm = 1/5
and ng-dnm = 5.

www.intechopen.com

An Application of Fuzzy Controllers: Autonomic Computing Systems

237

IF THEN
Rule change-in-

max-requests
AND

change-in
-profit

next-change-in-
max-requests

1
2
3
4
5

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

neglarge
neglarge
neglarge
neglarge
neglarge

poslarge
possmall
negsmall
negsmall
neglarge

6
7
8
9
10

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

negsmall
negsmall
negsmall
negsmall
negsmall

poslarge
possmall

zero
negsmall
neglarge

11
12
13
14
15

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

zero
zero
zero
zero
zero

negsmall
zero
zero
zero

possmall

16
17
18
19
20

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

possmall
possmall
possmall
possmall
possmall

neglarge
negsmall

zero
possmall
poslarge

21
22
23
24
25

neglarge
negsmall

zero
possmall
poslarge

AND
AND
AND
AND
AND

poslarge
poslarge
poslarge
poslarge
poslarge

neglarge
negsmall
possmall
possmall
poslarge

Table 3.1. Fuzzy rules – maximizing profit

3.2 Results

Here to maximize the profit, the client server architecture is simulated as an M/M/1 queue

and processes. That is, the time between generations of consecutive requests is exponentially

distributed. Also processing of each request is simulated by a process which runs for a time

which is exponentially distributed. Parameter MaxClients is simulated by max-requests.

Parameter max-requests is the upper limit of the number of requests accepted by the server

in the given interval. The number of requests which are able to run to completion are called

processed-requests. These contribute to the revenue, while those which are not able to run to

completion, called, violating-requests contribute to the cost. The contributions of processed-

requests and violating-requests towards the profit are decided by the profit model.

Let ‘r’ be the revenue per processed-requests, ‘c’ the cost per violating-requests and ‘k’ be a
constant. For profit model P1, r = c, that is, equal weight is assigned to processed-requests
and violating-requests. For profit model P2, r = c * k, that is, more weight is assigned to
processed-requests. For profit model P3, r = c / k, that is, more weight is assigned to
violating-requests. Irrespective of the profit model, profit is maximum for an optimum value

www.intechopen.com

 Fuzzy Controllers, Theory and Applications

238

of max-requests. The controller maximizes the profit by finding an optimum value for
max-requests.
The variation of profit with respect to max-requests for various profit models are plotted in

Figures 3.3, 3.4 and 3.5. In this simulation, values selected are r = 1, c = 1 and k = 5.

The results for profit model P1 are shown in Figure 3.3. As mentioned before, equal weight

is assigned to processed-requests as well as violating-requests. It can be seen that the

controller sets max-requests to moderate values. The profit is also moderate.

The results obtained for profit model P3 are shown in Figure 3.4. In this case, more weight is

assigned to the violating-requests. In an attempt to reduce the number of violating-requests,

the controller tries to be more conservative and sets max-requests to comparatively smaller

values. The profit is smaller, but it will reduce further if the controller increases the value of

max-requests. Thus the controller has maximized the profit, even in the presence of

constraints.

The results obtained for profit model P2 are shown in Figure 3.5. Since more weight is

assigned to processed-requests, the controller is more aggressive and sets max-requests to

comparatively larger values. This can be seen when these results are compared with that of

Figure 3.3. Larger values of max-requests combined with a more favorable profit model

leads to a high value of profit.

Fig. 3.3. For profit model P1

www.intechopen.com

An Application of Fuzzy Controllers: Autonomic Computing Systems

239

Fig. 3.4. For profit model P3

Fig. 3.5. For profit model P2

www.intechopen.com

 Fuzzy Controllers, Theory and Applications

240

4. Conclusions

This chapter focuses on two objectives: i) Minimize the response time, and ii) Maximize the
profit of an e-commerce system. The client server architecture is simulated using an M/M/1
queue and processes. In case the server is busy, the incoming requests wait in a queue. The
average time spent by requests in the queue is the response-time. Here, MaxClients is
simulated by max-requests. A fuzzy controller is designed and implemented for minimizing
the response-time by optimizing the value of max-requests. The results obtained are also
presented. It is seen that the fuzzy controller was successful in minimizing response-time.
To meet the second objective, the client server architecture is again simulated using an
M/M/1 queue. Here also, MaxClients is simulated by max-requests. A fuzzy controller is
designed and implemented for maximizing the profit by optimizing the value of max-
requests. For these simulations, it is seen that the fuzzy controller is able to maximize profit.
Thus it can be concluded that fuzzy controllers play a vital role in the area of autonomic
computing systems.

5. References

Diao, Y., Hellerstein, J. L. and Parekh, S. (2001). “A Business-Oriented approach to the
Design of Feedback Loops for Performance Management,” Proceedings of the 12th
IEEE International Workshop on Distributed Systems: Operations and Management.

Diao, Y., Hellerstein, J. L. and Parekh, S. (2002a). “Optimizing Quality of Service using fuzzy
control,” Proceedings of Distributed Systems Operations and Management, Vol: 2506
Springer, 42-53.

Diao, Y., Hellerstein, J. L. and Parekh, S. (2002b). “Using fuzzy control to maximize profits in
service level management,” IBM Systems Journal, Vol. 41, No. 3, 403-420.

Harish S. V., and Chandra Sekaran, K. (2009). “Maximizing Profit in an Autonomic
Computing System: A Fuzzy Control approach,” International Journal of Recent
Trends in Engineering, Vol. 2, No. 1, Association of Computer, Electronics and
Electrical Engineers and Academy Publishers, Finland.

Harish S. V., and Chandra Sekaran, K. (2010). “Minimizing Response Time in an Autonomic
Computing System: A Fuzzy Control approach,” International Journal of Computer
Science and Systems, Vol. 1, No. 3, Universal Society of Applied Research (USAR),
Prague, Czech Republic.

Kephart, J. O., Chess, D. M. (2003). “The vision of Autonomic Computing,” IEEE Computer
Society, 41-50.

Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J. L. and Parekh, S. (2003). “Online
Response Time Optimization of Apache Web Server,” Springer-Verlag, Berlin, 461-
478.

Salehie, M. & Tahvildari, L. (2005). Autonomic Computing: Emerging Trends and Open
Problems, Proceedings of the Workshop on the Design and Evolution of Autonomic
Application Software, 2005.

Yen, J. and Langari, R. (2005). Fuzzy Logic: Intelligence, Control and Information, Pearson
Education, India.

www.intechopen.com

Fuzzy Controllers, Theory and Applications

Edited by Dr. Lucian Grigorie

ISBN 978-953-307-543-3

Hard cover, 368 pages

Publisher InTech

Published online 28, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in

terms of the theoretical design and in terms of comparative validation studies in various applications,

numerically simulated or experimentally developed. Through the subject matter and through the inter and

multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students

interested in developing new applications of intelligent control, but also to the people who want to become

familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work

includes books and articles of present interest in the field, published in prestigious journals and publishing

houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies

include the book in the category of those who make a direct connection between theoretical developments and

practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling

and control fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Harish S. V. and Chandra Sekaran K. (2011). An Application of Fuzzy Controllers: Autonomic Computing

Systems, Fuzzy Controllers, Theory and Applications, Dr. Lucian Grigorie (Ed.), ISBN: 978-953-307-543-3,

InTech, Available from: http://www.intechopen.com/books/fuzzy-controllers-theory-and-applications/an-

application-of-fuzzy-controllers-autonomic-computing-systems

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

