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1. Introduction     

In recent years, a significant work has been performed in the area of software development 

for solving global optimization problems in science and engineering applications (Floudas et 

al., 1999). In particular, global optimization has and continues to play a major role in the 

design, operation, scheduling and managing of chemical industrial processes and, according 

to several authors; it will remain as a major challenge for future research efforts (Floudas et 

al., 1999; Biegler & Grossmann, 2004; Grossmann & Biegler, 2004; Rangaiah, 2010). In the 

context of chemical engineering, several algorithmic and computational contributions of 

global optimization have been used for process optimization. As expected, finding the 

global optimum is more challenging than finding a local optimum and, in some applications 

such as the phase equilibrium modeling, the location of this global optimum is crucial 

because it corresponds to the correct and desirable solution (Floudas et al., 1999; Teh & 

Rangaiah, 2002; Wakeham & Stateva, 2004; Rangaiah, 2010).  

Specifically, the modeling of phase equilibrium in multicomponent systems is essential in 

the design, operation, optimization and control of separation schemes. The phase behavior 

of multicomponent systems has a significant impact in several issues of process design 

including the determination of the equipment and energy costs of separation and 

purification strategies (Wakeham & Stateva, 2004). Note that phase equilibrium calculations 

(PEC) are usually executed thousands of times in process simulators and, as a consequence, 

these calculations must be performed, reliably and efficiently, to avoid design uncertainties 

and erroneous conclusions about process performance. However, literature indicates that 

the development of reliable methods for PEC has long been a challenge and is still a research 

topic of continual interest in the chemical engineering community (Teh & Rangaiah, 2002; 

Wakeham & Stateva, 2004).  

Basically, PEC involve two main problems: a) phase stability analysis is used to determine if 
a tested system under specified operating conditions is stable or not, and b) phase split 
calculations are performed to establish the number and identity (i.e., composition and type) 
of phases existing at the equilibrium (Wakeham & Stateva, 2004). These thermodynamic 
calculations can be formulated as global optimization problems where the tangent plane 
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distance function (TPDF) is used as optimization criterion for stability analysis and the 
Gibbs free energy function (G) is minimized for phase split computations. Formally, both 

optimization problems can be stated as follows: minimize f(u) subject to u∈Ω where u is a 

continuous variable vector with domain Ω∈ℜn, and f(u):Ω ⇒ ℜ is a real-valued function. 
The major challenge of solving global optimization problems for phase equilibrium 
modeling is that both f(u) = TPDF and G are generally non-convex, highly non-linear with 
many decision variables, and often have unfavourable attributes such as discontinuity and 
non-differentiability. In fact, these objective functions may have several local optimums 
including trivial and nonphysical solutions especially for multicomponent and multiphase 
systems. Therefore, traditional optimization methods are not suitable for solving phase 
equilibrium problems under these conditions (Teh & Rangaiah, 2002; Wakeham & Stateva, 
2004).   
In view of the above, there has been a significant and increasing interest in the development 
of deterministic and stochastic global optimization strategies for reliably performing PEC 
(Wakeham & Stateva, 2004). For example, global optimization studies using deterministic 
strategies have been focused on the application of homotopy continuation methods (Sun & 
Seider, 1995; Jalali et al., 2008), branch and bound global optimization (McDonald & 
Floudas, 1996; Harding & Floudas, 2000), and interval mathematics (Hua et al., 1998; Xu et 
al., 2005). Although deterministic methods have proven to be promising, several of them are 
model dependent, may require problem reformulations or significant computational time 
especially for multicomponent systems (Nichita et al., 2002a; 2002b). On the other hand, 
stochastic optimization techniques have often been found to be as reliable and effective as 
deterministic methods but may offer advantages for PEC. These methods are robust 
numerical tools that present a reasonable computational effort in the optimization of 
multivariable functions (generally less time than deterministic approaches); they are 
applicable to ill-structure or unknown structure problems, require only calculations of the 
objective function and can be used with all thermodynamic models (Henderson et al., 2001). 
The study of stochastic optimization methods for PEC has become an active research area in 
the field of chemical engineering because various problems that are very challenging to 
solve by conventional techniques can be solved by meta-heuristics. To date, a number of 
stochastic global optimization methods have been studied and tested for PEC in non-
reactive mixtures. These methods include: the Random Search method (Lee et al., 1999), 
Simulated Annealing (Zhu & Xu, 1999; Zhu et al., 2000; Henderson et al., 2001; Rangaiah, 
2001; Bonilla-Petriciolet et al., 2006), Genetic Algorithms (Rangaiah, 2001; Teh & Rangaiah, 
2003), Tabu Search (Teh & Rangaiah, 2003; Srinivas & Rangaiah, 2007a), Tunnelling method 
(Nichita et al., 2002a; 2002b; Srinivas & Rangaiah, 2006), Clustering method with stochastic 
sampling (Balogh et al., 2003), Differential Evolution (Srinivas & Rangaiah, 2007a; 2007b), 
and Particle Swarm Optimization (Rahman et al., 2009; Bonilla-Petriciolet & Segovia-
Hernández, 2010). These meta-heuristics usually show a robust performance in PEC but, in 
some difficult problems, they may fail to locate the global optimum. Thus, alternative 
optimization strategies should be studied to identify a better approach for solving phase 
equilibrium problems. 
In particular, Harmony Search (HS) is a novel meta-heuristic algorithm, which has been 
conceptualized using the musical process of searching for a perfect state of harmony (Geem 
et al., 2001). This optimization method is based on the analogy with music improvisation 
process where music players improvise the pitches of their instruments to obtain a better 
harmony. In the optimization context, each musician is replaced with a decision variable, 
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and the possible notes in the musical instruments correspond to the possible values for the 
decision variables. So, the harmony in music is analogous to the vector of decision variables, 
and the musician’s improvisations are analogous to local and global search schemes in 
optimization techniques (Lee & Geem, 2005). This novel optimization method is simpler, 
both in formulation and computer implementation, than other stochastic optimization 
methods such as Genetic Algorithms or Particle Swarm Optimization (Lee & Geem, 2005). 
Until now, HS has been successfully applied to solve various engineering and optimization 
problems such as water network design, vehicle routing, soil stability analysis, heat 
exchanger design, and transportation energy modeling (Lee & Geem, 2005; Geem, 2009). In 
the field of chemical engineering, there are few studies concerning the application of this 
stochastic method and, to the best of our knowledge, the performance of HS for PEC in non-
reactive systems has not yet been reported.  
This chapter introduces the application of HS-based algorithms to solve phase stability and 
equilibrium problems in multicomponent non-reactive systems. Particularly, the 
performance and capabilities of HS in the modeling of phase equilibrium is studied and 
discussed. The remainder of this chapter is organized as follows. In Section 2, we briefly 
introduce HS and the common approaches for its modification or adaptation. The 
formulation of global optimization problems for phase equilibrium modeling (i.e., phase 
stability and phase split calculations) is presented in Section 3. Results of PEC using HS-
based algorithms are reported in Section 4. Finally, in Section 5, we provide some remarks 
and conclusions about the application of HS for PEC in non-reactive systems.  

