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1. Introduction 

Global and dynamic optimization of engineering problems usually involves complex 

physico-chemical models as constraints. These models are in general highly non-linear, 

resulting in multimodal optimization problems. The model may have discontinuous 

behavior and/or include a very large set of variables. As the complexity of the systems 

increases, equation-free modeling is becoming more common (Kevrekidis, Gear and 

Hummer, 2004). For example, in particle dynamics, population balance models are 

sometimes more effectively solved by the Monte Carlo method.  

Stochastic global optimization methods are very important algorithms for the solution of 

these types of problems. They have been successfully applied to solve challenging problems 

that cannot be solved using gradient based methods. Stochastic optimization methods have 

also been used in many algorithms, in which solution of optimization problems is part of the 

algorithm. Global stochastic optimization strategies have been utilized in learning phase of 

pattern recognition algorithms using fuzzy logic (Irizarry, 2005b) and neuro-fuzzy systems 

(Lin, 2008). These methods have been used for the optimization of complex engineering 

designs involving computational fluid mechanics such as aerodynamics applications 

(Duvigneau and Visonneau, 2004). Other applications include the determination of 

molecular structures, including protein structure prediction and protein-small molecule 

interactions among others (Sahinis, 2009). Batch scheduling problems are another type of 

problem were stochastic optimization can be very efficient (Liu et al., 2010).  

In particular, the solution of dynamic optimization problems is also of great industrial 
importance for process development and process optimization, since most processes are 
dynamic. In this type of problem an optimal profile function is sought (vs. an optimal value 
for a set of variables). For example, in a fed-batch fermenter, the feed-rate schedule is 
optimized to maximize production of antibiotics, vitamins, enzymes, and other products 
(Banga et al., 2003). Another example is the determination of optimal temperature profiles in 
crystallization processes to control crystal size distribution (Ma, Tafti and Braatz, 2002). 
Dynamic optimization is also of central importance to the application of process control 
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using model predictive control (Banga, Irizarry-Rivera and Seider, 1998; Pistikopoulos, 
2009). Model predictive control provides a sequence of control actions over a future time 
horizon by solving a dynamic optimization problem that covers past and future behavior of 
the system.   
The genetic algorithm (GA) (Holland, 1975; Goldberg, 1989) and simulated annealing (SA) 
(Kirkpatrick, Gelatt and Vecchi, 1983; Ingber, 1993) are classical stochastic optimization 
methods used in many applications and new algorithm developments. GA is based on 
emulating Darwinian evolution in populations. Evolutionary strategies also focus on real 
decision variables problems using Darwinian evolution concepts (Schwefel, 1995). In these 
population-based methods, a large set of configurations forms a population, with new 
generations created by selection, crossover and mutation operators acting on the current 
population. This evolution process will increase the fitness of the population to a near 
optimal value. These algorithms strongly depend on the parameters and types of selection, 
crossover and mutation mechanisms selected. These operators are continuously being 
improved and redefined for specific applications and problems (as one of many examples 
see Tang, Sun and Yang, 2010). Other algorithms like the ant colony (Dorigo and Stutzle, 
2004)) and particle swarm optimization (Kennedy and Eberhart, 2001) are inspired by 
cooperative phenomena of animal behavior or agents.  
Simulated annealing was designed for combinatorial optimization problems using concepts 
from statistical physics. In this case, a very low-energy configuration may be achieved by 
starting at a high temperature and then gradually lowering the temperature using a cooling 
schedule. The performance of these algorithms depends strongly on the selection of the 
cooling schedule, which in general needs to be tuned for specific problems. Furthermore, SA 
does not consider how to select a step change for the next trial solution, which is critical to 
the success of the algorithm. This needs to be defined by the user for the problem at hand. 
This chapter discussed an alternative for global optimization methodology based on a 
different paradigm known as the artificial chemical process (Irizarry, 2004). The paradigm 
has been used to design robust dynamic optimization algorithms (Irizarry, 2005a; Irizarry, 
2006) and fuzzy logic algorithms (Irizarry, 2005b). Fast MC algorithms of population balance 
models are also reviewed (Irizarry, 2007a; Irizarry, 2007b). These coarse graining algorithms 
accelerate simulation speed by an order of magnitude without loss of accuracy, making 
optimization of these systems feasible in real time. Unlike other lumping or coarse graining 
strategies, in this strategy the particle integrity is not lost in the coarsening process. This 
increase in speed allows the efficient solution of parameter identification problems (Irizarry, 
2010) and dynamic optimization problems. The LARES algorithm is described in Section 2. 
A general purpose algorithm to solve dynamic optimization problems is described in 
Section 3. Section 4 considers fast MC simulation algorithms for the simulation of 
population balance models. Fast MC strategies are discussed in Section 5. Section 6 discusses 
how to combines the algorithms into a hybrid strategy to solve problems involving multiple 
time scales and inherently stochastic variables. 

