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1. Introduction  

Object tracking is an indispensable ingredient of many machine vision applications such as 
intelligent visual surveillance, traffic monitoring, robot and vehicle navigation, human 
computer interactions, virtual and augmented realities, video compression and indexing, etc. 
and has drawn considerable attention from computer research communities in recent years. 
Actually, in the real world scenarios, that is a very challenging task due to the interference of 
noise, clutters, occlusions, illumination variations and dynamic changes of the object and the 
background appearance in the complex scene; a quite variety of tracking methods have been 
proposed to tackle these difficulties in decades (Yilmaz et al., 2006), which can be roughly 
divided into two categories: the deterministic method and the statistical methods. 
The deterministic method performs tracking typically by seeking the local extreme of a 
matching function which measures the similarity between a template and a candidate 
image; the most widely used similarity measures include the sum of squared differences, the 
histogram intersection distance, the Kullback-Leibler divergence, the normalized cross 
correlation coefficient, and the Bhattacharyya coefficient. Some optimization techniques 
have been proposed to search the local extreme of the matching function such as the mean-
shift method (Comaniciu et al., 2003) and the optical flow based method (Baker & Matthews, 
2004). The drawback of these methods is if the matching function takes into account only the 
object and not the background, then it might not be able to correctly distinguish the object 
from the background and tracking might fail. More robust similarity measures are presented 
recently such as the posterior probability measure (Feng et al., 2008.) and the log likelihood 
ratio of features (Collins et al., 2005), which takes the background interference into account.  
Recently, object tracking is treated as a binary classification problem, where the object have 
to be identified from the background with multiple image cues and better performance over 
the matching function based approaches such as the template-matching method (Lucas & 
Kanade, 1981), the view-based method (Black & Jepson, 1998), and the kernel-based method 
(Comaniciu et al., 2003), etc. was reported in literatures, where a discriminative model for 
separating the object from the background is trained offline and applied before tracking and 
termed tracking-by-detection method (Andriluka et al., 2008 ; Avidan 2004; Breitenstein et 
al., 2009 ; Choudhury et al., 2003; Leibe et al., 2008; Okuma et al., 2004; Wu  & Nevatia, 
2007). However, to formulate that as an object-background discrimination problem, two 
important factors need to be treated carefully: what features to choose and how to train the 
classifiers. Furthermore, since the object and background appearance may change greatly 
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over time; online feature selection and classifier training are necessary to adapt the tracker 
to such variations. The appearance-based method deals with it by updating a holistic 
representation of object in a feature space with online learning, such as the incremental PCA 
(Wang et al., 2007; Ross et al., 2008), the incremental LDA (Lin et al., 2007; Li et al., 2008), the 
Expectation Maximization method (Jepson et al., 2003), etc. The online feature selection 
method chooses the most discriminative features that could distinguish the object from the 
background correctly rather than specifying features beforehand (Collins et al., 2005). The 
feature fusion method in (Yin et al., 2008) combines multiple features by weighting the 
likelihood maps with respect to their variance ratios. Additionally, other feature fusion 
methods for tracking such as the weighted averaging rule, the product rule, the maximum 
rule, the minimum rule and the dynamic weighting rule are compared in (Conaire et al., 
2006). An ensemble of weak classifiers is trained with the offline boosting algorithm and 
updated online weakly in (Avidan, 2007) for identifying the pixels of object from that of 
background, and an improved version is proposed in (Grabner et al., 2006) with online 
boosting that endows the tracker the adaptability somehow. An ensemble of SVM classifiers 
for tracking is built in (Tian et al., 2007) by seeking the linear separating hyperplane which 
maximizes the margin between the positive and the negative sample in a kernel space, and 
that handles  appearance changes somehow by heuristically updating a SVM queue online.  
It is reported that the increment of the number of features used for tracking could benefit the 
performance of tracker (Isard & Blake, 1998; Wu & Huang, 2004); however, it depends on 
how the features are utilized. Online feature selection is advocated in (Collins et al., 2005; 
Grabner et al., 2006), but it is difficult to determine how many features should be chosen 
beforehand. Online feature fusion is proposed in (Yin et al., 2008) where the features are 
weighted and combined with respect to their variance ratios but the final combination is in 
fact not the most discriminative. Moreover, unlabelled data is valuable for classifier training, 
though they do not improve the performance always (Chapelle et al., 2006; Zhu & Goldberg, 