2. Harmony Search optimization method 

Harmony Search is a music-inspired meta-heuristic algorithm, which has been introduced 
by Geem et al. (2001). This stochastic optimization method is based on the underlying 
principles of the musician improvisation of the harmony. Specifically, when musicians 
improvise they may perform the following steps: playing an existing score from memory, 
performing variations on an existing piece, or creating an entirely new composition. In the 
optimization context, HS combines heuristic rules and randomness to imitate this music 
improvisation process. A comprehensive explanation of HS is provided by Geem et al. 
(2001) and a flow chart describing its principal stages is given in Figure 1.  
In summary, HS involves the following parameters: the harmony memory size (HMS), the 
harmony memory considering rate (HMCR), the pitch adjusting rate (PAR), the bandwidth 
or step size for variable perturbation during pitch adjustment (bw), and the number of 
improvisations (NI). The harmony memory is a memory location where a set of solution 
vectors for decision variables is stored. The parameters HMCR and PAR are used to 
improve the solution vector and to increase the diversity of the search process (Geem et al., 
2001; Lee & Geem, 2005). In HS, a new harmony (i.e., a new solution vector) is generated 
using these parameters and the following procedures: a) memory consideration, b) pitch 
adjustment, and c) random selection. To illustrate the concepts of HS, consider the following 
unconstrained global optimization problem: minimize f(u) such that lbi ≤ ui ≤ ubi where u is a 
solution vector of nopt continuous decision variables with lower (lbi) and upper (ubi) bounds 
for each decision variable (i.e., ui). To solve this optimization problem, HS performs the 
following steps (Geem et al., 2001; Omran & Mahdavi, 2008): 
1. Initialize a harmony memory. First, the parameters of HS (e.g., HMS, HMCR, PAR, bw) are 

defined and the harmony memory is initialized. This harmony memory preserves the 
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history of optimization sequence and is useful to identify promising areas for global 
optimization because good harmonies can be considered as elements of new solution 
vectors. Usually, the initial values of harmony memory are generated from a uniform 
distribution in the bounds of decision variables: ui = lbi + rand (ubi – lbi) where  

rand ∈(0, 1) is a random number.   
2. Improvise a new harmony. As stated, a new harmony vector (vi) is obtained using the 

following stages: memory consideration, pitch adjustment and random selection. These 
stages can be summarized using the following pseudo-code (Omran & Mahdavi, 2008): 

 

     for i = 1 to nopt do 

                  if rand∈(0, 1) ≤ HMCR then perform memory consideration 
                    begin 

                    vi = uij  where  j∈(1,…,HMS) 

                    if rand∈(0, 1) ≤ PAR then perform pitch adjustment 
                       begin 
                       vi = vi + (0.5 – rand)· bwi  where bwi is the bandwidth (i.e., step size) 
                    end if 
                  else perform random selection 
                    vi = lbi + rand (ubi – lbi) 
                  end if 
           end for 

 

These stochastic operators are used to perform both diversification and intensification 
stages in HS. The diversification is controlled by the pitch adjustment and random 
selection operators, while memory consideration is generally associated to the 
intensification. In particular, HMCR is used to determine the degree of contribution of 
harmony memory (i.e., promising solutions) during random search. On the other hand, 
PAR and bw are used to control the additional random perturbation of decision 
variables when memory consideration is applied. In addition, the random selection is 
useful to explore different regions of objective function and also contributes to increase 
the diversity of solution vectors. Note that the proper combination of these operators is 
important to favor the performance of HS in global optimization. The generation of a 
new harmony (i.e., new solution vector) is called improvisation.    

3. Update harmony memory. In this stage, a new harmony (v) replaces the worst harmony in 
harmony memory only if its value of objective function is lower than that of the worst 
harmony. The decision vectors stored in harmony memory are useful to exploit the 
history and experience of the search process, being an intensification mechanism of HS 
method.  

4. Check the stopping condition. This iterative procedure is repeated until satisfying a proper 
convergence criterion. Similar to other stochastic methods, the choice of stopping 
condition can significantly affect the performance of HS. In the literature, the stopping 
criterions commonly used in HS are based on the number of function evaluations (NFE) 
or improvisations (NI). The best solution found by HS, which is stored in harmony 
memory, is expected to be a near global optimum solution.   

It is convenient to remark that a boundary violation check must be implemented, principally 
during pitch adjustment, to verify the feasibility of v; if v is infeasible, a new harmony is 
randomly generated inside lower and upper bounds of decision variables. A local 
optimization technique can be used at the end of global search for efficiently improving the 
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accuracy of the best solution obtained by HS. Note that stochastic optimization methods 
may require a significant computational effort to improve the accuracy of global solution 
because they explore the search space of decision variables by creating random movements 
instead of determining a logical optimization trajectory. Thus, this additional intensification 
step is required for rapid convergence in the final stage of HS.  
 

Define parameters of 

Harmony Search

Initialize harmony memory

Improvise a new harmony

Add new harmony 

to harmony memory? Update harmony memory
Yes

Termination criteria 

satisfied?

