
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Mohamed Wahib1, Asim Munawar2, Masaharu Munetomo3

and Kiyoshi Akama4

1,2Gradute School of Information Science and Technology, Hokkaido University, Sapporo
3,4Information Initiative Center, Hokkaido University, Sapporo

Japan

1. Introduction

Grid computing is generally viewed as task assignment to distributed resources. While in
practice many factors do complicate this scheduling process (e.g. resource monitoring and
discovery, resource failures, resources ownership and policies ... etc), the process is still viewed
as resource scheduling according to some criteria. The criteria are referred to as Quality
of Service (QoS) attributes in grid computing context. QoS in general are non-functional
characters describing a process. QoS attributes are divided into two main groups, namely
objective QoS and subjective QoS. Objective QoS attributes are used to specify performance
parameters including timeliness, precision, accuracy, security requirements and availability.
Subjective QoS attributes, on the other hand, capture application specific policies that govern
how an application is treated by the resource manager. In this chapter, objective QoS attributes
are referred to as basic QoS attributes, while subjective QoS attributes are referred to as
application-specific QoS attributes. In comparison to application-specific QoS attributes, a
huge legacy of scheduling with the basic QoS attributes exists. This chapter proposes adopting
application-specific QoS attributes to define new criteria other than the basic ones to enhance
the preference of which resources to choose in the task assignment process as the QoS
attributes are application-specific (e.g. a Grid application involving service tasks that retrieve
images from a service resource could have the color depth and resolution as QoS attributes).
For grid computing to go beyond the basic QoS attributes the following challenges need to
be addressed: a) A method to formally define new application-specific QoS attributes. b) A
method to measure the QoS attribute fidelity of a specific resource. c) Scheduling the tasks
over the resources taking into consideration the defined application-specific QoS attributes.
This chapter addresses these challenges and proposes a framework that starts from defining
new application-specific QoS attributes until the tasks are executed over the resources. As for
the first challenge, a system for defining QoS using a formal language is inspired from Canfora
et al. (2006) which proposes service composition binding driven by application-specific QoS.
The domain of Canfora et al. (2006) is different from the work in this chapter. This is because
the authors are concerned with the composition of services that are initially defined as an
abstract workflow, where for each service in the workflow a set of service providers are
defined. Then the scheduler/binder makes a concrete workflow at which each service in the
abstract workflow is bind to a service provider. Canfora et al. addressed how application

A Framework for Problem-Specific QoS Based
Scheduling in Grids

2

www.intechopen.com

specific QoS attributes can be defined and aggregated to be used for scheduling. The basic
idea is implementing a QoS aggregation function definition interface and a QoS definition
language, so the administrator through a simple QoS aggregation function editor could define
new QoS(s). The QoS definition in this framework here builds on and extends the work done
by Canfora though it is defined for a different discipline (i.e. SOA). It is of no-awkwardness to
use a mechanism that was originally defined in SOA (Service Oriented Architecture) service
workflows to be used in grid computing. As grid computing and SOA have many tangency
points. And this point in particular could be considered a convergence point between grid
computing and SOA.
At the first glance, scheduling tasks in such an environment seem to add more complexity
to the traditional problems of task assignment. However, the definition of task associated
QoS attributes is utilized to enrich the task assignment process. The Chapter illustrates
the framework, describes the design and implementation of the framework and finally
demonstrates a use case to emphasize on the functional efficiency of the framework. The rest
of this paper is organized as follows; the next section is a brief review on subjective QoS
representation in service environments. Section 3.discusses the proposed framework. Section
4. discusses the experiments that were conducted using the proposed framework. Finally
section 5.concludes and adds insight to future work.