2009). It is demonstrated recently that the performance of tracker could be significantly 
improved by training classifier on a labeled dataset augmented by unlabelled ones with the 
semi-supervised learning technologies; however, it depends on how to predict the labels on 
unlabeled data correctly. The self-training method updates the classifier online with its own 
predictions to adapt the tracker to the appearance changes in (Collins et al., 2005; Grabner et 
al., 2006), however incorrect predictions could deteriorate the tracker and even cause the 
tracking drifting, which is called tracking label jitter. Therefore, the unlabelled data need to 
be treated carefully when updating the classifier. The template is updated based on the 
geometric information heuristically in (Matthews et al., 2004) to make the tracker adaptive 
and avoid drifting. The semi-supervised online boosting method in (Grabner et al., 2008; 
Godec et al. 2009; Leistner et al. 2008) formulates the update process in a semi-supervised 
fashion as a combined decision of a given prior and an online classifier and can limit the 
drifting somehow while adaptive to appearance changes. An improved version is proposed 
in (Stalder et al., 2009) to adapt rapid appearance changes of the target object that may result 
in tracking label jitter, by optimizing a robust loss function based on a convex combination 
of a supervised and an unsupervised classifier. Recently online random forest is proposed 
for tracking in (Saffari et al. 2009; Godec et al. 2010), which outperform the online boosting 
based trackers in case of severe occlusions and large appearance changes. An online multi-
classifier boosting algorithm is proposed in (Kim et al. 2010) for learning object multi-modal 
appearance models and tracking under rapid appearance changes. Tracking label jitter can 
also be handled by online multiple instance learning methods and in principle the classifier 
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is still performing self-training (Babenko et al., 2009; Saffari et al., 2009). The co-training and 
the multi-view learning method in (Javed et al., 2005; Leistner et al., 2010; Liu et al. 2009; 
Tang et al., 2007; Yu et al. 2008) updates the classifiers online each other with the predictions 
generated on different features and can avoid tracking drifting somehow.  
The statistical methods model the underlying dynamics of a tracking system in a state space. 
Assuming a linear Gaussian model of system dynamics, only one mode appears in the 
posterior probability density function (PDF); for example Kalman filter performs tracking by 
updating the mean and the covariance of the posterior PDF. However the dynamics of a 
practical tracking system is usually nonlinear and non-Gaussian; it is impossible to estimate 
the distribution analytically; therefore, many statistical approximation algorithms have been 
developed in recent years. Among them, particle filter, also called sequential Monte Carlo, is 
the most popular state estimation method, which constructs the posterior PDF recursively in 
a state space using Monte Carlo integration (Doucet et al. 2001; Cappe et al., 2007; Doucet & 
Johansen, 2010). It is developed for object tracking in computer vision research communities 
originally in (Isard & Black, 1998), also termed Condensation algorithm. During the tracking 
process, object state can be estimated recursively with particle filter, but over depletion of 
particles by sequential importance resampling (SIR) could cause tracking failure. It is very 
important to preserve particles diversity, which is measured usually by the effective sample 
size (Doucet et al. 2001). Various methods have been proposed to tackle this problem in 
recent years (Doucet et al. 2001; Cappe et al., 2007; Doucet & Johansen, 2010). 
In this chapter we propose an adaptive object tracking method that integrates a particle filter 
with an online semi-supervised classifier to treat the appearance variations of the object and 
the background and occlusions. An online real AdaBoost algorithm is presented to train an 
ensemble of weak classifiers that endows the strong classifier faster convergence speed and 
higher classification accuracy. We further improve the classifiers by co-training operated on 
two groups of uncorrelated local image features in order to reduce tracking label jitter. To 
deal with the problem of particles depletion, an iterative importance resampling algorithm 
to maximize the effective sample size with evolutionary operations is proposed, which gives 
more accurate estimations than the SIR method, and we term it the sequential evolutionary 
importance resampling (SEIR) method. The final tracker combines online real AdaBoost, co-
training and the SEIR particle filter all together. The experimental results on pedestrian and 
vehicles tracking in the real world scenarios demonstrate that our method is very robust to 
tracking objects undergoing large appearance changes and severe occlusions.  
The remainder of this chapter is organized as follows: Section 2 introduces the local image 
features for representing object; Section 3 discusses the online real AdaBoost and co-training 
algorithm; Section 4 presents the SEIR particle filter; Section 5 gives the experimental results; 
and finally Section 6 concludes the chapter. 

