
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

Data Consolidation and Information
Aggregation in Grid Networks

Panagiotis Kokkinos and Emmanouel Varvarigos
University of Patras, Department of Computer Engineering and
Informatics Research Academic Computer Technology Institute

Greece

1. Introduction

Grids consist of geographically distributed and heterogeneous computational and storage
resources that may belong to different administrative domains, but are shared among users
by establishing a global resource management architecture. A variety of applications can
benefit from Grid computing; among them data-intensive applications that perform
computations on large sized datasets, stored at geographically distributed resources. In this
context, we identify two important issues: i) data consolidation that relates to the handling
of these data-intensive applications and ii) information aggregation, which relates to the
summarization of resource information and the provision of information confidentiality
among the different administrative domains.
Data consolidation (DC) applies to data-intensive applications that need more than one
pieces of data to be transferred to an appropriate site, before the application can start its
execution at that site. It is true, though, that an application/task may not need all the
datasets at the time it starts executing, but, it is usually beneficial both for the network and
for the application to perform the datasets transfers concurrently and before the task’s
execution. The DC problem consists of three interrelated sub-problems: (i) the selection of
the replica of each dataset (i.e., the data repository site from which to obtain the dataset) that
will be used by the task, (ii) the selection of the site where these pieces of data will be
gathered and the task will be executed and (iii) the selection of the paths the datasets will
follow in order to be concurrently transferred to the data consolidating site. Furthermore,
the delay required for transferring the output data files to the originating user (or to a site
specified by him) should also be accounted for. In most cases the task’s required datasets
will not be located into a single site, and a data consolidation operation is therefore required.
Generally, a number of algorithms or policies can be used for solving these three sub-
problems either separately or jointly. Moreover, the order in which these sub-problems are
handled may be different, while the performance optimization criteria used may also vary.
The algorithms or policies for solving these sub-problems compromise a DC scheme. We
will present a number of DC schemes. Some consider only the computational or only the
communication requirements of the tasks, while others consider both kinds of requirements.
We will also describe DC schemes, which are based on Minimum Spanning Trees (MST) that
route concurrently the datasets so as to reduce the congestion that may appear in the future,
due to these transfers. Our results brace our belief that DC is an important problem that

www.intechopen.com

 Advances in Grid Computing

96

needs to be addressed in the design of Grids networks, and can lead, if performed
efficiently, to significant benefits in terms of task delay, network load and other performance
parameters.
Information aggregation relates to the summarization of resource information collected in a
Grid Network and provided to the resource manager in order for it to make scheduling
decisions. Resource-related information size and dynamicity grows rapidly with the size of
the Grid, making the aggregation and use of this massive amount of information a challenge
for the resource management system. In addition, as computation and storage tasks are
conducted increasingly non-locally and with finer degrees of granularity, the flow of
information among different systems and across multiple domains will increase.
Information aggregation techniques are important in order to reduce the amount of
information exchanged and the frequency of these exchanges, while at the same time
maximizing its value to the Grid resource manager or to any other desired consumer of the
information. An additional motivation for performing information aggregation is
confidentiality and interoperability, in the sense that as more resources or domains of
resources participate in the Grid, it is often desirable to keep sensitive and detailed resource
information private, while resources are still being publicly available for use. For example, it
may soon become necessary for the interoperability of the various cloud computing services
(e.g., Amazon EC2 and S3, Microsoft Azure) that the large quantity of resource-related
information is efficiently abstracted, before it is provided to the task scheduler. In this way,
the task scheduler will be able to use efficiently and transparently the resources, without
requiring services to publish in detail their resources characteristics. In any case, the key to
information aggregation is the degree to which the summarized information helps the
scheduler make efficient use of the resources, while coping with the dynamics of the Grid
and the varying requirements of the users. We will describe a number of information
aggregation techniques, including single point and intra-domain aggregation and we will
define appropriate grid-specific domination relations and operators for aggregating static
and dynamic resource information. We measure the quality of an aggregation scheme both
by its effects on the efficiency of the scheduler’s decisions and also by the reduction it brings
on the total of resource information. Our simulation experiments demonstrate that the
proposed schemes achieve significant information reduction, either in the amount of
information exchanged, or in the frequency of the updates, while at the same time
maintaining most of the value of the original information.
The remainder of the paper is organized as follows. In Section 2 we report on previous
work. In Section 3 we formulate and analyze the Data Consolidation (DC) problem,
proposing a number of DC schemes. In Section 4 we formulate the information aggregation
problem and propose several information aggregation techniques. In Section 5 we present
the simulation environment and the performance results obtained for the proposed schemes
and techniques. Finally, conclusions are presented in Section 6.

2. Previous work

The Data Consolidation (DC) problem involves task scheduling, data management and
routing issues. Usually these issues are handled separately in the corresponding research
papers. There are several studies that propose algorithms for assigning tasks to the available
resources in a grid network (Krauter et al., 2002). A usual data management operation in
grids is data migration, that is, the movement of data between resources. The effects of data

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

97

migration in grids have been considered in (Shan et al., 2004). The most common data
migration technique is data replication (Rahman et al., 2007) (Rahman et al., 2008) (Dogan,
2009), which is the process of distributing replicas of data across sites. When different sites
hold replicas of a particular dataset, significant benefits can be realized by selecting the best
replica among them, that is, the one that optimizes a desired performance criterion such as
access latency, cost, security, etc (Vazhkudai et al., 2001). Furthermore, the problem of
parallel downloading different parts of a dataset from various replica holding resources, as
a mean to decrease the download time of that dataset, has been investigated for peer-to-peer
networks and the Internet (Byers et al., 1999) (Rodriguez et al., 2002), and also for grid
networks (Chang et al., 2008). A number of works consider both task scheduling and data
replication issues. The authors in (Ranganathan et al., 2002) suggest that it is better to
perform data replication and task scheduling separately, instead of trying to jointly optimize
these two operations. In (Elghirani et al., 2007) the authors propose a data management
service that proactively replicates the datasets at selected sites, while an intelligent Tabu-
search scheduler dispatches tasks to resources so as to optimize execution time and system
utilization metrics. The authors in (Bell et al., 2002) (Bell et al., 2003) (Cameron et al., 2004)
present the OptorSim simulator and jointly consider task scheduling and data replication for
the case where a task requests sequentially a number of datasets. In this case data
replication, of a specific dataset to a selected site, is performed when a task requires this
dataset for its execution. Also, the authors in (Chakrabarti et al., 2004) propose the
Integrated Replication and Scheduling Strategy (IRS) scheduler that combines scheduling
and replication strategies. The effective use of the communication/network resources is an
important consideration, especially in data grid networks. In (Stevens et al., 2008) a
multicost algorithm for the joint time scheduling of the communication and computation
resources to be used by a task is proposed. The algorithm selects the computation resource
to execute the task, determines the path to be used for routing the single input data, and
finds the starting times for the data transmission and the task execution, performing
advance reservations.
The Data Consolidation (DC) problem addressed in the present work arises when a task
requires before the start of its execution multiple datasets stored at different sites. In this
case we believe that it is beneficial for the application to organize the transfers of the
datasets concurrently so as to decrease the task’s total execution time. Even though this
seems like a logical scenario, especially for data-intensive applications, most of the related
works seem to ignore it, assuming either that each task needs for its execution only one large
piece of data (Ranganathan et al., 2002) (Stevens et al., 2008), or that it requires sequentially
a number of datasets (Rahman et al., 2007)(Rahman et al., 2008) (Bell et al., 2002)(Bell et al.,
2003) (Cameron et al., 2004). Our work does not consider any specific dynamic data
replication strategy; instead, we assume that a dynamic data replication strategy is in place
that distributes replicas in the grid, while data consolidation is performed when a task
actually requests a number of datasets before its execution. In most cases the task’s required
datasets will not be located into a single site, and their consolidation to the selected site will
be required before task execution. Furthermore, most of the related works do not explicitly
examine important issues like the joint replica selection (and estimation of the cost of the
transfers) and the joint routing of these replicas (so as to avoid congestion delays that each
of the corresponding transfers may cause to each other).
Information aggregation has been previously studied mainly in the context of hierarchical
data networks (Lee, 1995), where it is performed on network-related parameters in order to

