
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1 

Application of Discrete Particle 
Swarm Optimization for Grid 

Task Scheduling Problem 

Ruey-Maw Chen 
National Chin-Yi University of Technology, Taichung, 411, 

Taiwan, R. O. C. 

1. Introduction 

Many applications involve the concepts of scheduling, such as communications, packet 
routing, production planning [Zhai et al., 2006], classroom arrangement [Mathaisel & 
Comm, 1991], aircrew scheduling [Chang, 2002], nurse scheduling [Ohki et al., 2006], food 
industrial [Simeonov & Simeonovova, 2002], control system [Fleming & Fonseca, 1993], 
resource-constrained scheduling problem [Chen, 2007] and grid computing. There are many 
different types of scheduling problems such as real-time, job-shop, permutation flow-shop, 
project scheduling and other scheduling problems have been studied intensively. However, 
in this work, the studied grid task scheduling problem is much more complex than above 
stated classic task scheduling problems. Restated, a grid application is regarded as a task 
scheduling problem involving tasks with inter-communication and distributed 
homogeneous or heterogeneous resources, and can be represented by a task interaction 
graph (TIG).  
Grid is a service for sharing computing power and data storage capacity over the Internet. 
The grid systems outperform simple communication between computers and aims 
ultimately to turn the global network of computers into one vast computational resource. 
Grid computing can be adopted in many applications, such as high-performance 
applications, large-output applications, data-intensive applications and community-centric 
applications. These applications major concern to efficiently schedule tasks over the 
available multi-processor environment provided by the grid. A grid is a collaborative 
environment in which one or more tasks can be submitted without knowing where the 
resources are or even who owns the resources [Foster et al., 2001]. The efficiency and 
effectiveness of grid resource management greatly depend on the scheduling algorithm [Lee 
et al., 2007]. Generally, in the grid environment, these resources are different over time, and 
such changes will affect the performance of the tasks running on the grid. In grid 
computing, tasks are assigned among grid system [Salman, 2002]. The purpose of task 
scheduling in grid is to find optimal task-processor assignment and hence minimize 
application completion time (total cost). Most scheduling problems in these applications are 
categorized into the class of NP-complete problems. This implies that it would take amount 
of computation time to obtain an optimal solution, especially for a large-scale scheduling 
problem. A variety of approaches have been applied to solve scheduling problems, such as 
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simulated annealing (SA) [Kirkpatrick, 1983], neural network [Chen, 2007], genetic 
algorithm (GA) [Holland, 1987], tabu search (TS) [Glover, 1989; Glover, 1990], ant colony 
optimization (ACO) [Dorigo & Gambardella, 1997] and particle swarm optimization 
[Kennedy & Eberhart, 1995]. Among above stated schemes, many PSO-based approaches 
were suggested for solving different scheduling application problems including production 
scheduling [Watts & Strogatz, 1998], project scheduling [Chen, 2010], call center scheduling 
[chiu et al., 2009], and others [Behnamian et al., 2010; Hei et al., 2009].  
In light of different algorithms studied, PSO is a promising and well-applied meta-heuristic 
approach in finding the optimal solutions of diverse scheduling problems and other 
applications. The particle swarm optimization (PSO) is a swarm intelligent inspired scheme 
which was first proposed by Kennedy and Eberhart [Kennedy & Eberhart, 1995]. In PSO, a 
swarm of particles spread in the solution search space and the position of a particle denotes 
a solution of studied problem. Each particle would move to a new position (new solution) 
determined by both of the individual experience (particle individual) and the global 
experience (particle swarm) heading toward the global optimum. However, many PSO 
derivatives have been studied, and one of them was named “discrete” particle swarm 
optimization (DPSO) algorithm proposed by Kennedy et al. [Kennedy & Eberhart, 1997] 
representing how DPSO can be used to solve problems. Hence, this study focuses on 
applying discrete particle swarm optimization algorithm to solve the task scheduling 
problem in grid computing.  
To enhance the performance of the applied DPSO, additional heuristic was introduced to 
solve the investigated scheduling problem in grid. Restated, simulated annealing (SA) 
algorithm was incorporated into DPSO to solve task assignment problem in grid 
environment. Moreover, the resulting change in position is defined by roulette wheel 
selection rule rather than the used rule in [Kennedy & Eberhart, 1997]. Furthermore, the 
dynamic situations are not considered; the distributed homogeneous resources in grid 
environment are considered in this investigation. 