2. Local image features for object representation 

In order to identify pixels of the object from that of the background in a predicted candidate 
region at each image frame, two types of local image features, namely color features and 
texture features are employed to represent the appearance of the object and the background. 
The color features include the most wildly used color intensity RGB and gray level intensity 
Y. The texture features are the recently proposed local ternary pattern (LTP) (Tan & Triggs, 
2010), which is in fact an improved version of local binary patterns (LBP) that is originally 
applied to texture classification (Ojala et al., 2002) and later extended to face recognition 
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(Ahonen et al., 2006). Nowadays the LBP pattern is one of the best performing texture 
descriptors. It has proven to be highly discriminative, invariant to monotonic gray level 
changes and computational efficient, make it much suitable for demanding image analysis 
tasks, and it has been used in various applications. Concretely LBP pattern is based on the 
difference between the central and the neighbor pixels in a mask to form a representation of 
texture pattern by coding a binary sequence, which is defined by 

 
-1

,
0

( , ) 2 ( - )
P

u
P r u c

u

LBP i j S g g
=

= ⋅∑  (1) 

where ( )S x is an indicating function, ( ) 1S x =  if 0x ≥  else ( ) 0S x = ; r  is the radius of a 
mask, P  is the number of neighbor pixels in the mask, cg  is the gray value of the central 
pixel, ug  is the gray value of the neighbor pixels, u  is the label of the neighbor pixels and 

( ),i j  is the position of the central pixel. The most widely used masks and their neighbor 
pixels labeled by the black dots are shown in Figure 1. 
 

 

Fig. 1. The mask and the neighbor pixels 

If set 8P = , 1r =  then we get the most widely used pattern LBP8, 1, named 1-radius 8-

neighborhood pattern. Figure 2 shows how the pattern LBP8, 1 is calculated. 
 

 

Fig. 2. Calculate the texture pattern LBP8, 1 

One flaw of LBP pattern is that it cannot reflect the relationship between the central and the 
neighbor pixels in a mask completely, for example it cannot distinguish bright spots, dark 
spots and other small sized patterns; furthermore, it is very sensitive to noise. To deal with it, 
local ternary pattern (LTP) is developed recently (Tan & Triggs, 2010), which is defined by 

 ( )
1

,
0

( , ) 3 S ,
P

u
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u

LTP i j g g t
−

=
′= ⋅ −∑  (2) 

where ( )S x′ is an indicating function with a threshold t specified beforehand.  

To simplify the computation, the LTP pattern is divided into two parts: the upper pattern 

( )uS x  and the lower pattern ( )lS x , that are defined respectively by 

 ( ) ( )
1 1

S ,   ,     S ,
0 0

u lx t x t
x t x t

x t x t

≥ ≤ −⎧ ⎧
= =⎨ ⎨< > −⎩ ⎩

 (3) 
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For each part, a similar operation as the calculation of LBP pattern is used to encode the 

pattern, and then they are combined into one unified representation. Figure 3 shows how 

the pattern LTP8, 1 is calculated. 

 

 

Fig. 3. Calculate the texture pattern LTP8, 1 

The texture is represented by nine LTP8, 1 patterns, which contains the in-channel texture 

feature R-R, B-B, G-G and the cross-channel texture feature R-G, R-B, G-R, G-B, B-R, and B-

G. For example, when compute the R-G texture feature, around each pixel a 3x3 sized 

rectangle area is specified as the mask, the central pixel is taken from the red channel and 

the other eight neighbor pixels are taken from the green channel. Figure 4 shows the four 

color features and the nine texture features used in this chapter for representing the object 

and the background. It is obvious that the capability of each feature to discriminate the 

object from the background is different, and it may change greatly too when the object 

moves in the scene; we need to choose the best ones dynamically during tracking. 

 

 

Fig. 4. The local image features 

3. Locate object with online co-trained classifiers 

3.1 Online real AdaBoost 

To a practical tracking application, only a few training sample are available at each image 

frame, and the performance of the tracker depends heavily on the discriminative capability 
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of the classifier. Boosting can improve the performance of weak learners by building a small 

number of weak classifiers iteratively and combining them into a strong one. AdaBoost is an 

adaptive boosting algorithm that combines weak classifiers together to adapt to the 

problem. Real AdaBoost deals with confidence-rated weak classifiers, mapping from a 

sample space to a real-valued prediction instead of a Boolean prediction. The real-valued 

weak classifiers have an advantage over the Boolean ones in discriminative capability. 