www.intechopen.com

 Advances in Grid Computing

98

facilitate hierarchical routing. Hierarchical routing is a major issue for data networks, and is
important for reducing the memory requirements at the routers (border nodes) for the very
large topologies encountered in Internet’s infrastructure. A topology is broken down into
several layers of hierarchy, thus downsizing the routing tables required, but this comes at the
expense of an increase in the average path length. (Kleinrock, Kamoun, 1977) is one of the first
works investigating hierarchical routing, where clustering structures are introduced to
minimize the routing tables required. Bounds are also derived on the maximum increase in the
path length for a given table size. An issue that is central to hierarchical routing is topology
information aggregation (Lee, 1995) (Mieghem, 1999). Aggregation techniques in hierarchical
topologies try to summarize and compress the topology information advertised at higher
levels. In order to perform routing and network resource allocation efficiently, the aggregated
information should adequately represent the topology and the characteristics/metrics of the
network. Delay and bandwidth are two network-related metrics that are usually aggregated
along with the topology. In (Lee, 1995) a number of topology aggregation techniques are
presented. An important issue in topology aggregation is the choice of the parameters that are
aggregated along with the topology. In (Mieghem, 1999) the parameters that can be
aggregated, are distinguished into three classes: additive, min-max and the combination of
additive and min-max metrics (multi-criteria). Topology aggregation based on such metrics is
investigated in (Bauer et al., 2006), considering only network-related parameters (namely,
delay and bandwidth). In the same context (Bauer et al., 2006) presents a topology aggregation
scheme that is subject to multi-criteria (delay and bandwidth) constraints. Specifically, a
transition matrix is constructed containing the minimum information that describes exactly the
traversing characteristics of a domain, that is, the characteristics of the paths connecting border
(ingress-egress) node pairs of the domain.
Resource information aggregation in grids has not been studied in detail, despite its
practical importance and its impact on the efficiency of the scheduling decisions. Actually,
most scheduling algorithms proposed (Krauter et al., 2002) make their decisions using exact
resource information. The idea of aggregation has also appeared in sensor networks
(Intanagonwiwat et al., 2003), where it is often called data fusion, as a way to reduce the
amount of data transferred towards the sink node. Relatively recently, information
aggregation appeared as an interesting topic in Peer-to-Peer (P2P) (Renesse et al., 2003) and
P2P grid systems (Schulz et al., 2009) (Zhou, Hwang, 2006) (Cai, Hwang, 2007). These works
focus on the architecture and on the mechanisms of the system performing the aggregation;
on the other hand, in our work we assume that such a mechanism/system is in place and
examine the aggregation operations that should be performed for different parameters, the
aggregation policies that should be applied and the effects they have on scheduling
efficiency. Also, our work applies to all kinds of grids and not specifically to Desktop grids.
In addition, resource information aggregation and task scheduling issues have been
investigated in a few works, which focus, however, on particular systems and under specific
assumptions (Czajkowski et al., 2001) (Muraki et al., 2006) (Rodero et al., 2010). In the
Monitoring and Discovery System 2 (MDS2) (Czajkowski et al., 2001) (Muraki et al., 2006)
resource management system, information from individual information providers (e.g.,
resources) is aggregated into collections, where each collection may correspond to a
different virtual organization (VO). (Rodero et al., 2010) is a quite recent work where
aggregated resource information and scheduling issues are considered. It proposes two
aggregation policies (simple and categorized) and two scheduling policies that use the
aggregated information. In our work we are interested more in the parameters aggregated,

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

99

in the operators used and in the policies applied to summarize them, while we use a simple
scheduling policy to evaluate the effects of the aggregation on the scheduling efficiency. We
also investigate the tradeoffs between the amount of information exchanged, the frequency
of updates required, and the quality of the aggregated information. Most importantly, our
work is quite more general, and attempts to fill the gap between the topology information
aggregation works presented in (Lee, 1995) (Mieghem, 1999) and grid computing.

3. Data consolidation

3.1 Problem formulation

We consider a grid network, consisting of a set R of N = |R| sites (resources) that are
connected through a Wide Area Network (WAN). Each site r∈R contains at least one of the
following entities: a computational resource that processes submitted tasks, a storage
resource where datasets are stored and a network resource that performs routing
operations. There are also a number of simple routers in the network. The path between two
sites ri and rj has maximum usable capacity equal to Pi,j, , defined as the minimum of the
path’s links capacities and propagation delay equal to di,j.
The computation resource of site ri has total computation capacity Ci, measured in
computation units per second (e.g., Million Instructions Per Second - MIPS). Each resource
also has a local scheduler and a queue. Tasks arriving at the resource are stored in its queue,
until they are assigned by the local scheduler to an available CPU. For the sake of being
specific, we assume that the local scheduler uses the First Come First Served (FCFS) policy,
but other policies can also be used. We should note that the local schedulers (e.g., Torque
scheduler) utilized in the Computing Elements (CE) of a gLite (Laure et al., 2006) powered
grid network, use the FCFS policy as their default task queuing policy. At a given time, a
number of tasks are in the queue of resource ri or are being executed in its CPU(s) using a
space-sharing policy. The storage resource of site ri has storage capacity Si, measured in data
units (e.g., bytes). Users located somewhere in the network generate atomic (undivisible and
non-preemptable) tasks with varying characteristics.

A task needs for its execution L pieces of data (datasets) Ik of sizes
kIV , k =1,2,…,L. A dataset

Ik has a number of replicas distributed across various storage resources. The total

computation workload of the task is equal to W, and the final results produced have size

equal to Δ. W and Δ may depend on the number and size of datasets the task requires. The

datasets consolidate to a single site, which we will call the data consolidation (DC) site rDC.

This site may already contain some datasets so that no transferring is needed for them. The

total communication delay that dataset Ik experiences consists of the propagation, the

transmission and the queuing delays. The propagation delay of path (ri, rDC) is denoted by

di,DC and its usable capacity by Pi,DC (minimum capacity available at all intermediate links).