2. The task scheduling problem in grid computing 

There are different grid task scheduling problems exist including homogeneous and 

heterogeneous architectures. This section gives a class of task scheduling problem in 

homogeneous grid. Definition, limitation and objective of a grid computing system are 

presented. The introduced grid task scheduling problem can be represented as a task 

interaction graph (TIG) proposed by Salman et.al. [Salman, 2002], as displayed in Fig. 1. 

Figure 1 presents available memory in homogeneous grid, task processing time, memory 

requirement of each task, data exchange between tasks, and communication cost between 

grids. Meanwhile, two possible solutions are displayed in Fig. 2. 
 

Grid # 1 2 3 4  

Memory available 25 40 30 25  

      

Task # 1 2 3 4 5 

Process time 15 10 20 30 15 

Memory requirement 20 30 25 20 10 
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Fig. 1. Grid task scheduling problem representation [Salman et al., 2002] 

 

 
(a) (b) 

Fig. 2. Possible solutions 

A meta-heuristic algorithm that is based on the principles of discrete particle swarm 
optimization (PSO) is proposed for solving the grid scheduling problem. The traditional 
assignment problems are only concerned to minimize the total processing cost, and there is 
no communication cost between these tasks and grids. 
In homogeneous system, a grid environment can be represented as task interaction graph 

(TIG), G (V, E), where V ∈ {1, 2, . . . , M} is the set of the tasks and E are the interactions 
between these tasks as in Fig. 1. The M and N are the total number of tasks and the total 
number of grids (resources), respectively. The total amount of transmission data weight eij 
denotes the information exchange (interactive) data between tasks i and j. The pi is the 
processing time (cost) corresponding to the work load to be performed by task i on grid. In 
the example of TIG problem shown in Figure 1, the tasks 2 and 5 are processed on the grid 2. 
Restated, no communication cost exists between these two tasks (task 2 and 5). Additionally, 
each task i has memory requirement mi to be processed on one grid, and each grid requires 
enough memory to run their tasks. 
For example, the processing time of task 1 is 15 and scheduled on grid 1. The task 1 has to 
exchange data with the tasks 2, 4 and 5. However, the tasks 2, 4 and 5 are on different grids, 
this means that there are communication costs with task 1. Furthermore, tasks 4 and 5 are on 
the same grid and there is no communication cost required between them. Therefore, the 
total cost for grid 1 of possible solution case (a) is (15) + (5 × 2 + 1 × 2 + 4 × 3) = 39. 
Moreover, task 1 satisfies the memory constraint; that is, the memory requirement is 20 for 
task 1, which is less than the memory available of 25 for grid 1. The communication cost is 
computed by the communication cost (link cost) multiplies the edge weight (exchange data). 
The total cost for grids of different possible solutions as demonstrated in Fig. 2 are 
determined as follows. 
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Grids Total cost – case (a) Total cost – case (b) 

Grid 1 (15)+(5×2+1×2+4×3)=39 (15)+(5×2+4×3+1×3)=40 

Grid 2 (10+15)+(5×2+1×3)+(1×2)=40 (10)+(5×2+1×3+6×1)=29 

Grid 3 (20)+ (1×3+3×2)=29 (20)+ (1×3+3×2)=29 

Grid 4 (30)+ (4×3+3×2)=48 (30+15)+(4×3+3×2)+(1×3+6×1)=72 

 
A grid application completion time is defined as the latest time that grid finishes all 

scheduled tasks processing and communication. According to above total cost calculation, 

different task assignment in grid would obtain different application completion time. For 

example, case (b) solution of Fig. 2 yields application completion time 72; case (a) solution of 

Fig. 2 has less application completion time 48. Restated, the resulting schedule of case (a) is 

better than that of case (b). 