2. Subjective QoS representation in service environments

Quality of Service is an overarching term covering different parts of end-to-end service quality.
The general definition of QoS provided by the International Telecommunication Union
(ITU)Recommendation (1994) is that QoS is Şthe collective effect of service performance,
which determines the degree of satisfaction of a user of the serviceŤ. Different people and
communities nevertheless interpret QoS differently, and at least the following viewpoints
of QoS can be distinguished: QoS requirements of a user, QoS perceived by the user, QoS
offered or planned by a provider, and QoS delivered or achieved by the provider. We are
discussing QoS in the userŠs point of view. There are two main aspects of QoS: subjective
and objective. Subjective QoS essentially is the userŠs overall perception of service quality,
that is, it is the userŠs opinion whether a service is working satisfactorily or not. Subjective
QoS is often difficult to be specified with objective measures, at least in a way meaningful
for users, and thus user-perceived quality is often expressed also non-technicallyBouch et al.
(2000). Objective QoS then refers to the technical aspects of QoS, and can be specified with
quantitative measures. Grid Application QoS parameters are not necessarily applicable to
express subjective QoS, since a user has a high-level perspective over application performance,
rather than an in-depth conception of details of the underlying implementation and operation
of the service. Therefore, application quality and its variation need to be expressed in
terms that describe user-perceivable effects, instead of their causes in the end-to-end
functionality. It should be noted also that subjective application quality deterioration is not
solely caused by operational QoS fluctuations, but is attributable to numerous other factors,
including characteristics of the ongoing task (e.g. urgency), applicationŠs incompatibility
with the service provided, application or protocol malfunction, disturbing factors in usage
environment (e.g. faulty equipment), and so forth.
Two principal approaches for subjective application quality assessment exist: user study
methods and objective measurements. The user study methods include, e.g. Mean Opinion
Scores (MOS), continuous assessment, Task Performance Measures (TPMs), and qualitative
methodsBouch et al. (2001). Objective measurements, on the other hand, rely on measurement

20 Advances in Grid Computing

www.intechopen.com

of some application quality metric(s) (e.g. Peak-Signal-to-Noise-Ratio (PSNR) for video)Wang
et al. (2003). Generally, MOS are used on a wide scale to collect the subjectsŠ opinions of
the experienced service quality. In short, MOS enables performing controlled assessment of
subjective QoS with untrained subjects and controlled levels of qualityBouch et al. (2001). The
method employs a 5-point scale, according to which subjects judge the experienced quality
after conducting a task. The given ratings are then averaged across the subjects to get the final
MOS.
This paper proposes a problem-specific QoS based scheduling in grids. To determine the
optimal choice of services/applications, the approach needs to estimate the subjective
QoS. This can be done using some aggregation formulae. The formulae define aggregation
functions for defined QoS attributes. While this approach is far from being general (i.e. needs
to be customized for each application as the QoS aggregator can operate differently). Yet, we
argue that the proposed approach gives a methodology for quantifying subjective QoS and
thus is more reliable compared to the user study methods.

3. The proposed framework

3.1 Defining and evaluating subjective QoS attributes

In order for the framework to define and evaluate subjective QoS attributes we developed
a language that permits to specify a new QoS attribute. As mentioned in the introduction,
the language proposed here extends the work by Canfora et al. (2006) which defined QoS
aggregation formulae for each pair QoS attribute–workflow construct. In most cases, the
aforementioned aggregation formulae are cabled in the optimization algorithm the binder
is using. Therefore, it is necessary to provide a language and a tool to specify aggregation
formulae, and to allow the schedular to interpret such formulae for estimating the QoS of
the grid services. The method by which the framework defines and evaluates subjective QoS
attributes is as follows:
QoS definition language: For a language to permit specifying new QoS attributes,
two things are required; type and scale. The type can be only primitive types (integer,
real and Boolean) as in WSLA+ languageNepal et al. (2008), or include collection types
(i.e. a set constituted of sets of atomic values) as Canfora did. The scale limits the set of
admissible operations. The language developed by Canfora includes the scales required
for our framework, so no change is required in this part. The point of difference here is
the set of operators and functions inherited form the Object Constraint Language (OCL)
Warmer & Kleppe (2003) that is used by Canfora. This is due to using those operators and
functions in computing overall workflow QoS, while in the proposed framework accepts both
inter-dependent task (i.e. workflows) and individual tasks. In the case of workflow tasks, the
operators and functions defined by Canfora are sufficient, while in the case of individual tasks
the operators are not used due to tasks independency. The next step is to show how the QoS
formula specification is supported by a guided editor and type-checker.
QoS aggregation: The QoS aggregator introduced by Canfora et al. (2006) was
implemented in Java using the Java Compiler (JavaCC) parser generator, while for the GUI,
JSP was used. The aggregator was adopted here by including the aggregator in a Vine
portlet and adding it to the gridsphere portal. Modifications were done to drop operators for
individual tasks as mentioned earlier, associate the newly defined Qos attribute to any of the
task types registered by the administrator and finally adapting the original JSP to work with
the Adobe Flex GUI used in gridsphere 3.1. The aggregator include three basic modules; QoS
aggregation function editor a portlet that the administrator can use to define new QoS attributes
and their aggregation formula (see figure1), Type checker used at design time for verifying