A piece of data Ik transmitted over a path (ri, rDC) experiences total communication queuing

delay ,
Comm
i DCQ , because of other pieces of data utilizing the links of the path. In general the

type of transport media used (opaque packet switching, transparent networks such as

wavelength routed optical WDM network or OBS, etc), determines whether the queuing

delay is counted once at the source (transparent networks) or is accumulated over all

intermediate nodes (opaque networks). Finally, a task before starting execution at the DC

site experiences a processing queuing delay
P roc
DCQ , due to other tasks utilizing the resource’s

computational capacity or already queued.

www.intechopen.com

 Advances in Grid Computing

100

We assume that a central scheduler is responsible for the task scheduling and data
management. The scheduler has complete knowledge of the static (computation and storage
capacity, etc) and the dynamic (number of running and queued tasks, data stored, etc)
characteristics of the sites. We do not take into account the communication delay of
transferring messages between the user and the scheduler and between the scheduler and
the resources, since we assume that they are negligible compared to the total execution time
of the task, at least for the data-intensive scenarios that we consider in this study.
A task created by a user at site ru, asks the central scheduler for the site where the task will
execute. Upon receiving the user’s request, the scheduler examines the computation and
data related characteristics of the task, such as its workload, the number, the type, and the
size of datasets needed, the sites that hold the corresponding datasets etc. The scheduler
based on the used Data Consolidation scheme, selects (i) the sites that hold the replicas of
the datasets the task needs, (ii) the site where these datasets will consolidate and the task
will be executed, and (iii) the routes over which to transfer these datasets. The decisions
concerning (i), (ii) and (iii) can be made jointly or separately. Note that the free capacity of
the storage resource rDC must be larger than the total size of the datasets that will
consolidate:

1

DC k

L

r I
k

S V
=

≥ ∑ . (1)

The free storage capacity of a resource includes not only the actual free space, but also the
space occupied by datasets that are not used and can be deleted. If needed, the oldest
unused datasets are deleted from the DC site (other policies can also be applied, however
these are not the focus of this work). If no site is found that fulfils Eq. (1), the corresponding
task fails. Otherwise, if Eq. (1) is fulfilled by at least one site, then the scheduler orders the
data holding sites to transfer the datasets to this DC site. The scheduler, also, transfer this
task to the DC site. The task’s execution starts only when both the task and all of its needed
datasets have arrived at the DC site. After the task finishes its execution, the results return
back to the task’s originating user.
Finally, we assume that no dynamic replication strategies operate in the network. A
dynamic replication strategy, such as the ones presented in (Dogan, 2009), permits the
dynamic movement of data between the storage resources, independently from the various
task requests. For example, a popular dataset can be copied to more than one resources so as
to be easily accessible when needed. Such strategies are expected to reduce the data
transfers required for a DC operation, reducing at the same time the task’s execution delay.

3.2 Data Consolidation (DC) schemes

In what follows, we present several Data Consolidation (DC) schemes.

3.2.1 Data Consolidation (DC) delays

We assume that the scheduler has selected the data holding sites (replicas), rk∈R, for all
datasets Ik, k =1,…,L, and the DC site rDC. Note that the DC site may already have some
pieces of data and thus no transferring is required for these pieces (i.e., rk=rDC for some k). In
general, such a data-intensive task experiences both communication (Dcomm) and processing
(Dproc) delays. The communication delay Dcomm of a task, considering also the delay for
transferring the final results from the DC site rDC to the originating user’s site ru is:

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

101

, , , ,

1... , ,

max k

comm cons output

I Comm Comm
k DC k DC DC u DC u

k L k DC DC u

D D D

V
Q d Q d

P P=

= + =

⎛ ⎞ Δ⎛ ⎞⎜ ⎟+ + + + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2)

where Dcons is the time needed for the task’s data to consolidate to the DC site rDC and Doutput
is the delay of the output data to be transferred to the originating user’s site ru. The
computational delay is given by:

 P roc
proc DC

DC

W
D Q

C
= + . (3)

The total delay suffered by a task is:

 DC comm procD D D= + . (4)

Note that ,
Comm
k DCQ and

P roc
DCQ are difficult to estimate since the former depends on the

utilization of the network and the latter depends on the utilization of the computation
resource. For this reason, we propose a variety of algorithms, some of which assume this
information is known, while others do not make this assumption, and we compare their
performance.

3.2.2 Proposed schemes

As stated before the DC problem consists of three sub-problems: (i) the selection of the

repository sites rk from which the dataset Ik, k=1,2,…,L, will be transferred to the DC site, (ii)

the selection of the DC site rDC where the datasets will accumulate and the task will be

executed, and (iii) the selection of the paths (rk, rDC) the datasets will follow. In general, DC

schemes can make these decision based on various criteria such as the computation and

storage capacity of the resources, their load, the location and the sizes of the datasets, the

bandwidth availability and the expected delay, the user and application behaviours, the

price a user is willing to pay for using the storage and computation resources, etc.

In what follows, we propose a number of DC schemes that consider only the data

consolidation (ConsCost) or only the computation (ExecCost) or both kinds (TotalCost,

TotalCost-Q) of task requirements. Algorithms with similar considerations have also been

proposed in (Bell et al., 2002) (Bell et al., 2003) (Cameron et al., 2004) that use however

different model (sequential access). In the proposed algorithms and in the simulation results

that follow, we assume that no output data is returned back to the user and as a result Doutput

is equal to zero. Even though this parameter may be important in some cases, we decided to

concentrate our description and our simulation results to the three more important and

complex subproblems that comprise the DC problem in Data grids, as described above.

i. Random-Random (Rand) scheme: In this scheme the data replicas used by a task and
the DC site are randomly chosen. The paths are selected using a simple Dijkstra
algorithm. This scheme was employed for comparison purposes.

ii. Consolidation-Cost (ConsCost) scheme: We select the replicas and the Data

Consolidation site that minimize the data consolidation time (Dcons), assuming that the

communication queuing delays (,
Comm
k DCQ) are negligible.

www.intechopen.com

 Advances in Grid Computing

102

Given a candidate DC site rj, we select for each dataset Ik the corresponding data

holding site ri (k iI r∈) that minimizes the transfer time:

 , ,
,

,

min k

i k i

I Comm
i j i j

r R I r
i j

V
Q d

P∈ ∈

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

, (5)

where R is the set of all resources and di,j the propagation delay between site ri and rj.
Note that in this algorithm we consider the communication queuing delays negligible

and thus , 0
Comm
i jQ = . The data consolidation time Dcons of candidate DC site rj is equal to

the maximum transfer time of any dataset:

, ,

,1... ,

() max min k

i k

I Comm
cons j i j i j

r R I rk L i j

V
D r Q d

P∈ ∈=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + +

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. (6)

In ConsCost scheme we select the DC site (rDC) that minimizes the data consolidation
time:

 ()arg min ()
j

DC cons j
r R

r D r
∈

= . (7)

The paths are constructed using the Dijkstra algorithm.
iii. Execution-Cost (ExecCost) scheme: We select the DC site that minimizes the task’s

execution time:

 arg min
j

P roc
DC j

r R j

W
r Q

C∈

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

, (8)

while the data replicas are randomly chosen. Since, our focus is more on the
communication overhead of the DC problem combined with the execution times of the

tasks, we consider the processing queuing delay P roc
jQ of a resource rj as negligible and

that the tasks’ workload is known a-priori. In general, it is possible to estimate this
delay based on the tasks already assigned to a resource and on the average delay tasks
previously executed on it have experienced. Also, regarding the a-priori knowledge of
the tasks’ workload, there are algorithms that can be used to provide such estimates. On
the other hand, if the computation workload of a task is not known a-priori, we can
simply choose the resource with the largest computation capacity Cj. Finally, in the
ExecCost scheme the paths are constructed using the Dijkstra algorithm.

iv. Total-Cost (TotalCost) scheme: We select the replicas and the DC site that minimize the
total task delay. This delay includes the time needed for transferring the datasets to the
DC site and the task’s execution time. This scheme is the combination of the two above
schemes. The paths are constructed using the Dijkstra algorithm.