No

No

Local optimization

Yes

 

Fig. 1. Flowchart of Harmony Search (HS) stochastic optimization method 

As indicated, the parameters HMS, HMCR, PAR and bw are important to determine the 
performance (i.e., reliability and efficiency) of HS in global optimization. For example, some 
authors have suggested that small values of HMS may lead to the HS to be trapped in local 
solutions (Mahdavi et al., 2007). However, increasing HMS generally provides better solution 
vectors but at the expense of more function evaluations. Therefore, the fine tuning of these 
parameters is very crucial for solving global optimization problems (Mahdavi et al., 2007; 
Omran & Mahdavi, 2008). Traditionally, fixed values for HS parameters, which can not be 
changed during new improvisations, are used in global optimization (Geem et al., 2001; Geem, 
2009). So, this standard version of HS algorithm is referred as HSC in this chapter. 
In the literature, some modifications have been proposed to improve the convergence 
performance of the original HS. According to Geem (2009), the variations proposed for HS 
may involve: a) mechanisms for the proper initialization of HS parameters, b) mechanisms 
for the dynamic adaptation of HS parameters during optimization sequence, and c) the 
application of new or modified HS operators, which includes hybrid methods using other 
meta-heuristics such as Simulated Annealing or Differential Evolution. Below, two typical 
variants of HS are briefly discussed, which has been used in the present study. 
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Particularly, the dynamic adaptation of HS parameters is the most common approach to 

overcome the drawbacks of original HS. Results reported by Mahdavi et al. (2007) indicated 

that small PAR values with large bw values may affect the performance of HS and increase 

the calculations needed to find the global optimum. Although, small bw values in final 

iterations (i.e., improvisations) increase the fine-tuning of solution vectors but, in early 

iterations, bw should take a bigger value to diversify the solution vectors. Furthermore, large 

PAR values with small bw values may cause the improvement of best solutions in final 

improvisations. Based on this fact, Mahdavi et al. (2007) introduced the Improved Harmony 

Search (IHS), which uses dynamic values of both parameters PAR and bw. Specifically, PAR 

dynamically changes with improvisation number as follow 

 k
NI

PARPAR
PARPARk *

)( minmax
min1

−
+=+  (1) 

where PARmin and PARmax are the minimum and maximum pitch adjusting rates, and k is an 

improvisation counter. On the other hand, the bandwidth for each improvisation is given by 

 ( ))/ln()/(exp maxminmax1 bwbwNIkbwbwk =+  (2) 

being bwmin and bwmax the minimum and maximum values for bandwidth, respectively. Note 

that PARmin, PARmax, bwmin and bwmax are defined by the user and are problem dependent. 

Mahdavi et al. (2007) showed that this variant of HS has proven to be competitive with 

respect to other HS algorithms for solving benchmark and some engineering optimization 

problems. Therefore, we have considered IHS for solving global optimization problems in 

phase equilibrium modeling.  

Recently, Omran & Mahdavi (2008) proposed an alternative version of HS called Global-Best 

Harmony Search (GHS), which is inspired by the concept of swarm intelligence used in 

Particle Swarm Optimization. This method modifies the pitch-adjustment step of HS to 

encourage that a new harmony can mimic the best harmony stored in the harmony memory. 

Results reported for several benchmark optimization problems showed that GHS may offer 

a better performance than those reported for HSC and IHS (Omran & Mahdavi, 2008). In 

general, GHS has the same structure as IHS with the exception of pitch adjustment step used 

in the improvisation of a new harmony. Specifically, the pseudo-code to improvise a new 

harmony in GHS is defined as follows (Omran & Mahdavi, 2008): 
 

           for i = 1 to nopt do 

                  if rand∈(0, 1) ≤ HMCR then perform memory consideration 
                    begin 

                    vi = uij  where  j∈(1,…,HMS) 

                    if rand∈(0, 1) ≤ PAR then perform pitch adjustment 
                       begin 
                       vi = ui,best where best is the index of the best harmony in the harmony memory 
                    end if 
                  else perform random selection 
                    vi = lbi + rand (ubi – lbi) 
                  end if 
           end for 
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With respect to the parameters of GHS, Omran & Mahdavi (2008) have suggested that using 
a constant value of PAR improves its performance and this scheme is even better than GHS 
using a dynamical value of PAR. So, this approach has been adopted in the present study 
for GHS.  
Although these modern optimization methods have been successfully applied in different 
science and engineering fields, their capabilities have not yet been studied in the modeling 
of phase equilibrium. Therefore, these HS-based optimization methods have been used in 
this study for performing PEC in non-reactive systems. All methods have been implemented 
in Fortran subroutines that can be applied for solving global optimization problems with 
continuous variables. These codes are available to interested readers upon request to the 
corresponding author. Finally, with respect to the stopping condition, the following criteria 
can be applied for global optimization using HS: 1) a maximum number of successive 
improvisations (SNImax) without improvement in the best function value, or 2) a maximum 
number of improvisations (NI). Both criteria have been applied in this study and 
implemented for all HS algorithms.  

3. Formulation of global optimization problems for phase stability and 
equilibrium calculations in non-reactive systems 

3.1 Phase stability 

Phase stability analysis is a fundamental stage in PEC and allows identification of the 
thermodynamic state that corresponds to the global minimum of Gibbs free energy 
(Michelsen, 1982; Wakeham & Stateva, 2004). A mixture at a fixed temperature T, pressure P 
and overall composition z is stable if and only if the Gibbs free energy surface is at no point 
below the tangent plane to the surface at the given mixture composition (Michelsen, 1982). 
This statement is a necessary and sufficient condition for global phase stability. As 
mentioned in the introduction, this stability analysis can be performed using the Tangent 
Plane Distance Function (TPDF). This function is geometrically defined as the distance 
between the Gibbs free energy surface at a trial composition y and the tangent plane 
constructed to this surface at composition z. Properly, phase stability of a non-reactive 
systems with c components and a global composition z(z1,…,zc) in mole fraction units, at 
constant P and T, is analyzed by the global minimization of TPDF (Michelsen, 1982) 

 ∑
=

⎟
⎠
⎞⎜

⎝
⎛ −=

c

i
ziyiiyTPDF

1

μμ  (3) 

where 
yiμ  and 

ziμ  are the chemical potentials of component i calculated at compositions y 

and z, respectively. To perform a stability analysis, TPDF must be globally minimized with 

respect to composition of a trial phase y, which is subject to an equality constraint. This 

constrained global optimization problem can be written as 
 

)(  min yTPDF
y

subject to 1
1

=∑
=

c

i
iy

0 ≤ yi ≤ 1   ci ,...,1=

(4) 
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where the decision variables in phase stability problems are the mole fractions yi. If the 
global minimum of TPDF(y) < 0, the mixture under analysis is considered unstable; 
otherwise it is a globally stable system. The global minimization of TPDF is difficult and 
requires robust numerical methods since this function is multivariable, non-convex and 
highly non-linear. To date, several deterministic and stochastic global optimization methods 
have been reported for performing phase stability calculations (e.g., Sun & Seider, 1995; 
McDonald & Floudas, 1996; Hua et al., 1998; Harding & Floudas, 2000; Henderson et al., 
2001; Rangaiah, 2001; Teh & Rangaiah, 2002; Nichita et al., 2002a; Balogh et al., 2003; Xu et 
al., 2005; Bonilla-Petriciolet et al., 2006; Srinivas & Rangaiah, 2007a; 2007b; Bonilla-Petriciolet 
& Segovia-Hernández, 2010). 
To simplify this global optimization problem, the constrained problem given by Equation 

(4) can be transformed into an unconstrained problem by using new decision variables βi 
instead of yi as decision vector (Rangaiah, 2001; Srinivas & Rangaiah, 2007a; 2007b). These 

new decision variables βi∈(0, 1) are related to composition variables yi as follows 

 Fiiiy nzn β=    ci ,...,1=  (5) 

 ∑
=

=
c

j
jyiyi nny

1

   ci ,...,1=  (6) 

where ∑
=

=
c

i
iFF nn

1

 is the total amount of conventional moles in the feed composition used 

for stability analysis, and niy is the conventional mole number of component i in the trial 
phase y, respectively. Note that the feed mole fractions zi are obtained from FiFi nnz /= . 