21A Framework for Problem-Specific QoS Based Scheduling in Grids

www.intechopen.com

integrity of the aggregation formula, QoS formula interpreter that at run time evaluates QoS for
a possible workflow/individual task assignment.
An important point to note, the model for determining the expected QoS from each resource is
executed as agents hosted on the resources. Note that these agents are also used for resource
monitoring and discovery. As for the scheduling process, several projects in the literature
attempted multiple QoS job scheduling. Generally speaking, these projects addressed mainly
the basic QoS attributes in their work; cost, time, availability and fidelity. Those basic
QoS attributes are agreed upon in literature to be the metrics for job scheduling in grids.
Application specific QoS attributes were not considered in any of them as no service level
presentation of resources provided features into which application-specific QoS attributes
could be mapped. Li & Li (2007); Li et al. (2007) defined the 4 basic QoS attributes as
utilities and identified an Integrated Utility Function (IUF) to be used for scheduling. A
slight difference between them is that Li & Li (2007) used an iterative scheduling technique
by separating the task agents and resources agents. Doǧan & özgüner (2006) proposed a
static scheduling algorithm that uses utility functions for scheduling meta-task with QoS
requirements in heterogeneous computing systems. The main aim of this project was to
provide resource transparency and not include application-specific QoS attributes. Kim et al.
(2006) did not define a scheduling method, yet it defined for the basic QoS attributes a
flexible multi-dimensional QoS performance measure that could be later aggregated to be
used for scheduling. A notable point is that the authors defined a method that is theoretically
applicable to model any new QoS attribute by representing the QoS attribute by a feature
vector. This approach is generic but if used will shift the entire load to the application
developer.

Fig. 1. QoS aggregation function definition interface

3.2 Problem formulation

Suppose that there are n independent users and user i is associated with task Ti, let T =
{

T1, T2, ..., Tn
}

denote the set of n independent tasks where task Ti is assigned to resource
Rj and R =

{

R1, R2, ...,Rm
}

. Further, Rj can be composed of v resources, where 1≤v≤m.
The process of QoS-constrained task scheduling could be summarized in three steps. Step
one is Resource Discovery, which is finding available resources complied by QoS constraints
and generate a list of resources. Step two is Resource Planning, which involves selecting the
optimized resources from the available resources list according to the scheduling strategy

22 Advances in Grid Computing

www.intechopen.com

satisfying user’s QoS constrains. The Γ : T → R denoting the matching function is a NP
complete problemChristensen (2007). The third step is Task Execution. The tasks are scheduled
or mapped onto selected resources to be executed.
In the proposed framework, QoS attributes are described as utility functions. So the integrated
utility function is the accumulation of all QoS attributes utility functions. The integrated utility
is considered as the objective function of the scheduling algorithm to drive the scheduling of
resources and optimizing the task execution with maximum utility. A very important point
here is that utility functions have long been used in QoS constrained scheduling, but for this
case a new factor requires special handling. The new factor is having different QoS attributes
defined according to underlying application. Thus, the integrated utility function includes
a set of mutually exclusive utility functions corresponding to the QoS attributes. The next
step, after defining the integrated utility function, is to compute the value of the utility uk,
1≤k≤d where d is the total number of QoS constraints defined by the administrator, what
we will call the dimension of QoS. The method used for computing the utility functions uses
switch constructs as in Anselmi et al. (2007) to iteratively update the selection probabilities

of the selected resources. For each task Ti a decision matrix Q =
(

qij

)

m×d
is created, among

it, m represents the number of resources that can host Ti, d represents the dimension of QoS
attributes considered by the this type of task. Q matrix is not used directly, Q is normalized to

make the normalized matrix P =
(

pij

)

m×d
, j = 1, ...,m, k = 1, ..., d, where normalizing is done

as follows:

pjk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minj

(

qjk

)