Although, the final classifier trained by discrete AdaBoost achieves a similar accuracy as 

that by real AdaBoost mostly, however, the former includes much more weak classifiers 

than the latter. Namely, real AdaBoost can achieve a higher accuracy if the number of weak 

classifiers is fixed beforehand (Schapire & Singer, 1999), exactly the case of online learning. 

Unlike offline training, which uses all samples to train one weak classifier at the same time, 

the online version has a fixed-length classifier and uses only one sample on the entire stage. 

For each weak classifier on the online stage, there is a feature selector and each maintains its 

own information on features and updates it when a new sample is availab1e. The selector 

chooses the best feature with respect to the cumulated classification error; then updates the 

weights according to the output of the corresponding weak classifier and passes the sample 

to the next selector. The weights updating process boosts the online stage and enables the 

succeeding weak classifiers to focus on difficult sample. When the cumulated error is 

beyond a specified threshold, the weights updating steps are skipped. Online boosting is 

proposed originally in (Oza & Rusell, 2001) and later improved in (Grabner et al., 2006).  

In this chapter, real AdaBoost is applied to select a group of optimal weak classifiers by 

minimizing the cumulated classification error on the available training sample at each image 

frame. In this way, the final strong classifier could adapt to appearance changes of the object 

and background somehow. A remarkable feature of the proposed method is that the optimal 

weak classifiers are chosen by real AdaBoost, which improves the classification performance 

significantly compared with that by discrete AdaBoost. The pseudo code of the proposed 

online real AdaBoost method is shown as Algorithm 1. 
 

3.2 Online co-training 

Co-training is a typical semi-supervised learning method originally introduced in (Blum & 

Mitchell, 1998) that allows starting with only a few labeled data to train classifiers initially 

and then apply more unlabeled data to improve accuracy of classification. The basic idea is 

that the features describing the data are redundant and could be split into different groups, 

each of which is sufficient for correct classification. One classifier is trained from one group 

of features, and the resulted two classifiers go through parallelly more unlabeled data, label 

them and add a part of the unlabeled ones having the most confident predictions to the 

labeled dataset; namely the classifier trains each other on the unlabeled data.  

In this chapter we train two online ensemble classifiers parallelly by co-training, one from 

the group of color features and one from the group of texture features introduced in section 

2, and each ensemble classifier is trained by online real AdaBoost. To predict the unlabeled 

data more reliably, a voting scheme for classifier combination is applied; logically, it is based 

on the degree of predicting agreement between the two ensemble classifiers. The final fused 

classifier is applied to locate the target object from each image frame. The pseudo code of 

the proposed online co-training method is shown as Algorithm 2. 
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Algorithm 1 :  online real AdaBoost 

 

Input:     training sample ( ) { }, 1,1x y χ∈ × − ,  

                                where χ  is partitioned into several disjoint blocks 1 2, , , kX X XA . 

                weights ,
corr
n mλ , ,

wrong
n mλ   (initialized with one) 

Output:  strong classifier strongh  (initialized randomly) 

 

Initialize the importance weight λ of the incoming sample with one. 

for 1,2, ,n N= A  do  // update all feature selector sel
nh  

    for 1,2, ,m M= A  do // one feature selector maintains M features individually 

        Initialize the weight of the sample ( ) ( ), ,, ,n m n mw x y w x y λ= + ,  

                       where jx X∈ , { }1,2, ,j k∈ A . 

    Update the weak classifier ( )( ) ( )( )( ), , ,

1
ln , 1 , 1

2
weak
n m n m n mh w x w xε ε= + + − + ,  

                        where ε  is a small positive constant. 

    Estimate the classification error  ( ), , , ,
wrong wrong corr

n m n m n m n me λ λ λ= + ,  

                        if , 0weak
n mh y⋅ ≥  then , , ,

corr corr weak
n m n m n mhλ λ λ= + , 

                        else , , ,
wrong wrong weak
n m n m n mhλ λ λ= + end if. 

    end for // feature selector 

    Select the weak classifier having the lowest error
,

sel weak
n n m

h h += , ( ),arg minm n mm e+ = . 

    if 
,

0
n m

e + =  or 
,

0.5
n m

e + >  then exit end if. 

    Calculate the voting weight ( )( ), ,
ln 1n n m n m

e eα + += − . 

    Update the importance weight λ , 

                       if , 0weak
n mh y⋅ ≥  then ( )( ),

2 1
n m

eλ λ += − , 

                       else ( ),
2

n m
eλ λ += end if. 