Then, we state the unconstrained global optimization problem for phase stability analysis 
 

)(  min β
β

TPDF

0 ≤ βi ≤ 1   ci ,...,1=
(7)

 

For phase stability calculations, the number of decision variables is c for non-reactive 
systems of c components. In summary, this unconstrained formulation has been used for all 
phase stability calculations performed in this study using HS optimization methods.  

3.2 Phase equilibrium calculations 

After identifying an unstable system in phase stability analysis, the subsequent stage 
corresponds to a phase split calculation. In this thermodynamic problem, the main 
objectives are to correctly establish the number and types of phases existing at equilibrium 
as well as the composition and quantity of each phase such that the Gibbs free energy of the 
system is a minimum (Wakeham & Stateva, 2004). At constant T and P, a c multicomponent 

and π multiphase non-reactive system achieves equilibrium when its molar Gibbs free 
energy of mixing (g) is at the global minimum. Properly, the objective function for Gibbs 
free energy minimization using activity or fugacity coefficients is given by 

 ∑ ∑∑ ∑
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where nij is the mole number of component i in phase j, γij is the activity coefficient of 

component i in phase j, ijϕ̂  is the fugacity coefficient of component i in phase j, and iϕ  is the 

fugacity coefficient of pure component i, respectively. Here, the Gibbs free energy of mixing 

(g) is used to avoid the calculation of pure component free energies, which do not influence 

equilibrium and stability results.  
In a non-reactive system, g must be globally minimized with respect to the set of nij subject 

to the mass balance constraints. Thus, the constrained global optimization problem for 

Gibbs free energy minimization is 

 

)(  min ng
n

subject to Fi
j

ij nzn =∑
=

π

1

   ci ,...,1=

Fiij nzn ≤≤0    ci ,...,1=    π,...,1=j

(9)

 
where zi is the mole fraction of component i in the feed used for phase-split calculations. 

This objective function is generally multivariable and non-convex due to the non-linear 

nature of thermodynamic models. Both stochastic and deterministic methods are available 

for Gibbs free energy minimization (Teh & Rangaiah, 2002; Wakeham & Stateva, 2004). In 

particular, the methods: Simulated Annealing (Rangaiah, 2001; Henderson et al., 2001), 

Genetic Algorithms (Rangaiah, 2001; Teh & Rangaiah, 2003), Tabu Search (Teh & Rangaiah, 

2003), Tunnelling method (Nichita et al., 2002b; Srinivas & Rangaiah, 2006), Differential 

Evolution (Srinivas & Rangaiah, 2007a; 2007b), and Particle Swarm Optimization (Rahman 

et al., 2009; Bonilla-Petriciolet & Segovia-Hernández, 2010) have been applied for Gibbs free 

energy minimization in non-reactive systems.  

To perform an unconstrained minimization of g, we can use again alternative variables 

instead of nij as optimization targets. The use of these variables eliminates the restrictions 

imposed by material balances, reduces problem dimensionality, and the optimization 

problem is transformed to an unconstrained one (Rangaiah, 2001). For multi-phase non-

reactive systems, real variables βij∈(0, 1) are defined and employed as decision vector by 

using the following expressions 

 Fiii nzn 11 β=    ci ,...,1=  (10) 

 ⎟
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⎞
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m
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−

=
−=

1

1

π

π
j

ijFii nnzn    ci ,...,1=  (12) 

Using Equations (10)-(12), all trial compositions will satisfy the material balances allowing 

the easy application of optimization strategies. Thus, the unconstrained global minimization 

problem is defined as 
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)(  min β
β

g

10 ≤≤ ijβ    ci ,...,1=    1,...,1 −= πj
(13) 

 

For Gibbs free energy minimization, the number of phases existing at the equilibrium is 
assumed to be known a priori and the number of decision variables is cπ − c for non-reactive 
systems of c components with π phases. So, the problem formulation given by Equation (13) 
has been adopted in the present study for phase-split calculations in non-reactive systems. 

4. Results of phase equilibrium calculations using HS-based optimization 
methods 

4.1 Description of phase equilibrium problems 

In our study, various phase equilibrium problems from the literature have been used to 
assess the performance of HS-based optimization algorithms. These problems include 
multicomponent systems with vapor-liquid and liquid-liquid equilibrium. Feed 
composition, operating conditions, thermodynamic models, and global optimum of these 
problems are reported in Tables 1 and 2. It is convenient to note that these problems have 
  

 No. System Temperature and pressure Model 

1 n-butyl acetate + water 298 K and 101.325 KPa NRTL 
2 toluene + water + aniline 298 K and 101.325 KPa NRTL 
3 N2 + C1 + C2  270 K and 7600 KPa SRK EoS 
4 H2S + C1 190 K and 4053 KPa SRK EoS 
5 H2O + CO2 + 2-propanol + ethanol 350 K and 2250 KPa SRK EoS 
6 C2 + C3 + C4 + C5 + C6 390 K and 5583 KPa SRK EoS 
7 C1 + C2 + C3 + C4 + C5 + C6 + C7-16 + C17+ 353 K and 38500 KPa SRK EoS 
8 C1 + C2 + C3 + iC4 + C4 + iC5 + C5 + C6 + iC15 314 K and 2010.288 KPa SRK EoS 
9 C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 435.35 K and 19150 KPa SRK EoS 

Table 1. Examples selected for phase stability and equilibrium calculations in non-reactive 
systems using Harmony Search-based optimization methods. 
 