/qjk if uk is optimally minimized

qjk/maxj

(

qjk

)

if uk is optimally maximized

Supposing ω = (ω1, ω2, ..., ωd) is attribute weighting vector, Then the integrated utility
function for the evaluation of the selected resources can be defined as:

Uij (ω) =
S

∑
t=1

(

Ct

y

∑
l=x

pjlωl

)

where S is the number of subjective QoS attributes defined by the administrator to be used
in the system, Ct is a Boolean constant having value 1 only for the QoS attributes subset of
the task scheduled (i.e. QoS divided to subsets having a mutually exclusive relation.). x and
y denote the start and end of the QoS attributes subset from the set of all QoS attributes
defined. By sorting and computing Ui (ω), the best resource can be selected. Weights for
utility functions in the mentioned related work are calculated by maximizing the deviations
in utiliy values. In our case the QoS attributes are defined by the administrator according to
the application. Therefore, the default weights are defined by the administrator according to
the system used. The end user could calibrate the weights according to his interest in which
QoS attributes significant for the job he is about to submit.

3.3 Scheduling using quantified subjective QoS attributes

The scheduling process is basically viewed as a combinatorial optimization problem for
the integrated utility function. Several approaches are used in the literature to solve this
optimization problem, most approaches depend on a heuristic algorithms. Generally, GA
(Genetic Algorithms)Jong (1992) based heuristic algorithms do not impose constraints on the
linearity of the QoS composition operators, so they are considered the best option. However,

23A Framework for Problem-Specific QoS Based Scheduling in Grids

www.intechopen.com

the prime focus in this work is to represent and utilize subjective QoS attributes. Thus, a
simple rank-based algorithm is used to determine the focus on the aforementioned process
As shown in the previous section, QoS attributes are described as utility functions, The
integrated utility function aggregating all utility functions is regarded as an objective function
of the scheduling algorithm to drive dynamic scheduling to the resources and optimizing the
task execution with maximum utility by accumulating all QoS attributes utility functions.
Figure2 shows the algorithm used for scheduling. One important point to note here, the
algorithm is designed in a central way, which leads to weak scalability. Yet, the design of
centralized scheduling algorithms is an important step towards developing more complex
decentralized scheduling algorithms.

Fig. 2. Algorithm used for scheduling

4. Use case and results

Table 1. Test bed configuration

This section presents the approach at work over Meta Heuristics Grid (MHGrid): a service
oriented grid application offering meta heuristics based solvers for global optimization
problems. MHGrid is designed to offer optimizing algorithms as grid services. The
experiments were designed to cover possible task types in the framework. For the service
tasks, individual and nested tasks of different sizes were introduced. The size is controlled
by the problem length that the algorithms should solve. Three specific QoS attributes were
defined; Solver to problem adequacy, the parallel pattern used and the fidelity or quality of
output. These attributes are explained in details in Munawar et al. (2008). The same applies for
computational tasks but with two different QoS attributes. Long timeouts were added in the
solvers to test the latency tolerance with the solvers running in parallel mode. The other QoS