3.2.3 Number of operations for serving a task
Data consolidation is viewed in this paper as a continuous time problem, where the
decisions taken for one task affect the decisions taken for the tasks that will arrive in the

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

103

future and are affected by the decisions taken earlier for previous tasks. In this context, we
are interested in the number of operations (complexity) required by the proposed DC
schemes. For the Rand algorithm this is polynomial, as it randomly chooses the L+1 sites
used in the DC operation. Similarly, the ExecCost algorithm complexity is polynomial, since
it randomly selects the L data holding sites, while the rDC site is chosen among the N sites of
the grid network based on the task execution time criterion. All the other proposed
algorithms are based on the ConsCost algorithm. The complexity of these algorithms is
determined by the complexity of the ConsCost algorithm, since any additional operations
performed by these algorithms. In the ConsCost algorithm, for each candidate DC site, we
choose for each dataset the replica site that minimizes its transferring delay. That is, for each
dataset, at most all the N sites (assuming that all the sites hold a replica of this dataset) are
evaluated as candidates for participating in the DC operation. Then based on the decisions
made for all L datasets we calculate the data consolidation time for this particular replica
selection and candidate DC site. So, the execution of a shortest path algorithm, with
polynomial complexity, is required for each candidate DC site rDC.. The complexity of
Dijkstra’s algorithm is O(N2) in order to find the shortest paths from a single source (the
candidate DC site) to all other nodes in a graph. Next, this operation is performed for all the
candidates DC sites, that is for all the N grid sites. At the end of the ConsCost algorithm, the
rDC site and the corresponding L sites with the minimum data consolidation time (Eq. 7) are
selected. Consequently, the total complexity of the ConsCost algorithm, for a single task, is
polynomial and equal to O(N3).
Of course, the polynomial complexity of the ConsCost algorithm is the result of its sub-
optimal decisions. The ConsCost algorithm does not optimize the overall consolidation time
over all datasets and over all candidate replica sites, whose combinations increase
exponentially with the number of sites in the grid network. This can be seen from Eq. (5),
where for each dataset the replica site with the minimum transferring delay is chosen,
without considering the effect of one choice (one replica’s selection) to the other.
In addition, we should note that in this complexity analyses, we do not consider the
complexity of the information gathering mechanisms, such as the communication and
computation queuing delays in the network.

4. Information aggregation

4.1 Problem formulation
Our aim is to design efficient and flexible aggregation schemes that can be applied to grids
without a significant penalty on the quality of the scheduling (and probably other) decisions
taken with the aggregated information. We formulate our problem in a generic way,
without assuming grid networks with specific characteristics. The scheduling policies
assumed are also relatively simple, since combining our aggregation schemes with a large
set of scheduling policies would obscure the focus on the aggregation issues.
We consider a grid consisting of N sites, partitioned according to a hierarchical structure in a
total of L domains Dj, j=1,2,…,L. Each site i, i=1,2,…,N, has computational and storage
capacity Ci and Si , respectively, and belongs to one of the L domains. Site i publishes its
resource information as a vector Vi that may contain various parameters:

Vi = (Ci, Si, …).

These vectors are collected per domain Dj and are published to a higher level of the
hierarchy, in the form of an information matrix whose rows are the resource site vectors:

www.intechopen.com

 Advances in Grid Computing

104

1 1 1

2 2 2

(, ,...)

(, ,...)

(, ,...)
j j j

j

D D D

V C S

V C S
M

V C S

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B B ,

where |·| denotes the cardinality of a set and 1,2, …,|Dj| are the sites contained in domain
Dj. By performing appropriate operations, to be discussed later, on the information vectors
contained in the information matrix, Mj is transformed into the aggregated information matrix

ˆ .jM

The grid scheduling problem is usually viewed as a two-level hierarchical problem. At the
first level, called meta-scheduling, a meta-scheduler allocates tasks to sites, while at the
second level, called local scheduling, each site schedules the tasks assigned to it on its local
computing elements. This is the approach followed by many grid middleware systems,
including gLite (Laure et al., 2006), where the Workload Management System (WMS) selects
the site where a task will be executed and the local scheduler chooses the Working Node
(WN) it will be executed on after reaching that site. Similarly, in our work scheduling is
performed at two levels. At the higher level a central scheduler decides the domain Dj a task
will be assigned to, and at the lower level a domain scheduler DSj, decides the exact site in
the domain where the task will be executed (Figure 1). Information collection and
aggregation is performed, similarly, by a two level monitoring system, consisting of a
central monitor CM and the domain monitors DMj, j=1,2,…,L.

Fig. 1. A two-level hierarchical scheduling and monitoring system. Each domain j has a
domain scheduler DSj and a domain monitor DMj, while there is also a central scheduler CS
and a central monitor CM.

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

105

A user located at some site generates tasks Tm, m=1,2,…, with computational workload Wm,
that have to be scheduled and then executed at a resource site.

4.2 Information aggregation

In this section we present the resource information parameters of interest, the operators
applied and the proposed aggregation techniques.

4.2.1 Operational framework

In Algorithm 2 we present, in pseudocode, the sequence of operations performed by the
information collection mechanism and the proposed aggregation scheme.

Algorithm 2 Resource Information Collection & Aggregation

1. Each site i, i=1,2,…,N, belonging to some domain Dj periodically or reactively (driven
by information changes) publishes its information vector Vi to the domain monitor
DMj.

2. Each domain monitor DMj, j=1,2,…,L, puts together these vectors to form the
information matrix Mj.

3. Each domain monitor DMj, j=1,2,…,L, periodically or reactively (when information

changes) computes its aggregated information matrix ˆ
jM and publishes it to the

central monitor CM.
4. The CM collects the aggregated information matrices.

In Algorithm 3 we present the operations performed by a task scheduling scheme that uses

the aggregated information.

Algorithm 3 Task Scheduling

1. Upon the arrival of a task Tm,, the central scheduler CS looks at the domain matrices
provided by the central monitor CM.

2. The central scheduler CS applies an optimization function to the vectors contained in
the domain matrices and selects the information vector V that produces the largest
value.

3. The CS assigns the task Tm to the domain Dj, where the vector V originated from, and
forwards the task to the domain scheduler DSj.

4. The domain scheduler DSj receives the task request and selects the exact site the task
will be scheduled on, using exact resource information.

Generally, as the number of sites in a domain Dj increases, the amount of information

collected by the domain monitors DMj also increases. Therefore, it is necessary for the

information contained in each domain information matrix Mj to be aggregated/

summarized. This is done by performing appropriate associative operations (addition,

maximization, etc) on the parameters of the sites’ information vectors, in order to transform

the information matrix Mj into the aggregated information matrix ˆ
jM which contains a smaller

www.intechopen.com

 Advances in Grid Computing

106

number of vectors than the original matrix. The operators used for summarizing the

information depends on the types of the parameters involved. In what follows, we elaborate

on the resource parameters of interest, and the associative operators and aggregation

techniques proposed. We also present optimization functions that can be applied by the CS

to select the optimal information vector.