  Global optimum 

No. Feed composition, z TPDF g 

1 Z (0.5, 0.5) -0.0324662 -0.0201983 
2 Z (0.29989, 0.20006, 0.50005)  -0.2945401 -0.3529567 
3 Z (0.3, 0.1, 0.6)  -0.0157670 -0.5477911 
4 Z (0.0187, 0.9813)  -0.0039320 -0.0198922 
5 Z (0.99758, 0.00003, 0.00013, 0.00226)  -0.0126500 -0.0048272 
6 Z (0.401, 0.293, 0.199, 0.0707, 0.0363)  -0.0000021 -1.1836525 

7 
Z (0.7212, 0.09205, 0.04455, 0.03123, 0.01273, 0.01361, 
0.07215, 0.01248)  

-0.0026876 -0.8387826 

8 
Z (0.614, 0.10259, 0.04985, 0.008989, 0.02116, 0.00722, 
0.01187, 0.01435, 0.16998)  

-1.4862053 -0.7697724 

9 
Z (0.6436, 0.0752, 0.0474, 0.0412, 0.0297, 0.0138, 0.0303, 
0.0371, 0.0415, 0.0402)  

-0.0000205 -1.1211758 

Table 2. Global minimum of selected phase stability and equilibrium problems. 
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considered for testing the performance of other stochastic optimization methods such as 
Simulated Annealing, Genetic Algorithms, Tabu Search, Differential Evolution and Particle 
Swarm Optimization (e.g., Rangaiah, 2001; Teh & Rangaiah, 2003; Bonilla-Petriciolet et al., 
2006; Srinivas & Rangaiah, 2007a; 2007b; Bonilla-Petriciolet & Segovia-Hernández, 2010). 
The objective functions (i.e., TPDF and g) have at least one local minimum, which 
corresponds to a trivial solution, for all tested conditions. Therefore, these optimization 
problems have different degrees of difficulty and features, so that the performance of HS 
methods can be tested systematically. 

4.2 Parameter tuning of HSC, IHS and GHS 

The key parameters of HSC, IHS and GHS have been tuned by finding the global minimum 

of some phase stability and equilibrium problems. Following previous studies (e.g., Bonilla-

Petriciolet et al., 2006; Bonilla-Petriciolet & Segovia-Hernandez, 2010), the parameters of HS-

based methods were tuned using examples No. 4 and 5, which were found to be challenging 

in preliminary trials. Specifically, parameter tuning was performed by varying one 

parameter at a time while the rest are fixed at nominal values, which were established using 

values reported in the literature and results of preliminary calculations (not reported in this 

chapter). For parameter tuning, all HS methods were run 100 times, with random initial values 

for decision variables (i.e., βi and βij) and random number seed, on each of the selected 

problems using different conditions for HS parameters. The suggested values for parameters 

of HSC, IHS and GHS are reported in Table 3. For all calculations performed in this study, we 

set HMS = 10nopt (i.e., harmony memory) in HSC, GHS and IHS. Overall, our preliminary 

calculations indicate that values given in Table 3 are a reasonable compromise between 

numerical effort and reliability of HS-based optimization methods for performing PEC.  

 
Method Parameter Suggested value 

HSC HMCR 0.5 
 PAR 0.75 
 bw ubi – lbi 

GHS HMCR 0.5 
 PAR 0.75 
 bw ubi – lbi 

IHS HMCR 0.5 
 PARmin 0.5 
 PARmax 0.95 
 bwmin 0.001 

 bwmax ubi – lbi 

Table 3. Suggested values of parameters in HSC, IHS and GHS for solving global 
optimization problems in phase equilibrium modeling.  

4.3 Performance of HSC, IHS and GHS in phase stability and equilibrium calculations  

In this section, we compare the performance of HSC, IHS and GHS for both phase stability 

and equilibrium calculations in non-reactive systems. These methods are evaluated based on 

both reliability and computational efficiency in locating the global minimum of these 

thermodynamic problems. Each test problem is solved 100 times using HS methods, each 
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time with a different random number seed such that the initial values of decision variables 

and random operators are different in each trial.  
With illustrative purposes, Tables 4 and 5 summarize the mean value of the objective 
function (i.e., TPDF and g) calculated by HS methods over 100 runs performed on some 
selected examples at different levels of computational efficiency, which are obtained by 
changing the stopping conditions NI and SNImax. As stated, the stopping conditions NI and  
 

   NI/HMS 

f(u) No. Method 25 50 100 500 1000 1500 

TPDF 1 HSC -0.032121 -0.032450 -0.032466 -0.032466 -0.032466 -0.032466 
  GHS -0.031792 -0.032297 -0.032455 -0.032466 -0.032466 -0.032466 
  IHS -0.032460 -0.032466 -0.032466 -0.032466 -0.032466 -0.032466 
 2 HSC -0.119234 -0.175243 -0.230080 -0.290298 -0.293195 -0.293929 
  GHS -0.235608 -0.271328 -0.286175 -0.293712 -0.294317 -0.294416 
  IHS -0.130544 -0.242552 -0.293399 -0.294533 -0.294537 -0.294538 

 8 HSC -1.393909 -1.419570 -1.435958 -1.459419 -1.465537 -1.468035 
  GHS -1.463179 -1.473019 -1.477031 -1.483464 -1.484407 -1.484719 

  IHS -1.441306 -1.459395 -1.469119 -1.481068 -1.483426 -1.484304 
g 1 HSC -0.019942 -0.020110 -0.020140 -0.020193 -0.020196 -0.020197 
  GHS -0.019815 -0.019975 -0.020081 -0.020191 -0.020196 -0.020197 
  IHS -0.020052 -0.020189 -0.020197 -0.020198 -0.020198 -0.020198 

 2 HSC -0.332641 -0.335935 -0.339952 -0.351137 -0.352288 -0.352559 
  GHS -0.338794 -0.345940 -0.350732 -0.352721 -0.352873 -0.352910 
  IHS -0.332065 -0.336039 -0.349790 -0.352946 -0.352952 -0.352953 

 8 HSC -0.734627 -0.743442 -0.749865 -0.761014 -0.764000 -0.764984 
  GHS -0.762602 -0.765662 -0.767486 -0.768955 -0.769369 -0.769361 

  IHS -0.748691 -0.758576 -0.764873 -0.768615 -0.769123 -0.769332 

Table 4. Mean values of TPDF and g calculated by HS-based methods at different levels of 
computational efficiency, using NI alone as stopping condition, for phase stability and 
equilibrium calculations of non-reactive systems. 
 