    Replace the worst weak classifier 
,

weak
n m

h − , ( ),arg maxm n mm e− =  with a new one, 

    set
,

1corr
n m
λ − = ,

,
1wrong

n m
λ − = . 

end for // update all feature selectors 

 

The final classifier is ( )( )strongh sign conf x= , the confidence score is ( ) ( )
1

N
sel

n n
n

conf x h xα
=

= ∑ . 
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Algorithm 2 : online co-training 

 
At the first image frame: 
1. Locate the target object manually or automatically, and generate the labeled data. 
2. Train two strong classifiers by online real AdaBoost shown in Table 1,  
                   One classifier from one group of features on the labeled data respectively. 
 
At each newly coming image frame:  
1. Apply the two strong classifiers pixel by pixel in a predicted candidate image region,  
                    generate two confidence score maps respectively. 
2. Combine the two confidence score maps into one by voting:  

                    the label is ( )( )( )minfused
ih sign conf x= , 

                    the confidence score is ( ) ( )( ) ( )maxfused fused
iconf x conf x h x= ⋅ . 

3. Locate the target object from the image frame based on the combined confidence map. 
4. Add a part of the pixels having the most confident scores to the labeled dataset. 
5. Retrain the two strong classifiers on the updated labeled data respectively. 
 

3.3 Locate the target object 

Giving the two strong classifiers, to a newly incoming image frame, we need to determine 
the location of the target object within it. To do this, each classifier is operated pixel by pixel 
in a predicted candidate region at that image frame individually, thus yields two confidence 
score maps from the two groups of local features; and then they are combined into one. 
Figure 5 illustrates how the combined confidence score map is generated. In Figure 5, (a) is 
the predicted candidate region containing the target object; (b) and (c) are the confidence 
score maps from the texture and color features respectively; (d) and (e) are the confidence 
score maps of (b) and (c) after applying the morphological operation OPENING 
respectively; (f) is the final combined confidence score map. It is obvious that each feature 
contributes the map differently; it has fewer clutters than either one before combining, 
which means it can reduce tracking label jitter and may lead to more stable tracking. 
 

 

Fig. 5. Combine the confidence score maps into one 
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The location of the target object can be conjured from the combined confidence score map. 
Since local features are utilized, the confidence score can somehow measure the contribution 
of the pixel to the existence of the target object; the largest blob having highest accumulated 
confidence score locates the object most confidently. We check all the blobs within the 
predicted candidate region and choose the most confident blob as the target object and the 
center of the ellipse bounding the blob most closely is treated as object location. The whole 
locating procedure is visualized in figure 6, where, (a) is the predicted candidate region 
containing the target object; (b) is the confidence score map from the color features; (c) is the 
confidence score map from the texture features; (d) is the combined confidence score map; 
(e) is the result of (d) after thresholding; (f) shows the ellipse that bounding the blob most 
closely, of which the center indicates the object location.  
 

 
(a)         (b) (c) (d)      (e)      (f) 

Fig. 6. Locate the target object from the combined confidence score map 

Stable tracking depends on the discriminative ability of the strong classifiers trained by co-
training, in fact which is heavily affected by the correctness of the sequentially predicted 
sample added to the labeled dataset. We must check the accuracy of classification carefully; 
however it is difficult to be evaluated online due to lacking ground-truth data. Fortunately, 
by checking the amount of object pixels within and background pixels outside of the object 
blob, we can guess that somewhat, though it is ad hoc. Usually the most confident blob is 
treated as the object; when the accumulated confidence score of pixels within it beyond a 
specified threshold, the pixels are reckoned as positive sample, and added to the labeled 
dataset, otherwise no one is selected; that happens mostly as occlusions appear. Meanwhile, 
the pixels near the boundary of the candidate region are treated as negative sample and 
added to the labeled dataset at any time to adapt the tracker to the varying background. 

4. Predict object location with particle filter 

4.1 Sequential importance resampling 
To a practical object tracking system, we can describe the dynamics of the target object by 

 1k k kX X δ−= +  (4) 

where kX  and 1kX −  are the location of the target object at time k  and 1k −  respectively, kδ  
is a random variable which subjects to the transition distribution ( )1k kp X X − .  