4.2.2 Information parameters and aggregation operators

The resource information parameters (both static and dynamic) of interest in this work, the
operators used for their aggregation and the benefits we get for different choices of the
operators are discussed next:

• The computational capacities Ci of the sites, measured in Millions Instructions per
Second (MIPS), in a domain Dj can be aggregated by performing a minimum
representative operation, an additive operation or by averaging them:

^
min

j
j i

i D
C C

∈
= ,

^

j

j i
i D

C C
∈

= ∑ or
^

j

j i
i D

C avgC
∈

= .

Using the minimum representative operator we obtain the minimum capacity of any

site in the domain Dj, which would be useful for conservative task scheduling. Using

the additive operator we obtain the total computational capacity in the domain, which

would be useful for scheduling when a task’s workload is divisible, and can

be assigned to different resources simultaneously. The minimization, the additive

and the average operators (and possibly other operators, such as maximization) could

all be used so that a number of capacity related features of the domain are recorded.

• The number of tasks Ni already assigned to the sites can be aggregated over a domain

Dj using an additive operation:

^

j

j i
i D

N N
∈

= ∑ .

Other operators can also be used, such as the maximum representative or the average

number of tasks in the sites of the domain.

• Some tasks require for their execution a number of datasets that may or may not be

stored at a given site. If a dataset k exists in site i, we set Iik = 1; otherwise, we set Iik =

0. This parameter is aggregated over all sites in a domain Dj using a boolean OR

operator:

^
{ }

j

jk ik
i D

I OR I
∈

= .

Thus,
^

1jkI = means that there is at least one site in domain Dj that holds dataset k.

In any case, the list of parameters and aggregation operators defined above is only
indicative of the different options that can be used by the aggregation schemes. Other
parameters and operators can also be defined, depending on the needs of the applications
and the scheduling algorithms used.

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

107

4.2.3 Aggregation schemes

In this subsection we present aggregation techniques for reducing the number of vectors in
the information matrix Mj of a given domain Dj.

Single Point Aggregation Scheme

In the single point aggregation scheme, the information vectors of the sites in each domain are
aggregated into a single information vector. We next show an example of the application of
the single point aggregation technique, where the information matrix Mj that has |Dj| rows

is reduced to an aggregated information matrix ˆ
jM that has only one row:

1 1 1

2 2 2

8 8 8

(, ,...)

(, ,...)

(, ,...)

j

V C S

V C S
M

V C S

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B B
 ö

^ ^
^ ^

(, ,...)j V C SM
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.

The information transferred to the higher levels is greatly reduced using this aggregation

technique, but this happens at the expense of a degradation in the quality of the aggregated

information and in the value it has for the resource scheduler.

Intra-Domain Clustering Aggregation Scheme

In the intra-domain clustering aggregation technique, each domain Dj, j=1,2,…,L, is partitioned

into j jh D≤ intra-domain clusters. For the sites belonging to cluster l, l=1,2,…,hj, the

aggregated vector
^

lV is calculated and sent to domain monitor DMj. The aggregated

information matrix
^

jM containing the aggregated information vectors
^

lV , l=1,2,…,hj, of the

clusters, is sent to the higher levels. Various approaches can be used for clustering the sites

of a domain. In our work we assume that the sites are clustered randomly.
We next show an example of the application of the intra-domain clustering aggregation

technique, where hj =3 clusters are created in the given domain Dj.

1 1 1

2 2 2

7 7 7

8 8 8

(, ,...)

(, ,...)

(, ,...)

(, ,...)

j

V C S

V C S

M

V C S

V C S

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B B ö

^ ^^
1 1 1

^ ^ ^^
2 2 2

^ ^^
3 3 3

(, ,...)

(, ,...)

(, ,...)

j

V C S

V C S

V C S

M

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

The number of intra-domain clusters per domain influences the amount of information

passed to higher levels and the efficiency of the scheduler’s decision.

Reducing Aggregated Information using Domination Relations

In this subsection we introduce the concept of dominated resources to further prune the

number of information vectors processed by the domain monitors or the number of

aggregated information vectors processed by the central monitor. In particular, we say that

the information vector V1 dominates information vector V2, if V1 is better than V2 with respect

to all the cost parameters. The term “better” is interpreted differently based on the

parameters of interest.

www.intechopen.com

 Advances in Grid Computing

108

For example, consider the information vectors 1 1 1 1(, ,)V C S FT= and 2 2 2 2(, ,)V C S FT= . We

say that V1 dominated V2 if the following conditions hold:

1 2C C> , 1 2S S> and 1 2FT FT<

The domination relations can either be applied in the vectors of a domain without any
further processing, leading to a standalone aggregation technique, or they can be applied
along with the single point and intra-domain aggregation techniques presented earlier.

Domain Selection Cost Functions

Upon the arrival of a new task, the central scheduler CS selects a proper domain Dj for the

execution of the task, and forwards the task request to the corresponding domain scheduler

DSj who assigns it to a specific site in that domain. The CS uses aggregated information

collected by the central monitor CM, while DSj uses exact resource information in order to

make its corresponding scheduling decisions. The CS in order to select the appropriate

domain for a task’s execution (similar are the operations performed by a DS so as to select

the appropriate site for a task’s execution) applies an optimization function to the vectors
^
V

and the domain giving the optimum value is selected.

5. Performance evaluation

5.1 Data consolidation
5.1.1 Simulation settings

In our simulations we used a topology derived from the EGEE topology, which consists of
11 nodes and 16 links, of capacities equal to 10Gbps. In our experiments we assume a P2P
(opaque) network; the delay for transmitting between two nodes includes the propagation,
queuing and transmission delays at intermediate nodes. Only one transmission is possible at
a time over a link, so a queue exists at every node to hold the data waiting for transmission.
The size of each dataset is given by an exponential distribution with average VI (GB). At the
beginning of the simulation a given number of datasets are generated and two copies of
each dataset are distributed in the network; the first is distributed among the sites and the
second is placed at Tier 0 site. The storage capacity of each storage resource is 50% of the
total size of all the datasets. Since the storage capacity is bounded, there are cases where a
site does not have the free storage capacity required to store a needed dataset. In such a
case, one or more of the oldest and unused datasets are deleted until the new dataset can be
stored at the resource.
In each experiment, users generate a total of 10.000 tasks, with exponential arrival rates of
average value λ. Unless stated otherwise, we assume λ=75 tasks/sec (but we also examine
other task arrival rates: λ=50, 75, 100, 125, 150 and 200 tasks/sec). In all our experiments we
keep constant the average total data size S that each task requires:

 VIS L= ⋅ , (10)

where L is the number of datasets a task requests and VI is the average size of each dataset.
We use average total data size S equal to 600 GB and examined various (L, VI) pair values.
In each experiment the total number of available datasets changes in order for their total size
to remain the same: 15 TB.
We use the following metrics to measure the performance of the algorithms examined:

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

109

• The average task delay, which is the time that elapses between the creation of a task and
the time its execution is completed at a site.

• The average load per task imposed to the network, which is the product of the size of
datasets transferred and the number of hops these datasets traverse.

• The Data Consolidation (DC) probability, which is the probability that the selected DC
site will not have all the datasets required by a task and as a results Data Consolidation
will be necessary.