  SNImax/(nopt· HMS) 
  TPDF G 

No. Method 5 10 15 5 10 15 

1 HSC - 0.031404 -0.032419 - 0.032463 -0.019697 -0.020010 -0.020128 

 GHS - 0.030894 -0.032082 - 0.032339 -0.019623 -0.019879 -0.019949 
 IHS - 0.031358 -0.032364 - 0.032406 -0.019657 -0.019937 -0.020060 
2 HSC - 0.119623 -0.191368 - 0.224470 -0.332387 -0.335297 -0.339812 
 GHS - 0.266324 -0.279203 - 0.287641 -0.346430 -0.350512 -0.351517 

 IHS - 0.118653 -0.195152 - 0.217033 -0.333279 -0.336683 -0.338551 
8 HSC - 1.435201 -1.447226 - 1.452705 -0.748590 -0.754997 -0.758230 
 GHS - 1.480936 -1.482794 - 1.484031 -0.768323 -0.768881 -0.769098 

 IHS - 1.419238 -1.438575 - 1.453591 -0.745669 -0.749071 -0.754977 

Table 5. Mean values of TPDF and g calculated by HS-based methods at different levels of 
computational efficiency, using SNImax alone as stopping condition, for phase stability and 
equilibrium calculations of non-reactive systems. 
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SNImax also contribute to the trade-off between efficiency and reliability of HS. Therefore, the 

performance of all HS methods is illustrated by changing these stopping conditions. This 

approach is adopted in the present study because generally no correlation can be established 

a priori between an optimization problem and the required numerical effort for finding the 

global optimum. So, the proper stopping condition has to be determined by a sensitivity 

analysis. 

Our results indicate that the performance of HS, GHS and IHS varies with the type of 

stopping condition and, as a consequence, the numerical effort. In general, these results 

show that increasing the value of both stopping conditions (i.e., NI or SNImax) improves the 

performance of all HS methods for PEC. But, results indicate that the reliability of HSC, 

GHS and IHS is generally better using stopping condition NI compared to SNImax. 

Particularly, GHS and IHS can find solution vectors very close to the global minimum 

solution and their performance is usually better than that of HSC using either NI or SNImax 

as convergence criterion. For example, Figures 2 and 3 provide the convergence histories of 

the norm of *ˆ ff cal − for all HS methods in the global minimization of TPDF and g of  

examples No. 2 and 8. This norm is based on the average (over 100 runs) of the best objective 

function calf̂  recorded in the harmony memory at different improvisations (i.e., NFE). Note 

that the mean value of best harmony (i.e., solution vector) obtained by GHS and IHS is 

usually lower than that achieved by HSC in both phase stability and equilibrium 

calculations. Moreover, it appears that the convergence curves of GHS and IHS are faster 

than that of HSC. These results are in agreement with the observations reported by Mahdavi 

et al. (2007) and Omran & Mahdavi (2008). Specifically, these authors have indicated that the 

modifications of traditional HS may allow performing global optimization, efficiently and 

reliably.   
Following our previous study (Bonilla-Petriciolet & Segovia-Hernández, 2010) and, in order 

to facilitate understanding and to make the performance difference between HSC, GHS and 

IHS more explicit, we have employed the performance profile reported by Dolan & More 

(2002). Performance profiles (PP) are an alternative tool for evaluating and comparing the 

performance of several solvers on a set of test problems. The results of PP allow us to 

identify the expected performance differences among several solvers and to compare the 

quality of their solutions by eliminating the bias of failures obtained in a small number or 

problems. A brief overview of PP is provided in this chapter, and a detailed description of 

this mathematical approach is given by Dolan & More (2002).  

Suppose that a set of Nprob problems and a set of S solvers are considered for applying 

performance profiles. In our study, this problem set corresponds to the collection of phase 

stability and equilibrium problems reported in Table 1, while the solver set is given by HSC, 

IHS and GHS. For these conditions, we establish a performance metric tij ≥ 0 for every solver 

i∈S and problem j∈Nprob. For example, this performance metric should give information on 

solver reliability, efficiency or another performance measure useful to characterize the 

capabilities of the solver under evaluation. For each problem j∈Nprob, we calculate 

 { }* minj ijt t solver i S= ∈  (14) 

where *
jt  is the best possible performance for problem j among all the solvers tested. For a 

particular solver i, the set of performance ratios σij is determined by 
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Fig. 2. Convergence profiles for solving phase equilibrium example No. 2 by HSC, GHS and 
IHS. Objective function: a) TPDF and b) g 
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Fig. 3. Convergence profiles for solving phase equilibrium example No. 8 by HSC, GHS and 
IHS. Objective function: a) TPDF and b) g 

www.intechopen.com



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

472 

 
probjijij Njtt ∈= *σ   (15) 

where the performance ratio σij of method i for problem j is defined as the ratio of the 
method’s performance to the best performance value over all solvers for the same problem 
(Dolan & More, 2002). The value of this performance ratio is equal to unity for the solver i 

that performs best on a specific problem j. For every solver i∈S, let ρi(ξ) be the fraction of 

problems for which σij ≤ ξ where ξ ≥ 1. Then, we have 

 { }ξσξρ ≤∈= ijprob
prob

i Njsize
N

:
1

)(  (16) 

where the “size” is the number of problems such that the performance ratio σij is less than or 

equal to ξ for solver i. The parameter ρi(ξ) indicates the fraction of problems for which solver 

i is within a factor of ξ of the best solver (according to the performance metric used for 
solver comparison). In summary, the performance profile of a solver represents the 

cumulative distribution function of its performance ratios and is a plot of ρi(ξ) versus ξ. It is 

convenient to note that ρi(1) is the probability (i.e., fraction of problems tested) for which 
solver i was the best solver overall. Therefore, to identify the best solver using PP, it is only 

necessary to compare the values of ρi(1) for all solvers and to select the highest one. 
Base on the fact that, our study compares how well the HS methods can estimate the global 
optimum relative to another in phase equilibrium problems, we have used the following 
performance metric for a systematic assessment of HSC, GHS and HIS: 

 *ˆ
j

cal
ijij fft −=   (17) 

where *
jf is the known global optimum of the objective function for problem j, which are 

reported in Table 2, and cal
ijf̂  is the mean value of the objective function calculated by the 

stochastic method i over 100 runs performed with random initial values for decision 

variables of problem j. This performance metric is useful to identify the algorithm that 

provides the most accurate value of the global minimum in phase stability and equilibrium 

problems. In fact, our group has successfully used this performance metric and performance 

profiles for comparison of several stochastic optimization methods in the context of phase 

equilibrium modeling (e.g., Bonilla-Petriciolet & Segovia-Hernández, 2010). 