24 Advances in Grid Computing

www.intechopen.com

Fig. 3. Tasks assigned to each service varying the total amount of tasks

Fig. 4. The effect of services tasks weight vector on execution success ratio

attribute is data accuracy which is measured by round off errors resulting from float-point
operations intentionally introduced to the solvers. As for the data tasks, dummy files where
used to be transferred via GridFTPFoster (2006). The file sizes varied from 100MB to 20TB to
represent different task sizes. One QoS attribute (i.e. priority) was defined for the data tasks
where each task was assigned priority rank for the scheduler to attempt to meet the priority
requirement of those tasks. In addition to that, workflow tasks for different task types where
also created by the workflow portlet to be tested. Finally two basic QoS attributes (make
span time and cost) were used for all tasks along with the specific QoS attributes defined
for each task type. Table 1 shows the configuration used in the experiments. Note that tasks
were introduced randomly with 20 tasks a time. Figure 3 shows the distribution different task
sets over the resources. Each task was assigned to one of the five services (S1,S2,S3,S4,S5)
overlaying the computational and data requirements.
The experiments were executed on a grid having a dedicated 64 core mini-cluster with 2 x
AMD Opteron 2.6 GHz Dual Core 64 bit processors and 2GB RAM for each node, the grid also
has 2 dedicated servers each having a 2 x Xeon 2.8 GHz Dual Core with 2GB RAM. Execution

25A Framework for Problem-Specific QoS Based Scheduling in Grids

www.intechopen.com

Fig. 5. The effect of computational tasks weight vector on execution success ratio

Fig. 6. The effect of data tasks weight vector on execution success ratio

success ratio is the metric used in the experiments to measure the framework’s ability to host
and schedule variant task triplets. Other metrics such as resource utilization and task waiting
time are important as well, but due to space limitation, results in terms of execution success
ratio only are illustrated to evidate that a system can function whilst benefiting from subjective
QoS attributes. Figures 4, 5 and 6 show the execution success ratio for the individual and
nested tasks on different task types/sizes. The x-axis in all three figures is a configuration state
for the QoS attributes considered. The last state (i.e. C6) is the plain state where all weights
for task-specific QoS attributes are set to zero and only the basic time and cost QoS attributes
with weight = 0.5 are considered. For the other states (i.e. C1 to C5) the weights are having
values with an increasing mean from C1 to C5 and also an increasing standard deviation to
represent variant weight vector settings. Note that upon moving from C1 to C5 the success
rate tends to decrease which is normal as the more the mean of the weight vector increases
the more the scheduling process relay on QoS other than the time and cost. This consequently
minimizes the set of resource candidates for each task and causes less success rate. Another
point to note is that for figure6, C6 gives much better performance than other weight settings.

26 Advances in Grid Computing

www.intechopen.com

Fig. 7. Resource utilization for workflows with variant tasks weight values

Fig. 8. SLR for the workflows with different DAG width

This is because the priority QoS defined for data tasks highly effects the scheduling process
making it mostly depending on what the user wants. Figure7 shows the resource utilization
for workflow tasks. Again the change in weight value does not have a significant effect on the
resource utilization and this is because the workflows enforce an order for task execution on
the system. Figure8 shows another aspect of the workflows. The figure shows the Schedule
Length Ratio (SLR) for the workflows that were created with different DAG widths.

5. Conclusion and future work

This chapter introduced a system for quantifying subjective QoS attributes and using them
for assigning tasks in a grid application. First a close-up was given to the representation of
subjective QoS attributes in service-based environments. The framework was inspired by
a system of application-specific QoS attributes in service composition. While the domain is
apparently different, the flexibility offered by the service composition in defining subjective
QoS attributes is of great relevance to the requirements of establishing an enviroment that is
not only relying on conventional QoS attributes in job assignment. The framework allows the
administrator to define subjective QoS attributes through a QoS aggregation function editor
enclosed in a portlet. After the administrator registers the categorized resources, the end user

27A Framework for Problem-Specific QoS Based Scheduling in Grids

www.intechopen.com

can start submitting tasks to the system. With the user unaware, the system schedules the
tasks on behalf of the user, and assures the use of the subjective QoS attributes to assign
the tasks to the most appropriate resources. Experiments were conducted to assure that the
framework is functioning as designed. Many points are promising to be considered as future
work. Making the best use of subjetuve QoS attributes by incorporating a SLA mechanism is
pivot point. Expanding the function aggregation editor to make the framework generic is as
well a challenging task.