The grid system can be represented as a grid environment graph (GEG) G (P, C), where P = 

{1, 2, . . . , N} is the set of grids in the distributed system. The C represents the set of 

communication cost between these grids. The dij between grids i and j represents the link 

cost between the grids. The problem of this study is to assign these tasks in V to the set of 

grids P. The objective function is to minimize the maximum total execution time required by 

each grid and the communication cost among all the interactive tasks that satisfies the 

memory constraint on different grids. The problem can be defined as: 

 Minimize {max (Cexe (k)+Ccom(k)) }, k∈{1, 2, . . . , N} (1) 

Where 

 Cexe (k) =    
k

i
i A

p
∈
∑ , Ak is the set of tasks assigned to grid k (2) 

 Cmem (k) =    
k

i
i A

m
∈
∑ , Ak is the set of tasks assigned to grid k (3) 

 Ccom (k) =    
k k

kp ij
i A j A

d e
∈ ∉

⋅∑ ∑ ,for all grids p ≠ k, p=1 to N; i, j=1 to M (4) 

Subject to 

 Cmem (k) ≤  MemAvail(k) (5) 

Where Cexe(k) is the total execution time of all tasks assigned to grid k and Ccom(k) is the total 
communication cost between tasks assigned to grid k. Those relative tasks are assigned to 
other grids in an assignment. The Cmem(k) is the total memory requirement of all tasks 
assigned to grid k, for which the value of Cmem(k) have to less than or equal than the total 
available memory of grid k; MemAvail(k) as listed in Eq. (5). The objective of the task 
assignment problem is to find an assignment schedule that the cost is minimized of one grid 
for a given TIG on a given GEG. In this study, the penalty function is adopted in the 
proposed algorithms. 

 Penalty(k) = Cmem(k) - MemAvail(k) (6) 

In Eq. (6), the penalty(k) is set to zero if the constraint of Eq. (5) is satisfied. 
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3. Particle swarm optimization 

The particles swarm optimization (PSO) was first proposed by Kennedy and Eberhart in 1995. 
The original PSO is applied in real variable number space. There are a lot of task-resource 
assignment related works have been introduced in recent years [Kuo et al. 2009; Sha & Hsu, 
2006; Bokhari, 1987; Chaudhary & Aggarwal, 1993; Norman & Thanisch, 1993]. These works 
indicated that the problems are set in a space featuring of continuous. However, the 
combinatorial problems are most of discrete or quantitative variables [Liao et al., 2007].PSO 
schematic diagram is displayed as in Fig. 3. The introduced grid task scheduling problem as in 
Fig. 1 can be regarded as a task-grid assignment problem in a graph as in Fig. 2.   
 

 

Fig. 3. PSO schematic diagram 

The particle swarm optimization is a multi-agent general meta-heuristic method, and can be 
applied extensively in solving many NP-complete or combinatorial problems. The PSO 
consists of a swarm of particles in the search space; the position of a particle is indicated by a 
vector which presents a potential solution of the problem. PSO is initialized with a 
population of particles (randomly assigned or generated by heuristic) and searches for the 
best position (solution or schedule) with the best fitness. In every generation or iteration, the 
local bests and global best are determined through evaluating the performances, i.e., the 
fitness values of current population of particles. A particle moves to a new position 
obtaining a new solution guided by the velocity (a vector). Hence, the velocity plays an 
important role in affecting the characters of creating new solution. There are two experience 
positions are used in the PSO; one is the global experience position of all particles, which 
memorizes the global best solution obtained from all positions (solutions) of all particles; the 
other is the individual experience position of each particle, which memorizes the local best 
solution acquired from the positions (solutions) of the corresponding particle has been at. 
These two experience positions and the inertia weight of the previous velocities used to 
determine the impact on the current velocity. The velocity retains part of prior velocity (the 
inertia) and driving particle toward the direction based on the global experience position 
and the individual experience position. Thus, the particles can derive new positions 
(solutions) by their own inertia and experience positions. 

Velocity 

Individual experience 

Global experience 

Current Position

New position? 
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In traditional PSO, the search space (solution space) is D dimension space (the number of 
dimension is corresponding to the parameters of solutions) and the population consists of Np 
particles. For the ith particle (i = 1, . . . , Np), the position consists of M components Xi = {Xi1, . . . 
, XiM}, Xij is the jth component of the ith position. The velocity Vi = {Vi1,…, ViM}, where Vij is the 
velocity component corresponding to the component of Xij, and the individual experience is a 
position Li = {Li1, . . . , LiM} which is the local best solution for the ith particle. Additionally, G = 
{G1,. . . , GM} represents the global best experience shared among all particles achieved so far. 
The mentioned parameters above are used to calculate the updating of the jth component of the 
position and velocity for the ith particle, as shown in Eq. (7).  