Figure 4 shows the results of ρi(1) versus NI for HSC, IHS and GHS in phase stability and 
equilibrium calculations using Equation (17) as performance metric. Our results confirm that 
both GHS and IHS offer the best performance and show the highest probability for finding 
the best solutions in the collection of phase equilibrium problems used in this study. Figure 

4 shows that the probability ρi(1) of GHS is better than that obtained for IHS and HSC 
especially in early NI. However, this probability decreases as NI increased while IHS 
outperformed HSC and GHS in solving phase equilibrium problems if a larger NI is 
permitted. Note that HSC showed the worst performance for solving the global 
optimization problems analyzed in this chapter. Overall, PP indicate that the best solutions 
found by HSC are worse than the best solution found by both GHS and IHS in the global 
optimization of TPDF and g. In summary, GHS and IHS are the best from the standpoint of 
algorithm reliability and appear to be suitable for solving phase stability and equilibrium 
problems in non-reactive systems. 
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Fig. 4. Results of performance profiles for the comparison of HSC, GHS and IHS in phase 
stability and equilibrium calculations of non-reactive systems. Performance metric: 

*ˆ
j

cal
ijij fft −= . Stopping condition is the maximum number of improvisations and  

HMS = 10nopt. The missing bars indicate that the probability ρi(1) for solver i is 0.0. 

 

Finally, we have compared the reliability of GHS and IHS in combination of a quasi-Newton 
method for solving these thermodynamic calculations accurately and efficiently. 
Specifically, the best harmony stored in harmony memory of both GHS and IHS is used as 
initial guess for a local optimization technique. This local optimization method corresponds 
to the subroutine DBCONF from IMSL library, where the default values of DBCONF 
parameters in IMSL library have been used in these calculations. Under these conditions, 
GHS and IHS are evaluated based on the reliability in locating the global minimum, which 
is measured in terms global success rate (GSR). This performance metric is defined as the 
number of times the algorithm located the global minimum to the specified accuracy out of 
all trials performed in the collection of phase equilibrium problems. Properly, in these 
calculations a trial is considered successful if the global optimum is obtained with an 

absolute error of 10-5 or lower in the objective function value, i.e. 5* 10−≤− calff  where f * is 

the known global optimum and f cal is the solution provided by GHS or IHS method. In some 
examples, an absolute error of 10-7 in the objective function was used to avoid counting local 
minima as the global optimum.  
In general, the GSR ranged from 70.8 to 73.8 % for GHS and from 70.1 to 70.7 % for IHS 

throughout the tested range of NI. Results of individual problems indicate that both GHS 

and HIS, each followed by the local optimization method, show high reliability for examples 

No. 1 - 4 and 8 in phase stability analysis, and examples No. 1 - 4 and 7 - 9 in Gibbs free 

energy minimization. Both methods failed several times to find the global optimum in phase 

stability examples No. 5-7 and 9, while phase equilibrium examples No. 5 and 6 are difficult 

global optimization problems for both HS-based methods.   
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5. Conclusion 

This chapter introduces the application of Harmony Search-based methods for solving 
global optimization in phase equilibrium modeling of non-reactive systems. Specifically, we 
have compared the performance of classical HS and some of its variants for performing 
phase stability and equilibrium calculations. Our results indicate that HS-based 
optimization algorithms are capable of handling the difficult characteristics of global 
optimization problems in PEC. In particular, the Global-Best Harmony Search offers the best 
performance from the standpoint of algorithm reliability, whereas the classical Harmony 
Search method is the worst for performing the global optimization of objective functions 
involved in phase equilibrium modeling. In summary, our results indicate that GHS is a 
suitable and alternative global optimization strategy for phase equilibrium calculations in 
non-reactive systems. Further research will be focused on the application of this stochastic 
method in other thermodynamic calculations. 

6. References 

Balogh, J.; Csendes, T. & Stateva, R.P. (2003). Application of a stochastic method to the 
solution of the phase stability problem: cubic equations of state. Fluid Phase 
Equilibria, Vol. 212, No. 1-2, 257-267. 

Biegler, L.T. & Grossmann, I.E. (2004). Retrospective on optimization. Computers and 
Chemical Engineering, Vol. 28, No. 8, 1169-1192. 

Bonilla-Petriciolet, A. & Segovia-Hernández, J.G. (2010). A comparative study of particle 
swarm optimization and its variants for phase stability and equilibrium 
calculations in multicomponent reactive and non-reactive systems. Fluid Phase 
Equilibria, Vol. 289, No. 2, 110-121. 

Bonilla-Petriciolet, A.; Vázquez-Román, R.; Iglesias-Silva, G.A. & Hall, K.R. (2006). 
Performance of stochastic optimization methods in the calculation of phase stability 
analyzes for nonreactive and reactive mixtures. Industrial Engineering Chemistry 
Research, Vol. 45, No. 13, 4764-4772. 

Dolan, E.D. & More, J.J. (2002). Benchmarking optimization software with performance 
profiles. Mathematical Programming Series A, Vol. 91, No. 2, 201-213. 

Floudas, C.A.; Pardalos, P.M.; Adjiman, C.S.; Esposito, W.R.; Gumus, Z.H.; Harding, S.T.; 
Klepeis, J.L.; Meyer, C.A. & Schweiger, C.A. (1999). Handbook of test problems in local 
and global optimization, Kluwer Academic Publishers, ISBN: 0-7923-5801-5, 
Netherlands. 

Geem, Z.W. (2009). Music-inspired harmony search algorithm theory and applications, Springer, 
ISBN: 978-3-642-00184-0, United Sates.  

Geem, Z.W.; Kim, J.H. & Loganathan, G.V. (2001). A new heuristic optimization algorithm: 
harmony search. Simulation, Vol. 76, No. 2, 60-68. 

Grossmann, I.E. & Biegler, L.T. (2004). Part II. Future perspective on optimization. Computers 
and Chemical Engineering, Vol. 28, No. 8, 1193-1218. 

Harding, S.T. & Floudas, C.A. (2000). Phase stability with cubic equations of state: Global 
optimization approach. AIChE Journal, Vol. 46, No. 7, 1422-1440. 

Henderson, N.; de Oliveira, J.R.; Amaral Souto, H.P. & Pitanga, R. (2001). Modeling and 
analysis of the isothermal flash problem and its calculation with the simulated 

www.intechopen.com



Phase Equilibrium Modeling in Non-Reactive Systems Using Harmony Search   

 

475 

annealing algorithm. Industrial Engineering Chemistry Research, Vol. 40, No. 25, 6028-
6038. 

Hua, J.Z.; Brennecke, J.F. & Stadtherr, M.A. (1998). Reliable computation of phase stability 
using interval analysis: cubic equation of state models. Computers and Chemical 
Engineering, Vol. 22, No. 9, 1207-1214. 