6. References

Anselmi, J., Ardagna, D. & Cremonesi, P. (2007). A qos-based selection approach of autonomic
grid services, SOCP ’07: Proceedings of the 2007 workshop on Service-oriented computing
performance: aspects, issues, and approaches, ACM, pp. 1–8.

Bouch, A., Kuchinsky, A. & Bhatti, N. (2000). Quality is in the eye of the beholder: meeting
users’ requirements for internet quality of service, CHI ’00: Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 297–304.

Bouch, A., Sasse, M. A., Demeer, H. & Bt, W. (2001). Of packets and people: A user-centered
approach to quality of service.

Canfora, G., Penta, M. D., Esposito, R., Perfetto, F. & Villani, M. L. (2006). Service composition
(re)binding driven by application-specific qos, ICSOC, pp. 141–152.

Christensen, T. V. (2007). Heuristic algorithms for NP-complete problems.
Doǧan, A. & özgüner, F. (2006). Scheduling of a meta-task with qos requirements in

heterogeneous computing systems, J. Parallel Distrib. Comput. 66(2): 181–196.
Foster, I. (2006). Globus toolkit version 4: Software for service-oriented systems, pp. 2–13.
Jong, K. A. D. (1992). Are genetic algorithms function optimizers?, PPSN, pp. 3–14.
Kim, J.-K., Hensgen, D. A., Kidd, T., Siegel, H. J., John, D. S., Irvine, C., Levin, T., Porter,

N. W., Prasanna, V. K. & Freund, R. F. (2006). A flexible multi-dimensional qos
performance measure framework for distributed heterogeneous systems, Cluster
Computing 9(3): 281–296.

Li, C. & Li, L. (2007). Utility-based qos optimisation strategy for multi-criteria scheduling on
the grid, J. Parallel Distrib. Comput. 67(2): 142–153.

Li, Y., Zhao, D. & Li, J. (2007). Scheduling algorithm based on integrated utility of multiple
qos attributes on service grid, GCC ’07: Proceedings of the Sixth International Conference
on Grid and Cooperative Computing, IEEE Computer Society, Washington, DC, USA,
pp. 288–295.

Munawar, A., Wahib, M., Munetomo, M. & Akama, K. (2008). Linkage in Evolutionary
Computation, Springer Berlin / Heidelberg, chapter Parallel GEAs with Linkage
Analysis over Grid, pp. 159–187.

Nepal, S., Zic, J. & Chen, S. (2008). Wsla+: Web service level agreement language for
collaborations, scc 2: 485–488.

Recommendation, I.-T. (1994). Terms and definitions related to quality of service and network
performance including dependability, Technical Report E.800.

Wang, Z., Banerjee, S. & Jamin, S. (2003). Studying streaming video quality: from an
application point of view, MULTIMEDIA ’03: Proceedings of the eleventh ACM
international conference on Multimedia, ACM.

Warmer, J. & Kleppe, A. (2003). The Object Constraint Language: Getting Your Models Ready for
MDA, Addison-Wesley.

28 Advances in Grid Computing

www.intechopen.com

Advances in Grid Computing

Edited by Dr. Zoran Constantinescu

ISBN 978-953-307-301-9

Hard cover, 272 pages

Publisher InTech

Published online 28, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book approaches the grid computing with a perspective on the latest achievements in the field, providing

an insight into the current research trends and advances, and presenting a large range of innovative research

papers. The topics covered in this book include resource and data management, grid architectures and

development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence

or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid

computing: resource management and data management. The book addresses also some aspects of grid

computing that regard architecture and development, and includes a diverse range of applications for grid

computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous

healthcare service provisioning and complex water systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mohamed Wahib, Asim Munawar, Masaharu Munetomo and Kiyoshi Akama (2011). A Framework for

Problem-Specific QoS Based Scheduling in Grids, Advances in Grid Computing, Dr. Zoran Constantinescu

(Ed.), ISBN: 978-953-307-301-9, InTech, Available from: http://www.intechopen.com/books/advances-in-grid-

computing/a-framework-for-problem-specific-qos-based-scheduling-in-grids

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