5.1.2 Results

Figure 4 shows the DC probability for the Rand, ExecCost, ConsCost and TotalCost
schemes, when tasks request different number of datasets L for their execution. The higher
the number L of datasets a task requests, the higher is the probability that these datasets will
not be located at the DC site, given that the storage capacity of a site is limited. The
ConsCost and TotalCost algorithms exhibit smaller DC probability than the Rand and
ExecCost algorithms, since the former algorithms select the DC site by taking into account
the consolidation delay, which is small for sites holding many or all of the datasets needed
by a task. On the other hand, the Rand and ExecCost algorithms select the DC site randomly
or almost randomly (as is the case for ExecCost, given that the tasks have negligible
computation complexity). As L increases, the probability of not finding all the data at a site
increases and converges to 1 for all examined algorithms.
Figure 5 shows the average task delay for the DC algorithms examined. We observe that the
algorithms that take the data consolidation delay into account (namely, the ConsCost and
TotalCost algorithms) behave better than the algorithms that do not consider this parameter
(that is, the Rand and ExecCost algorithms), in terms of the task delay. As the number L of
datasets a task requires increases, the average task delays of all the algorithms converge.
Specifically, for the ConsCost and TotalCost algorithms the average task delay increases as
the number of datasets a task requires increases, since the probability that a DC site will not
hold all the data a task needs (i.e., the DC probability) also increases (Figure 4), resulting in
more data transfer. In contrast, in the Rand and ExecCost algorithms the average task delay
decreases as L increases, because of the decrease in the size of the concurrent transferred
datasets VI (Eq. (10)). Thus, for the Rand and ExecCost algorithms that (almost) randomly
select the DC site, the data consolidation time and its impact on the average task delay
decreases as L increases.
Figure 6 shows the average network load per task for the various DC algorithms, when
tasks request different number of datasets L for their execution. We observe that the
algorithms that do not take into account the data consolidation delay (that is, the Rand and
ExecCost algorithms) induce, on average, a larger load on the network than the algorithms
that do take this into account (ConsCost and TotalCost algorithms). This is because the
former algorithms transfer on average more data, over longer paths. Moreover, the decisions
made by these algorithms are not affected by the dataset sizes VI or their number L, and as a
result they induce on average the same network load. By analyzing our results, we observed
that these algorithms transfer on average the same number of bytes over paths of equal on
average length, irrespectively of L and VI. The superior performance of ExecCost over that
of Rand is because ExecCost assigns tasks to resources in a more balanced way, based on the
task execution times. That is, it first assigns tasks to the most powerful resource, where tasks
and their datasets are stored until they are executed. When this resource does not have

www.intechopen.com

 Advances in Grid Computing

110

Fig. 4. The DC probability for the Rand, ExecCost, ConsCost and TotalCost DC algorithms,
when tasks request a different number of datasets L for their execution. The average total
data size per task is S=600 GB.

Fig. 5. The average task delay (in sec) for the Rand, ExecCost, ConsCost and TotalCost DC
algorithms, when tasks requests a different number of datasets L for their execution. The
average total data size per task is S=600 GB.

sufficient storage capacity to store the dataset of the following tasks, the ExecCost algorithm
chooses the second most powerful resource, and so on. At some point this cycle starts (more
or less) all over again. In this way, there is a high probability that consecutive tasks will find
some of their required datasets in the resource where they are assigned by the ExecCost
algorithm. This reduces the network load in comparison to the Rand algorithm. Of course,
this property does not appear in the DC metric, since the resource selected by the algorithm

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

111

changes when it does not have any free space left. The algorithms that take into account the
data consolidation delay (namely, the ConsCost and TotalCost algorithm), induce a smaller
load on the network. This load increases as the number of datasets L increases, as can be
explained by the increasing probability that a DC site will not hold all the required data
(Figure 4), and will thus have to transfer more datasets. In addition, these algorithms are
affected mainly by the tasks’ data dependencies, since their computational load is small (see
step 6 in Algorithm 1). Also, the TotalCost and the ConsCost use the same policies for
selecting the data replicas and the paths; as a result, both algorithms perform similarly. We
should note that in all the experiments performed very few tasks failed (of the order of 4-6
tasks per experiment).

Fig. 6. The average network load per task (in GB) for the Rand, ExecCost, ConsCost and
TotalCost DC algorithms, when tasks request a different number of datasets L for their
execution. The average total data size per task is S=600 GB.

5.2 Information aggregation
5.2.1 Simulation settings

We consider a number of sites that are randomly grouped into domains, each having an
approximately equal number of sites. Site i is characterized by its computational capacity Ci,
measured in MIPS and chosen from a uniform distribution UC. In our simulations, tasks are
created with exponentially distributed interarrival times with mean I, while their workload
follows a uniform distribution UW. These tasks are submitted to the central scheduler that
makes its decisions using either complete or aggregated resource information. In the
simulation results we do not consider the effects of the information propagation delay,
assuming that resource information (aggregated or not) is not outdated by the time it is used
by the scheduler due, to the delay between measuring some parameter and the moment the
measured value is available to the scheduler. However, we believe that in practice the
aggregation operation can reduce the negative effects of this delay, since summarized
information is usually less affected by the change in the values of the parameters measured.
Network related issues are not considered in these simulation experiments.

www.intechopen.com

 Advances in Grid Computing

112

The information vector Vi of site i contains its computational capacity Ci and the number of
tasks Ni queued at it:

{ , }i i iV C N= .

In case no aggregation is used a new task Tm is assigned to the site i that minimizes

min i

i
i

C

N

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

.

In case where aggregation is used then the central scheduler CS uses only the aggregated
domain information vectors, and assigns task Tm to the domain Dj that minimizes

^

^
min

j

j

j

C

N

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

.

Next, the selected domain’s scheduler, DSj, receives the task and assigns it to a domain site,
having complete knowledge of the information vectors of all the sites in the domain. The
assignment again is performed based on the same optimization function:

min
j

i

i D
i

C

N∈

⎧ ⎫
⎨ ⎬
⎩ ⎭

.

We implemented and evaluated the performance of the following schemes:

• FlatCpuTasks: In this scheme no information aggregation is performed of the sites’
computational capacity and number of tasks parameters.

• MinCpuSumTasks: In this scheme the information vectors of the sites belonging to the
same domain are aggregated (single point aggregation) using the minimum
representative and the additive operators, respectively:

^
min i

i
C C= and

^
i

i
N N= ∑ .

• DomMinCpuSumTasks: This scheme is similar to the MinCpuSumTasks, except that
domination relations are applied to the vectors of the sites of a domain, before they are
aggregated using the single point aggregation scheme.

• ICMinCpuSumTasks: This scheme is similar to the MinCpuSumTasks, except that the
intra-domain clustering aggregation scheme is applied, instead of the single point one,
where sites are randomly clustered into intra-domain clusters.

We are interested in evaluating the degree to which the information produced by the
proposed aggregation schemes leads to efficient scheduling decisions, while the size and the
frequency of the information updates is kept low.
For the evaluation of the MinCpuSumTasks, DominanceMinCpuSumTasks, and
ICMinCpuSumTasks aggregation schemes we use the Stretch Factor (SF), as the metric that
measures the scheduling efficiency and in practice the quality of the aggregated
information. The Stretch Factor (SF) is defined as the ratio of the task delay D when the task
is scheduled using complete resource information (FlatCpuTasks) over the task delay when

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

113

an aggregation scheme is used (MinCpuSumTasks, DominanceMinCpuSumTasks, or
ICMinCpuSumTasks). The task delay is defined as the time that elapses from the task’s
submission to the grid until the completion of its execution at a site. A stretch factor metric
is also encountered in the hierarchical networks related literature (Lee, 1995), where it is
defined as the ratio of the average number of hops (or average delay) between a source and
a destination when flat routing is used over the corresponding value when hierarchical
routing is used. Table 1 presents the Stretch Factor (SF) metrics we use in our work. In all
cases SF≤1, since when a scheduler has complete resource information, it can make better
decisions than when this information is aggregated. An aggregation technique is efficient
when its corresponding SF is close to 1.