Jalali, F.; Seader, J.D. & Khaleghi, S. (2008). Global solution approaches in equilibrium and 
stability analysis using homotopy continuation in the complex domain. Computers 
and Chemical Engineering, Vol. 32, No. 10, 2333-2345. 

Lee, K.S. & Geem, Z.W. (2005). A new meta-heuristic algorithm for continuous engineering 
optimization: harmony search theory and practice. Computer Methods in Applied 
Mechanics and Engineering, Vol. 194, No. 36-38, 3902-3933.  

Lee, Y.P.; Rangaiah, G.P. & Luus, R. (1999). Phase and chemical equilibrium calculations by 
direct search optimization. Computers and Chemical Engineering, Vol. 23, No. 9, 1183-
1191. 

Mahdavi, M.; Fesanghary, M. & Damangir, E. (2007). An improved harmony search 
algorithm for solving optimization problems. Applied Mathematics and Computation, 
Vol. 188, No. 2, 1567-1579. 

McDonald, C.M. & Floudas, C.A. (1996). GLOPEQ: A new computational tool for the phase 
and chemical equilibrium problem. Computers and Chemical Engineering, Vol. 21, No. 
1, 1-23. 

Michelsen, M.L. (1982). The isothermal flash problem. Part I. Stability. Fluid Phase Equilibria, 
Vol. 9, No. 1, 1-19. 

Nichita, D.V.; Gomez, S. & Luna, E. (2002a). Phase stability analysis with cubic equations of 
state by using a global optimization method. Fluid Phase Equilibria, Vol. 194-197, No. 
1, 411-437. 

Nichita, D.V.; Gomez, S. & Luna, E. (2002b). Multiphase equilibria calculation by direct 
minimization of Gibbs free energy with a global optimization method. Computers 
and Chemical Engineering, Vol. 26, No. 12, 1703-1724. 

Omran, M.G.H. & Mahdavi, M. (2008). Global-best harmony search. Applied Mathematics and 
Computation, Vol. 198, No. 2, 643-656. 

Rahman, I.; Das, A.Kr.; Mankar, R.B. & Kulkarni, B.D. (2009). Evaluation of repulsive 
particle swarm method for phase equilibrium and phase stability problems. Fluid 
Phase Equilibria, Vol. 282, No. 2, 65-67. 

Srinivas, M. & Rangaiah, G.P. (2006). Implementation and evaluation of random tunnelling 
algorithm for chemical engineering applications. Computers Chemical Engineering, 
Vol. 30, No. 9, 1400-1415. 

Srinivas, M. & Rangaiah, G.P. (2007a). A study of differential evolution and tabu search for 
benchmark, phase equilibrium and phase stability problems. Computers Chemical 
Engineering, Vol. 31, No. 7, 760-772. 

Srinivas, M. & Rangaiah, G.P. (2007b). Differential evolution with tabu list for global 
optimization and its application to phase equilibrium and parameter estimation 
problems. Industrial Engineering Chemistry Research, Vol. 46, No. 10, 3410-3421. 

Sun, A.C. & Seider, W.D. (1995). Homotopy-continuation method for stability analysis in the 
global minimization of the Gibbs free energy. Fluid Phase Equilibria, Vol. 103, No. 2, 
213-249. 

www.intechopen.com



 Stochastic Optimization - Seeing the Optimal for the Uncertain 

 

476 

Teh, Y.S. & Rangaiah, G.P. (2002). A study of equation-solving and Gibbs free energy 
minimization methods for phase equilibrium calculations. Chemical Engineering 
Research and Design, Vol. 80, No. 7, 745-759. 

Teh, Y.S. & Rangaiah, G.P. (2003). Tabu search for global optimization of continuous 
functions with application to phase equilibrium calculations. Computers Chemical 
Engineering, Vol. 27, No. 11, 1665-1679. 

Rangaiah, G.P. (2001). Evaluation of genetic algorithms and simulated annealing for phase 
equilibrium and stability problems. Fluid Phase Equilibria, Vol. 187-188, No. 1, 83-
109. 

Rangaiah, G.P. (2010). Stochastic Global Optimization: Techniques and Applications in Chemical 
Engineering, World Scientific Publishing Co., ISBN: 978-981-4299-20-6, Singapore. 

Wakeham, W.A. & Stateva, R.P. (2004). Numerical solution of the isothermal, isobaric phase 
equilibrium problem. Reviews in Chemical Engineering, Vol. 20, No. 1-2, 1-56. 

Xu, G.; Haynes, W.D. & Stadtherr, M.A. (2005). Reliable phase stability analysis for 
asymmetric models. Fluid Phase Equilibria, Vol. 235, No. 2, 152-165. 

Zhu, Y. & Xu, Z. (1999). A reliable prediction of the global phase stability for liquid-liquid 
equilibrium through the simulated annealing algorithm: application to NRTL and 
UNIQUAC equations. Fluid Phase Equilibria, Vol. 154, No. 1, 55-69. 

Zhu, Y.; Wen, H. & Xu, Z. (2000). Global stability analysis and phase equilibrium 
calculations at high pressures using the enhanced simulated annealing algorithm. 
Chemical Engineering Science, Vol. 55, No. 17, 3451-3459. 

www.intechopen.com



Stochastic Optimization - Seeing the Optimal for the Uncertain

Edited by Dr. Ioannis Dritsas

ISBN 978-953-307-829-8

Hard cover, 476 pages

Publisher InTech

Published online 28, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Stochastic Optimization Algorithms have become essential tools in solving a wide range of difficult and critical

optimization problems. Such methods are able to find the optimum solution of a problem with uncertain

elements or to algorithmically incorporate uncertainty to solve a deterministic problem. They even succeed in

â€œfighting uncertainty with uncertaintyâ€ ​. This book discusses theoretical aspects of many such algorithms

and covers their application in various scientific fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Adrián Bonilla-Petriciolet, Didilia I. Mendoza-Castillo, Juan Gabriel Segovia-Hernández and Juan Carlos Tapia-

Picazo (2011). Phase Equilibrium Modeling in Non-Reactive Systems Using Harmony Search, Stochastic

Optimization - Seeing the Optimal for the Uncertain, Dr. Ioannis Dritsas (Ed.), ISBN: 978-953-307-829-8,

InTech, Available from: http://www.intechopen.com/books/stochastic-optimization-seeing-the-optimal-for-the-

uncertain/phase-equilibrium-modeling-in-non-reactive-systems-using-harmony-search



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