The posterior PDF is approximated recursively by a weighted sample, involving two steps 

mainly: prediction and update. Given the observations { }1: -1 1 -1, ,k kY Y Y= …  up to time 1k − , 

at the prediction step, the transition distribution ( )1k kp X X −  is applied to predict the 

posterior PDF at time k, termed the prior as well, 

 ( ) ( )1: 1 1 1 1: 1 1( | ) |k k k k k k kp X Y p X X p X Y dX− − − − −= ∫  (5) 

At time k  as the observation kY  is available, applying the Bayes rule, the posterior PDF is 
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 ( ) ( )1: 1
1:

1: 1

( | ) |

( | )
k k k k

k k
k k

p Y X p X Y
p X Y

p Y Y

−

−
=  (6) 

The posterior PDF is approximated by N  sample i
kX  drawn from the proposal distribution 

( )1: -1 1:| ,k k kq X X Y  with the importance weight i
kv , 

 
( )1

1
1: 1 1:

( | ) |

( | , )

i i i
k k k ki i

k k
k k k

p Y X p X X
v v

q X X Y

−
−

−
=  (7) 

In the case of sequential importance resampling (SIR), ( ) ( )1: -1 1: 1: -1| , |k k k k kq X X Y p X X= , the 

importance weight becomes the observation likelihood ( )k kp Y X .  
To the SIR particle filter, if it fails to generate new values for the states from the latest 

observations, only a few particles will have significant importance weights, the variance of 

weights will increase continuously and eventually cause tracking failure, which is termed 

particle degeneration. So it is very important to move particles towards the regions of high 

likelihood. This problem arises when the likelihood is too peaked or lies in the tail of the 

prior. Various approaches have been proposed to tackle this problem such as the auxiliary 

particle filter (APF), the unscented particle filter (UPF), the kernel particle filter (KPF), the 

regularized particle filter (RPF), to name a few (Doucet et al. 2001; Cappe et al., 2007). 

4.2 Sequential evolutionary importance resampling 

To keep the diversity of particles, we enhance importance resampling in this chapter with 
four evolutionary operations: copy, crossover, mutation and selection.  

1. COPY: generate N  new particles 1l
kX  by duplicating all the existing N  particles,  

 1l i
k kX X=  (8) 

2. CROSSOVER: generate N  new particles 2l
kX  based on N  pair of particles i

kX  and j
kX  

chosen randomly from the existing N  particles according to the probability ( )i
k kp Y X  

and ( )1 j
k kp Y X− , 

 2 ( )j jl i
k kk kX X X Xμ= + ⋅ −  (9) 

where μ  is a random number which subjects the standard uniform distribution.  

3. MUTATION: generate N new particles 3l
kX  by disturbing the existing N  particles, 

 3l i
k kX X λ ν= + ⋅  (10) 

where ν  is a random number which subjects the standard normal distribution, and λ  
is a constant which controls the amplitude of interference.  

4. SELECTION: resample N  particles from the resulted 3N  new particles { }1 2 3, ,l l l
k k kX X X  

according to their importance weights.  
In fact, the operation CROSSOVER and MUTATION can increase the amount of distinctive 
particles, the operation COPY and SELECTION can keep the particles staying in the regions 
of high likelihood. The combination of the four operations can make particles move towards 
the regions of high likelihood so as to overcome the degeneration of particles. 
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The effective sample size (ESS) is a function of the coefficient of the variation of importance 
weights, measuring the efficiency of an importance sampling algorithm, which is defined by 

 ( )2

1

1
n

i
eff k

i

N v
=

= ∑ #  (11)  

where i
kv#  is the normalized importance weight, which is defined by 

 ( )
1

n
i i i
k k k

i

v v v
=

= ∑#  (12) 

When ESS is small, it means there is a risk of degeneration; importance resampling should 
be conducted to augment the particles by applying COPY, CROSSOVER, MUTATION and 
SELECTION until ESS becomes large enough. The pseudo code of the proposed sequential 
evolutionary importance resampling method is detailed as Algorithm 3. 
 

Algorithm 3: sequential evolutionary importance resampling 

 
1:   Initialization, 1k =  

      Sample ( )1 1
iX p X∼ , 1, ,i N= A . 

      Evaluate the importance weight ( )1 1 1|i iv p Y X= . 

      Resample { }1 1,i iX v to generate the N  equally weighted particles{ }1
1 ,i

N
X . 

 
2:   Importance sampling, 1k >  

      Sample ( )1|i i
k k kX p X X −
# ∼ , 1, ,i N= A . 

      Evaluate the importance weight ( )|i i
k k kv p Y X= # . 

      Normalize the importance weight to obtain ( )
1

n
i i i
k k k

i

v v v
=

= ∑# . 