FlatCpuTaks

MinCpuSumTasks

D
SFMinCpuSumTasks =

D

FlatCpuTaks

DomMinCpuSumTasks

D
SFDomMinCpuSumTasks =

D

FlatCpuTaks

ICMinCpuSumTasks

D
SFICCpuTasks =

D

Table 1. The Stretch Factor (SF) metrics we use in our simulation experiments.

5.2.2 Results

Figure 7a presents the Stretch Factor (SF) for the MinCpuSumTasks, the
DomMinCpuSumTasks and the ICMinCpuSumTasks aggregation schemes when 1000 grid
sites are clustered in a variable number of domains and 25000 tasks are created and
scheduled. The sites’ computational capacity and the tasks’ workload follow uniform
distributions (UC min/max = 10/10000 MIPS and UW min/max 1000/10000000 MI
respectively). In general, all the stretch factor metrics measured behave similarly, that is,
their value first decreases up to some point, after which it starts increasing towards 1. This is
because when the number of domains is small, then the number of sites per domain is quite
high, increasing the probability that more than one “best” sites or sites similar to the “best”
site exist in different domains. This increases the probability that a domain with such a site
will be chosen, even if aggregation is used. We represent this probability as Pmultiple-best, and
as our results will indicate it strongly affects the stretch factor; also, by “best” we mean the
site that optimizes the metric of interest (task delay, or some other optimization function).
Next, as the number of domains increase Pmultiple-best decreases and the stretch factors also
decrease. After some point, as the number of domains increases and the number of sites per
domain decreases, the quality of information produced by the aggregation schemes
improves. This is because when there are few sites per domain, the aggregated information
better represents the characteristics of its sites.
Comparing the different aggregation policies we observe that the ICMinCpuSumTasks
produces the best results, followed by the DomMinCpuSumTasks and the

www.intechopen.com

 Advances in Grid Computing

114

0,00

0,20

0,40

0,60

0,80

1,00

10 20 30 40 50 60 70 80 90 100 200 300 400 500

Number of Domains

S
tr

e
tc

h
 F

a
c
to

r

SFMinCpuSumTasks

SFDomMinCpuSumTasks

SFICMinCpuSumTasks

a)

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100 200 300 400 500

Number of Domains

T
a
s
k
 D

e
la

y

MinCpuSumTasks
DomMinCpuSumTasks
ICMinCpuSumTasks
FlatCpuTasks

b)

Fig. 7. a) The Stretch Factor (SF), b) the average task delay (in secs) for the MinCpuSumTasks,
the DomMinCpuSumTasks and the ICMinCpuSumTasks aggregation schemes, when 1000
grid sites are clustered in a variable number of domains and 25000 tasks are created and
scheduled.

MinCpuSumTasks aggregation policies. The ICMinCpuSumTasks aggregation scheme use
h=5 intra-clusters in each domain and its use leads to better scheduling decisions (as
measured by the corresponding stretch factor), however this comes at the cost of increased
number of information vectors advertised (Table 2). Reducing the number of intra-domain
clusters, reduces the number of information vectors produced, but also reduces the quality
of the information provided (as measured by the corresponding stretch factor). In addition,
it seems that the domination operation, which discards dominated information vectors,
improves the quality of the information provided to the scheduler. In Figure 7b we observe
that the average task delay results, using the MinCpuSumTasks, the DomMinCpuSumTasks
and the ICMinCpuSumTasks aggregation algorithms, are in accordance with the results

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

115

presented in Figure 7a. A large task delay indicates that the information produced by the
corresponding aggregation scheme, leads the scheduler in wrong task scheduling decisions.
We should also note that the average task delay when no information aggregation is applied
(FlatCpuTasks) is not affected by the number of domains and this is the reason that it
remains static.
Figure 8 illustrates the frequency with which the aggregated information vectors change.
Since, our evaluated aggregation schemes consider only one dynamic parameter (that is the
number of tasks scheduled in each site), this means that the information vector of a site
changes only if a new task is scheduled into it. We observe that the MinCpuSumTasks and
ICMinCpuSumTasks aggregation schemes result in a very large number of updates and
almost equal, in most cases, to the maximum one. On the other hand using the
DomMinCpuSumTasks aggregation scheme, we observe that when the number of domains is
small, and as a result many sites exist in each domain, the domination operation achieves in
absorbing a large percent of the changes in the sites’ information vectors. As the number of
domains increases and fewer sites exist in each domain, this capability declines almost linearly.

0,0

0,2

0,4

0,6

0,8

1,0

10 20 30 40 50 60 70 80 90 100 200 300 400 500

Number of Domains

F
re

q
u

e
n

c
y
 o

f
U

p
d

a
te

s

MinCpuSumTasks
DomMinCpuSumTasks

ICMinCpuSumTasks
FlatCpuTasks

Fig. 8. The frequency of information vector updates for the FlatCpuTasks, the
MinCpuSumTasks, the DomMinCpuSumTasks and the ICMinCpuSumTasks aggregation
algorithms, when 1000 grid sites are clustered in a variable number of domains and 25000
tasks are created and scheduled.

We also performed several other experiments altering the number of sites, the number of
tasks created or their creation pattern. In any case our results and observations were similar
to the above.

6. Conclusions

In this chapter we examined the Data Consolidation (DC) problem and the application of
information aggregation in grid networks. The DC problem arises when a task needs for its
execution concurrently two or more pieces of data, possibly scattered throughout the grid
network, and consists of three sub-problems: (i) the selection of the repository site from

www.intechopen.com

 Advances in Grid Computing

116

which to obtain the replica of each dataset to be used for task execution, (ii) the selection of
the site where these datasets will accumulate and the task will be executed and (iii) the
selection of the paths the datasets will follow as they are transferred over the network. These
sub-problems can be solved jointly or independently. To the best of our knowledge this is
the first time that these issues are jointly considered. We proposed a number of DC schemes,
of polynomial number of required operations and evaluated them under a variety of
scenarios and choices for the parameters involved. Our simulation results indicated that the
DC schemes that consider both the computation and the communication requirements of the
tasks behave better than those that consider only one of them. We also investigated for the
first time resource information aggregation in grid networks, describing several information
aggregation operators and methods. We performed a number of simulation experiments
using the stretch Factor (SF), defined as the ratio of the task delay incurred when scheduling
based on complete resource information over that incurred when an aggregation scheme is
used, as the main metric for judging the extent to which the proposed aggregation schemes
preserve the value of the information aggregated and assist the scheduler in making
efficient decisions. We observed that in many scenarios the proposed schemes enabled
efficient task scheduling decisions as indicated by the SF achieved, while achieving large
information reduction because of the aggregation. We looked into the frequency of
information vector updates resulted by the aggregation schemes, and observed that the
changes in the dynamic characteristics of the resources will not always propagate to the
central monitoring system, since aggregated information vectors sometimes absorb these
changes.