 
1 1 2 2( ) ( )

new new

new
ij ij ij ij j ij

ij ij ij

V wV c r L X c r G X

X X V

− −⎧ = + +⎪
⎨

= +⎪⎩
 (7) 

Where w is an inertia weight used to determine the influence of the previous velocity to the 
new velocity. The c1 and c2 are learning factors used to derive how the ith particle 
approaching the position either closes to the individual experience position or global 
experience position respectively. Furthermore, the r1 and r2 are the random numbers 
uniformly distributed in [0, 1], influencing the tradeoff between the global exploitation 
(based on swarm’s best experience) and local exploration (based on particle’s best 
experience) abilities during search. 

4. Simulated annealing algorithm 

Other meta-heuristics are usually combined into PSO to increase the problem solving 
performance. SA is one of the popular algorithms to be combined with other meta-heuristic 
schemes. Simulated annealing (SA) was first introduced by Metropolis in 1953 [Metropolis 
et al., 1953]. Meanwhile, SA is a stochastic method for combinatorial problem optimization. 
Furthermore, SA is one of the efficient methods applied to solve widely complex problems 
[Kirkpatrick, 1983]. The original SA procedure is listed as shown in Fig. 4.  
 

Initial solution S, compute corresponding energy E  
Set the initial temperature (T), cooling rate (r) 
While E <> 0 

S’ = Generate the new solution 
Compute new energy E’corresponding to S’ and calculate ΔE = E’- E  
If ΔE<0 then accept S = S’, E = E’ 

Else Compute the 
( )E

Teδ
Δ−

=  

Accept the new solution when random number < δ 
    Decrease the temperature T = T × r 

Fig. 4. Simulated annealing algorithm 

In Fig.4, the energy E is corresponding to solution S, and energy E’ is correlated to solution 
S’. However, energy definition is determined by the studied problem. Hence, E is defined as 

{max(Cexe(k)+Ccom(k))}+Penalty(k), k∈{1, 2,…, N} in this investigation. The temperature, T, is 
the magnitude of fluctuation; it is a key parameter in controlling the search direction as well 
as the step size toward the global minimum. The applied cooling schedule is controlled by 
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T=T×r. The acceptance criterion of worse solution is based on the probabilistic process 
which is dependent on the temperature and energy difference between two states. Restated, 

the probability is determined by δ=exp(-ΔE/T). 

5. Discrete particle swarm optimization method 

Kennedy and Eberhart developed a discrete version of PSO in 1997 [Kennedy & Eberhard, 
1997]. The discrete PSO essentially differs from the original PSO in two characteristics. 
Firstly, the particle is composed of the binary variable. Secondly, the velocity represents the 
probability of the binary variable taking the value of one, i.e., the probability of task i is 

assigned to grid k in this study (i∈ {1, 2, . . . , M}; k∈{1, 2, . . . , N}). The discrete PSO is 
adopted by generating solutions for updating the particle’s position and velocity vectors to 
solve the task scheduling problem in parallel machines [Kashan & Karimi, 2009; Kashan et 
al., 2008; Lee et al., 2006]. Another similar to the discrete PSO optimization technique 
developed by Laskari et al. [Laskari et al., 2002], which is based on the truncation of the real 
values to their nearest integer. In this study, employed discrete PSO equations were 
introduced by Kennedy and Eberhard for solving the task assignment problem. The discrete 
PSO was also applied to solve the flowshop scheduling problem, and performed well in the 
computation result. This study conducts the discrete PSO method introduced by [Liao et al., 
2007] and combines the SA algorithm for solving the task assignment problems in grid. The 
task-grid assignment problem will be then introduced. 
Assumes there are Np particles, and each particle searches for D = M×N dimension space 
(the number of tasks and grids). For the hth particle (h =1, . . . , Np), the position consists of 

M×N components Xh = {Xh11, . . . , XhMN}, Xhij ∈{0,1}is the ith task assigned to grid j for particle 
h ( i =1, . . . , M; j =1, . . . , N ). The velocity Vh = {Vh11, . . . , VhMN}, where Vhij is the velocity 
associated with component Xhij, and the individual experience for particle h is Lh = {Lh11, …, 
LhMN}, the local best solution for the hth particle. Additionally, G = {G11,…, GMP} represents 
the global best experience obtained and shared among all the population of particles. Above 
stated parameters are then used to update all components of the Vh. The velocity 
components updating for the hth particle is shown as in Eq. (8).  