 
3:  Evolutionary importance resampling 

    Compute the effective sample size effN , and set the loop counter 0T = . 

    While ( effN  or T  is not large enough)  

          Generate N  new particles 1l
kX  by COPY, 1 1, ,l N= A , 

               evaluate the importance weight ( )1 1|l l
k k kv p Y X= . 

          Generate N  new particles 2l
kX  by CROSSOVER, 2 1, ,l N= A , 

               evaluate the importance weight ( )2 2|l l
k k kv p Y X= . 

          Generate N  new particles 3l
kX  by MUTATION, 3 1, ,l N= A , 

                evaluate the importance weight ( )3 3|l l
k k kv p Y X= . 

          Normalize the importance weight of the 3N  particles{ }1 2 3, ,l l l
k k kX X X . 

          Resample N  particles i
kX  by SELECTION from the 3N  particles{ }1 2 3, ,l l l

k k kX X X . 

          Normalize the importance weight of the selected N  particles to obtain i
kv# . 

          Compute the effective sample size effN  and set 1T T= + . 
    end while 

    Resample { },i i
k kX v# to generate the N  equally weighted particles{ }1,i

k N
X . 

    Set 1k k= + and go to step 2.
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4.3 Predict the location of the target object 
When performing tracking, a particle is a candidate object state, actually corresponding to a 
possible location of the target object; of which the importance weight is proportional to the 
observation likelihood, that in fact indicates the possibility whether the object appears there; 
Theoretically, the likelihood must be proportional to the accumulated confidence scores of 
pixels classification around the position; practically, it is computed by adding the confidence 
scores together in a specified window at that position in this chapter. 
Figure 7 exemplifies the distribution of accumulated confidence scores in a predicted region, 
where, (a) is the predicted image region containing the target object; (b) is the combined 
confidence score map yield by the co-trained classifier; (c) is the distribution of accumulated 
confidence scores. It is obvious in (c) that there is one mode holding a very high likelihood 
value, which may result in an accurate prediction on object location. 
 

(a) (b) (c) 

Fig. 7. The distribution of accumulated confidence scores 

To track an object in complex scene, actually, pixels classification error is inevitable, means 
clutters must appear at the predicted object region. To reduce the interference of clutters, we 
use a gating function to penalize pixels by weighting; concretely, pixels near the predicted 
position get a higher weight, otherwise gets a lower weight. In this chapter, we choose a 
Gaussian ( ); ,g X μ σ  as the gating function, let the distribution of accumulated confidence 
scores is ( )l X , then the observation likelihood is defined by  

 ( ) ( ) ( )| ; ,p Y X l X g X μ σ= ⋅  (13) 

5. Experimental results 

This section presents two tracking examples on practical video sequences that illustrate the 
benefits of combining online feature selection and co-training techniques. Specifically, these 
benefits are the enhanced ability to track objects undergoing large appearance variations, 
the ability to adapt to the changing background and illumination conditions, the ability to 
treat severe occlusions, and the ability to avoid distraction by similar objects by emphasizing 
automatically certain features that are distinctive to the target object.  

5.1 Results on pixels classification 
Figure 8 shows the comparison result on pixels classification by the co-trained and the self-
trained classifier, where, (a) is the predicted candidate image region containing the target 
object; (b) and (c) are the confidence score map respectively from the texture and the color 
features yield by the co-trained classifier; (d) is the combined confidence score map from (b) 
and (c); (e) is the confidence score map from the mixed texture and color features yield by 
the self-trained classifier; (f) is the result of (e) after applying the morphological operation 
OPENING. It is obvious that the score map yield by the co-trained classifier has much fewer 
clutters than the one by the self-trained classifier, which may lead to more stable tracking. 
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    (a)   (b) (c) (d)      (e)    (f) 

Fig. 8. Pixels classification by the co-trained and the self-trained classifier 

5.2 Results on tracking objects in complex scene 
The proposed method is applied to track vehicles and pedestrians in complex scene. The test 
video data consists of a vehicle sequence from PETS 2005 dataset (Collins et al., 2005) and a 
pedestrian sequence captured by us. Especially, the vehicle sequence involves significant 
appearance variations resulting from the change of object size, environmental lighting and 
distractions by similar objects in the scene. Besides, in the pedestrian sequence, the object is 
occasionally occluded severely by background clutters for several times.  
Figure 9 (a) and (b) shows the results on tracking a vehicle and a pedestrian respectively, 
where the red box indicates the location of the target object yield by the proposed tracker. 
The experimental results demonstrate that the proposed method can enhance the ability to 
effectively track objects undergoing large appearance variations due to size change, and to 
adapt the background and illumination change, severe occlusions, and even the distractions 
by similar objects.  
 