7. References

K. Krauter, R. Buyya, M. Maheswaran, (2002), A taxonomy and survey of grid resource

management systems for distributed computing, Software: Practice and Experience,

Vol. 32, No. 2, pp. 135-164, 2002.

H. Shan, L. Oliker, W. Smith, R. Biswas, (2004), Scheduling in Heterogeneous Grid

Environments: The Effects of Data Migration, Intl Conference on Advanced

Computing and Communication, 2004.

R. Rahman, K. Barker, R. Alhajj, (2007), Study of Different Replica Placement and

Maintenance Strategies in Data Grid, IEEE/ACM International Symposium on

Cluster Computing and Grid, pp. 171-178, 2007.

R. Rahman, K. Barker, R. Alhajj, (2008), Replica Placement Strategies in Data Grid, Journal of

Grid Computing, Springer, Vol. 6, No. 1, pp. 103-123, 2008.

S. Vazhkudai, S. Tuecke, I. Foster, (2001), Replica Selection in the Globus Data Grid, Intl

Symp. on Cluster Computing and the Grid, 2001.

J. Byers M. Luby, M. Mitzenmacher, (1999), Accessing multiple mirror sites in parallel:

Using Tornado codes to speed up downloads, IEEE INFOCOM, pp. 275-283, 1999.

P. Rodriguez, E. Biersack, (2002), Dynamic parallel access to replicated content in the

Internet, IEEE/ACM Transactions on Networking, Vol.10, No.4, pp. 455-465, 2002.

R. Chang, M. Guo and H. Lin, (2008), A multiple parallel download scheme with server

throughput and client bandwidth considerations for data grids, Future Generation

Computer Systems, Vol. 24, No. 8, pp. 798-805, 2008.

www.intechopen.com

Data Consolidation and Information Aggregation in Grid Networks

117

K. Ranganathan, I. Foster, (2002), Decoupling Computation and Data Scheduling in

Distributed Data-Intensive Applications, High Performance Distributed

Computing Sumposium, pp. 352-358, 2002.

A. Elghirani, R. Subrata, A. Zomaya, (2007), Intelligent Scheduling and Replication in

Datagrids: a Synergistic Approach, Symposium on Cluster Computing and the

Grid, pp. 179-182, 2007.

W. Bell ,D. Cameron, L. Capozza, A. P. Millar, K. Stockinger, F. Zini, (2002), Simulation of

Dynamic Grid Replication Strategies, OptorSim, LNCS, Vol. 2536 , pp. 46-57, 2002.

W. Bell, D. Cameron, L. Capozza, A. Millar, K. Stockinger, F. Zini, (2003), OptorSim: A Grid

Simulator for Studying Dynamic Data Replication Strategies, International Journal

of High Performance Computing Applications, Vol. 17, No. 4, pp. 403-416, 2003.

D. Cameron, A. Millar, C. Nicholson, R. Carvajal-Schiaffino, F. Zini, K. Stockinger, (2004),

Optorsim: a simulation tool for scheduling and replica optimisation in data grids,

Computing in High Energy and Nuclear Physics, 2004.

A. Chakrabarti, R. Dheepak, S. Sengupta, (2004), Integration of Scheduling and Replication

in Data Grids, LNCS, Vol. 3296 , pp. 375-385, 2004.

T. Stevens, M. De Leenheer, C. Develder, B. Dhoedt, K. Christodoulopoulos, P. Kokkinos, E.

Varvarigos, (2008), Multi-cost job routing and scheduling in Grid networks, Future

Generation Computer Systems, Vol. 25, No. 8, pp. 912-925, 2008.

A. Dogan, (2009), A study on performance of dynamic file replication algorithms for real-

time file access in Data Grids, Future Generation Computer Systems, Vol. 25, No. 8,

pp. 829-839, 2009.

L. Kleinrock, F. Kamoun, (1977), Hierarchical routing for large networks. Performance

evaluation and optimization, Computer Networks, Vol. 1, No. 3, pp. 155-174, 1977.

W. C. Lee, (1995), Topology aggregation for hierarchical routing in ATM networks,

Computer Communication Review, Vol. 25, No. 2, pp. 82-92, 1995.

P. Van Mieghem, (1999), Topology information condensation in hierarchical networks, The

International Journal of Computer and Telecommunications, Vol. 31, No. 20, pp.

2115 – 2137, 1999.

D. Bauer, J. Daigle, I. Iliadis, and P. Scotton, (2006), Topology aggregation for combined

additive and restrictive metrics, Computer Networks, Vol. 50, No. 17, pp. 3284-

3299, 2006.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, (2003), Directed

diffusion for wireless sensor networking, IEEE Transactions on Networking, Vol.

11, pp. 2-16, 2003.

R. Renesse, K. Birman, W. Vogels, (2003), Astrolabe: A Robust and Scalable Technology for

Distributed System Monitoring, Management, and Data Mining, ACM Transactions

on Computer Systems, Vol. 21, No. 2, pp. 164-206, 2003.

S. Schulz, W. Blochinger, H. Hannak, (2009), Capability-Aware Information Aggregation in

Peer-to-Peer Grids, Journal of Grid Computing, Vol. 7, No. 2, pp. 135-167, 2009.

R. Zhou, K. Hwang, (2006), Trust overlay networks for global reputation aggregation in P2P

grid computing, IPDPS, 2006.

www.intechopen.com

 Advances in Grid Computing

118

M. Cai, K. Hwang, (2007), Distributed Aggregation Algorithms with Load-Balancing for

Scalable Grid Resource Monitoring, IEEE International Parallel and Distributed

Processing Symposium, 2007.

K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, (2001), Grid Information Services for

Distributed Resource Sharing, IEEE International Symposium on High-

Performance Distributed Computing (HPDC), 2001.

K. Muraki, Y. Kawasaki, Y. Mizutani, F. Ino, K. Hagihara, (2006), Grid Resource Monitoring

and Selection for Rapid Turnaround Applications, IEICE - Transactions on

Information and Systems, Vol. 89, No. 9, pp. 2491 – 2501, 2006.

I. Rodero, F. Guim, J. Corbalan, L. Fong, S. Sadjadi, (2010), Grid broker selection strategies

using aggregated resource information, Future Generation Computer Systems, Vol

26, No. 1, pp. 72-86, 2010.

E. Laure, et al., (2006), Programming the Grid with gLite. Computational Methods in Science

and Technology, Vol. 12, pp. 33-45, 2006.

www.intechopen.com

Advances in Grid Computing

Edited by Dr. Zoran Constantinescu

ISBN 978-953-307-301-9

Hard cover, 272 pages

Publisher InTech

Published online 28, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book approaches the grid computing with a perspective on the latest achievements in the field, providing

an insight into the current research trends and advances, and presenting a large range of innovative research

papers. The topics covered in this book include resource and data management, grid architectures and

development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence

or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid

computing: resource management and data management. The book addresses also some aspects of grid

computing that regard architecture and development, and includes a diverse range of applications for grid

computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous

healthcare service provisioning and complex water systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Panagiotis Kokkinos and Emmanouel Varvarigos (2011). Data Consolidation and Information Aggregation in

Grid Networks, Advances in Grid Computing, Dr. Zoran Constantinescu (Ed.), ISBN: 978-953-307-301-9,

InTech, Available from: http://www.intechopen.com/books/advances-in-grid-computing/data-consolidation-and-

information-aggregation-in-grid-networks

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