 1 1 2 2( ) ( )new
hij hij hij hij ij hijV wV c r L X c r G X−= + − +  (8) 

According to Eq. (8), each particle moves to new position according to its new velocity. 
However, the new position generation is not the same as in original PSO, Eq. (7). Kennedy 
and Eberhart claim that the higher velocity component value is more likely to choose 1 for 
the corresponding position component, while lower velocity component value favors the 
position component value of 0. Hence, a probability function is used as shown in Eq. (9).   

 
1

( )
1 exp( )

hij
hij

s V
V

=
+ −

 (9) 

Equation (9) is the sigmoid function as displayed in Fig. 5, where s(Vhij) is defined as 
representing the probability of Xhij to be set to 0 or 1. To avoid the value of s(Vhij) 
approaching 0 or 1, a constant Vmax is used to limit the range of Vhij . In practice, Vmax is often 

set at 4, i.e., Vhij ∈ [−Vmax, +Vmax]. After transformation via Eq. (9), s(Vhij) is mapped to a value 

between 0 and 1, i.e., s(Vhij) ∈ (0, 1). For example, if Vmax =4 then probabilities will be  
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Fig. 5. Sigmoid function 

limited to s(Vhij), between 0.9820 and 0.018. In [Kennedy & Eberhart, 1997], the resulting 
change in position is defined by the following rule (Eq. (10)). 

 
1, ( ) ( )

0,

hij hij

hij

X if rand s V

X else

⎧ = <⎪
⎨

=⎪⎩
 (10) 

Where the rand( ) is a quasi-random number selected from a uniform distribution in [0.0, 
1.0]. For task-grid assignment problem, each task can only be assigned to one grid. 
Therefore, in the proposed algorithm, each particle h places the unscheduled task i to grid j 
according to the following normalized probability [Liao et al., 2007]: 

 
( )

( , )
( )

hij
h

hij
j U

s V
q i j

s V
∈

=
∑

, U is the set of grids (11) 

Restated, the determination of which grid to be assigned to an unscheduled task in the 
study is based on the roulette wheel selection rule which is well applied in genetic 
algorithm. Hence, according to roulette wheel selection rile, grid j is randomly selected from 
U for task i based on the probability distribution given by Eq. (11) and a generated random 
number. Based on the pseudo code of discrete PSO given by Kennedy et al. [Kennedy & 
Eberhard, 1997], the proposed algorithm is modified and showed in Fig. 6. The computation 
steps of the proposed algorithm in the simulation system can be summarized as:  
1. Initialize the parameters and input the problem data.  
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2. Generate the initial particle solution, including velocity matrix (VNpMN ), and then 

transform the velocity to a matrix of s(Vhij), and use Eq. (11) to generate the matrix 
(XNpMN), and update the local best and global best solution.  

3. Use Eq. (8) to generate new velocity of particles for the next generation until a specified 
stopping criterion is reached. 

 
 

Initialize and generate each particle solution of Xh matrix and velocity Vh  
Set Lh =Xh, h=1,…, Np, G = X1 
Loop 
//find the global best solution 
For h= 1 to Np 

If Z(Xh)<Z(G) then        // Z( ) objective function 

g = h  //g is the index of the global best G  
End if 
Next h 

For h= 1 to Np 

Update the velocity matrix Vh based on Eq. (8)  

subject to Vhij∈ [−Vmax,+Vmax] 

 map Vhij to s(Vhij) based on Eq. (9) 

 calculate normalized probability qh(i, j) using Eq. (11) 

 select grid j for task i (Xhij) by roulette wheel selection rule 

Update the assignment matrix Xh based on Simulated annealing 

ΔE = Z(Xh)-Z(Lh) 

if ΔE<0 then  

Lh = Xh 
else  

Compute the 
( )E

Teδ
Δ−

=  

Lh = Xh  when a generated random number Pa<δ 
  End if  
Next h 
// find the local best solution 

For h = 1 to Np 

If Z(Xh)<Z(Lh) then  // Z( ) objective function  

Lh = Xh  // Lh is the best so far for particle h 
End if 
Next h 

decrease the temperature T 
Until the end of criterion is reached 

 