500 875         910 

 

(a)

1521 1527        1913 
    

 
25 30          50 

 

(b)

164 188         195 

Fig. 9. Results on tracking vehicle and pedestrian 
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To check why it can do these, the results on pixels classification yield by the co-trained 

classifier in the predicted candidate regions on the selected frames from the two sequences 

are visualized in figure 10 and 11 respectively, where, (a) is the predicted candidate image 

region, (b) is the combined confidence score map. As can be seen, the combined map in (b) 

has very few clutters; based on that the target object can be located very accurately, in fact, 

the white bounding ellipse in (a) predict the object location correctly. 

 

(a) 

(b) 

 
   500  875     910   1521 1527 1913 

Fig. 10. Pixels classification by the co-trained classifier on the vehicle sequence 

5.3 Results on importance resampling 

Figure 12 shows the comparison results on vehicle tracking with state estimation by particle 
filter using different importance resampling method, where, the object locating results are 
shown in (a); the effective sample size and maximum loop number yield by the sequential 
evolutionary importance resampling (SEIR) particle filter are shown respectively in (b) and 
(c). The results demonstrate that the SEIR particle filter yields more accurate state estimation 
than the SIR particle filter. It is obvious in (a) that the red box (SEIR) encloses the object 
more closely than the green box (SIR) and the latter loses tracking at frame 1600, which may 
due to the inaccurate state estimation. The figure in (b) shows that the SEIR particle filter 
(red line) can maintain high efficiency of importance resampling while the SIR particle filter 
(green line) is much lower, where in total 300 particles are used. Furthermore within finite 
times, only about three loops averagely, the expected efficiency can be reached by the SEIR 
particle filter, means it is computationally very efficient.  
 

(a) 

(b) 

 

   25      30     50   164  188 195 

Fig. 11. Pixels classification by the co-trained classifier on the pedestrian sequence 

Figure 13 shows the variation on scatter of particles when conducting the evolutionary 
importance resampling at some frame. In figure (a) to (d), the effective sample size is 62, 186,  
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260 460 860 

 

(a)
 

980 1200 1600 

  

(b)
 

 

  

(c) 
 

 

Fig. 12. Results on vehicle tracking with state estimation by particle filter 

236 and 259 respectively. It is obvious that the particles move quickly towards the center of 
the target object and cover it more closely, meanwhile the effective sample size increases 
accordingly; and that may lead to more accurate state estimation than the SIR particle filter.  
Figure 14 shows the scatter of particles after importance resampling at some frame, where, 
(a) is the predicted candidate image region containing the target object; (b) is the combined 
confidence score map yield by the co-trained classifier; (c) shows the distribution of particles 
after SEIR; (d) shows the distribution of particles after SIR. It is obvious that though there 
are some clutters in (b), yield by inaccurate pixels classification, through conducting SEIR, 
particles move towards the true location of the target object, which is demonstrated by the 
number and the spread of the mode appearing in the distributions of particles. There are 
fewer modes in (c) than in (d) and the spread of mode is much lower in (c) than that in (d). 
 

 
(a) (b) (c) (d) 

Fig. 13. Scatter of particles when conducting importance resampling 
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  (a) (b)  (c) (d) 

Fig. 14. Scatter of particles after importance resampling 

6. Conclusions 

Object tracking is still a challenging and open task in computer vision research, especially 

when dealing with large appearance variations and severe occlusions. In this chapter, an 

adaptive object tracking method is proposed, which integrates online semi-supervised 

classification and particle filter efficiently. Thanks to the feature selection capability 

achieved by online real AdaBoost and co-training, two classifiers are trained on two groups 

of features complementarily; the tracker consistently provides accurate classification of the 

object and the background for stable tracking, even under severe situations.  

In fact the efficiency of the proposed method comes from three aspects. First of all, the real 

AdaBoost approach constructs ensemble classifiers with a soft decision scheme to adapt to 

aspects, occlusions and size variations of the object by online learning. Second, classifier co-

training on two uncorrelated groups of features further improves the classification accuracy 

on the object from the background. Finally, the particle filter with sequential evolutionary 

importance resampling can adapt the nonlinearity of object dynamics and integrates the 

confidence scores updated online to predict object state more accurately even when it is 

occluded by background clutters completely. 
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