Fig. 6. The proposed discrete PSO combined with SA  
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5.1 DPSO encoding representation 

Encoding the task assignment problem in grid into the position vector of particle is 

necessary. Hence, encoding is illustrated by an example as follows. For example, there are 5 

tasks to be distributed to 3 grids; the initial velocity for particle h (Vhij) is  

 

Task \ Grid 1 2 3 

1 -1.2 -3.9 3.1 

2 1.1 -2 -2.8 

3 1.2 -2.6 3.2 

4 -0.2 -1.9 -2 

5 3.8 -0.4 0.4 

 
According to Eq. (8), the updated velocity (Vhij) becomes 
 

Task \ Grid 1 2 3 

1 -1.1 -3.5 2.8 

2 1 -1.8 -2.5 

3 1.1 -2.3 2.9 

4 -0.2 -1.7 -1.8 

5 3.4 -0.4 0.4 

 
Then, the corresponding probability s(Vhij) is determined by Eq. (9) as follows. 
 

Task \ Grid 1 2 3 

1 0.25 0.03 0.94 

2 0.73 0.14 0.08 

3 0.75 0.09 0.95 

4 0.45 0.15 0.14 

5 0.97 0.4 0.6 

 
Hence, the normalized probability qh(i, j) (based on Eq. (11)) for applying roulette wheel 
selection rule is 
 

Task \ Grid 1 2 3 

1 0.20 0.02 0.77 

2 0.77 0.15 0.08 

3 0.42 0.05 0.53 

4 0.61 0.20 0.19 

5 0.49 0.20 0.30 

 
Where, q

h
(1, 1)=0.25/(0.25+0.03+0.94)≒0.20; q

h
(2, 1)=0.73/(0.73+0.14+0.08)≒0.77 and so 

forth. Finally, task-grid assignment based on roulette wheel selection rule will be 
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Task \ Grid 1 2 3 

1 0 0 1 

2 1 0 0 

3 0 0 1 

4 0 1 0 

5 0 0 1 

 
Restated, grid 1 would execute task 2; grid 2 services task 4; grid 3 is responsible for 
executing tasks 1, 3, and 5. 

6. Experimental results 

To verify the performance of the presented algorithm (SA + discrete PSO), some simulation 
cases will be tested. Simulations use the cases of 5 and 10 tasks in 4 grids and 5 grids 
respectively to verify the performance of the proposed algorithm. According to Fig. 1, the 5-
task case only uses 4 grids and suffers the heavy loading from the computation effort in 
which the processing time is much more than the communication cost. For the 10-task case, 
the setting of processing time is in the range of [5, 10], and it needs more communications 
than the processing cost. Tables 1-4 demonstrate simulation data for 5-task case. Simulation 
data for 10-task case are listed in Tables 5-8. The other parameters used in this study are set 
as following: The temperature T was set to 100 and cooling scheduling was set to 0.99 
(r=0.99), i.e., T = T × 0.99, w = 0.7, c1 = c2 = 1 and Vmax = 4. There are 10 particles involved in 
simulation tests. The interactive matrix is symmetrical matrix as the grid distance matrix. 
 

Task # 1 2 3 4 5 

Process time 15 10 20 30 15 

Memory requirement 20 30 25 20 10 

 

Table 1. Simulation data with 5 tasks 

 

Grid # 1 2 3 4 

Memory available 25 40 30 25 

 
Table 2. Memory available for 4 grids 
 

Task # 1 2 3 4 5 

1 0 5 0 4 1 

2 5 0 1 0 6 

3 0 1 0 3 0 

4 4 0 3 0 0 

5 1 6 0 0 0 

 
Table 3. Interaction cost matrix for 5 tasks 
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Task # 1 2 3 4 

1 0 2 3 1 
2 2 0 1 3 
3 3 1 0 2 
4 1 3 2 0 

Table 4. Distance cost matrix for 4 grids 

 
Task # 1 2 3 4 5 6 7 8 9 10 

Process time 10 9 8 7 6 5 5 9 8 10 

Memory requirement 10 15 10 20 10 10 20 15 20 10 

Table 5. Simulation data with 10 tasks 

 

Grid # 1 2 3 4 5 

Memory available 100 90 130 90 100 

Table 6. Memory available for 5 grids 

 

Task # 1 2 3 4 5 6 7 8 9 10 

1 0 1 2 3 4 5 5 4 3 4 
2 1 0 5 1 2 3 4 3 5 4 
3 2 5 0 3 2 1 0 1 2 3 
4 3 1 3 0 4 5 4 3 2 1 
5 4 2 2 4 0 1 2 3 4 5 
6 5 3 1 5 1 0 4 3 2 1 
7 5 4 0 4 2 4 0 2 3 1 
8 4 3 1 3 3 3 2 0 5 1 
9 3 5 2 2 4 2 3 5 0 2 

10 4 4 3 1 5 1 4 1 2 0 

Table 7. Interaction cost matrix for 10 tasks 

 

Grid # 1 2 3 4 5 

1 0 2 3 1 5 

2 2 0 1 3 3 

3 3 1 0 2 4 

4 1 3 2 0 6 

5 5 3 4 6 0 

Table 8. Distance cost matrix for 5 grids 

In the example of 5-task in 4 grids environment, the best solution can be found in Table 9. 
Table 9 indicates that task 4 is assigned to grid 4; task 1 is assigned to grid 1, and so on. The 
total processing cost for task 4 on grid 4 is 30. Based on Tables 3 and 4, task 4 has interaction 
with tasks 1 and 3, and the communication cost to tasks 1 and 3 is 1×4 + 2×3 = 10. Thus, the 
total cost for grid 4 is 48. Similarly, the obtained best solution of 10-task case is displayed in 
Table 10. 
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Grid # 
Task # 

1 2 3 4 
1 1 0 0 0 
2 0 1 0 0 
3 0 0 1 0 
4 0 0 0 1 
5 0 1 0 0 

Table 9. The assignment results for 5 tasks in 4 grids with cost of 40 
 

Grid # 
Task # 

1 2 3 4 5 
1 0 1 0 0 0 
2 0 0 1 0 0 
3 0 0 1 0 0 
4 0 1 0 0 0 
5 0 1 0 0 0 
6 0 0 1 0 0 
7 0 0 1 0 0 
8 0 0 1 0 0 
9 0 1 0 0 0 

10 0 0 1 0 0 

Table 10. The assignment results for 10 tasks in 5 grids with cost of 138 

Table 10 shows the result of 10-task case that more grids may not decrease the total cost due 
to the communication cost. Furthermore, extra tests were simulated; the total numbers of 
tasks were set 20 to 50, the processing times of tasks are uniform distribution in [5, 10] and 
the memory requirement is also uniform distribution in [50, 100]. The numbers of grids are 
from 6 to 15, the total available memory is uniform distribution in [200, 400]. The interactive 
data between of tasks are varying from 1 to 10, and the communications between grids are 
varied by uniform distribution from 1 to 10. Simulation results demonstrate that more 
iterations or number of particles obtain the better solution since more solutions were 
generated as displayed in Table 11. 
 

Number of particles 
10  20 

# of iterations  # of iterations 
(Task, Grid) 

100 300  100 300 500 
       

20,6 1967 1888  1946 1872 1818 
20,8 1619 1611  1611 1608 1569 

20,12 1308 1249  1263 1241 1163 
30,8 3347 3325  3329 3325 3315 

30,12 2514 2359  2470 2359 2359 
30,15 1998 1998  1998 1957 1957 
40,12 4276 4276  4276 4276 4276 
40,15 4008 3808  3808 3562 3562 
50,15 5157 5157  5741 5157 5156 

Table 11. Simulation results 
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7. Summary 

This study introduces the discrete PSO algorithm for solving task-grid assignment problem 
in a distributed grid environment. Experiment results indicate that the discrete version of 
PSO combining simulated annealing is effective for solving task-grid assignment problems.  
However, more complicated cases can be considered in-depth, such as more realistic 
examples and more tasks involved. For example, a grid system consists of heterogeneous 
grids (with different process capabilities) is given. Restated, more complicated scheduling 
problem can be further solved using discrete PSO. Moreover, to further improve the discrete 
PSO performance, some other heuristics are suggested to be included, for example, 
insertion, 2-opt or others. Further research encourages that the extension of the discrete PSO 
by incorporating other meta-heuristics for solving different scheduling problems is 
recommended. 
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