2. Global optimization using the artificial chemical process paradigm 

In this section an optimization algorithm called LARES is reviewed. This algorithm is based 
on an artificial chemical optimization paradigm introduced in 2004 (Irizarry, 2004). To apply 

the algorithm, the first step is to encode all decision variables, θ , into a set of integer 

variables with a very small range of possible values (i.e., 2–10). The integer variables are 
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called molecules, and their respective values are called states. As a motivating example 

consider a case were θ  is a vector of real variables. The real decision variables can be 

encoded using a binary representation (similar to GA). Unlike GA, in this encoding each bit 
of the string is associated with a molecule variable with two possible values (0 and 1), which 
represents the value of a specific bit in the binary encoding (see Figure 1). In general, any 
type of decision variables (including real, integer, logical, and combinatorial) can be 
encoded into a set of molecules, making the algorithm very flexible. 
 

0 1 0 1 1 0

0

1

0

1

1
0

Binary code

Molecule

 

Fig. 1. The concept of molecules for binary encoding of a real variable 

Given the decision vector represented as a set of molecules, the LARES algorithm operates 
on these molecules to create new trial states. At each iteration of the algorithm, a subset of 
molecules will change state (value) to generate a new trial vector. The artificial chemical 
plant concept is based on the fact that chemical reactors convert a low-quality material into a 
high-value product by a series of reactions, feedback loops, and separation steps. The 
following algorithm is based on an abstraction of those steps. 

2.1 The LARES artificial chemical plant paradigm  

The LARES algorithm is an iterative improvement methodology, which considers one 

solution at a time. Given the decision variables encoded into molecules, the algorithm 

generates a movement of some molecules between four compartments or sets  (called L, AR, 

E, and S). The four compartments are shown in Figure 2 (panel 1). The algorithm starts with 

all molecules assigned to a set L with an initial state. At each iteration, a set of rules 

determines the event to be triggered next. Each event is a stochastic subprocess whereby a 

subset of molecules is moved from one compartment to another. When molecules reach one 

specific compartment (AR), their state is changed (similar to a reactor in a real chemical 

plant). The set of rules for the next event selection are based on the previous values of the 

objective function and the objective function of the best value found so far.   

Before describing the algorithm in detail, the different types of possible triggered events are 

described. Let g
jx  be the state of the molecule j for the best value found so far (or initial 

trial), and 1( ,..., )g gg
Vx x x=  the vector of molecular states for the best value found. Let F be 

the objective function to be minimized. Figure 2 panel 2 shows an example of the state of six 

molecules for the best value found so far. One possible event consists of a set of molecules 

being transferred from the Load tank (L set) to the Activation Reactor (AR set), in which the 

molecules change state to a new random state, ga
j jx x j AR≠ ∀ ∈ .  The state of molecules will 
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not change while they are inside AR. An example of this type of event is shown in Figure 2 

panel 2, where molecules 1 and 4 were moved from L to AR and their states changed from 0 

to 1 and 1 to 0, respectively (compare panel 1 and panel 2). This event generates a new trial 

vector as shown in Figure 2 panel 3, the performance of which is evaluated. In another type 

of event in a different iteration, some reacted molecules can be sent to the Extraction unit (E 

set) where they are deactivated back into their previous state upon entering the reactor 

( gt
j jx x j E= ∀ ∈ ). These extracted molecules could be sent to the Separation unit (S set) or 

recycled back into the Activation Reactor, where the molecules are reactivated to a new state 
ga

j jx x j E≠ ∀ ∈ . At each iteration, a trial vector consists of the activated molecules in AR and 

the deactivated molecules in the other three sets: gt a
j j jx x x j AR= ≠ ∀ ∈ , gt

j jx x j AR= ∀ ∉ . If, 

after any event in the current iteration, a "good batch" is accomplished (i.e., a better objective 

function is found, ( ) ( )t bF Fθ θ≤ , the activation reactor can be emptied into the separator unit, 

S. In this case all molecules conserve the new state ( g a
jjx x j AR= ∀ ∈ ), and a new "batch" is 

then started. The algorithm is described in detail in the next section. 
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Fig. 2. The artificial chemical process in panel 1 changes the state of the molecules in panel 2 
to a new trial state in panel 3 by transferring some molecules from L to AR and changing the 
states of the molecules in AR. 

2.2 LARES algorithm 

Initialization: The algorithm starts by initializing xg randomly and placing all molecule 
variables in L. 
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Outer loop: Perturbation to form AR. 

1. Select the number of molecules, N, to be extracted from L and added to the AR set 

( 1N rF= , where and r is a random number uniformly distributed in (0,1)). 

2. Select N random molecules from L and add them to the AR set.  For each selected 

molecule j, select a new state ga
j jx x≠ randomly. 

3. Form a new trial vector using 

 

g
jjt

j a
j j

x if x AR
x

x if x AR

⎧ ∉⎪= ⎨
∈⎪⎩

 (1) 

4. If performance is improved, accept the trial state as the new best solution (ground 

state). g tx x← . Send all AR molecules to the S set. Go to Step 1.  

5. Set parameters: ( )tRP F x= , 
0

AR AR= . 

6. Inner loop:  Iterative improvement of AR 

6.1  Select the number of molecules, M, to be extracted from AR to form E ( 2M rF= , 

where 2F  is an algorithm parameter, and r is a random number.) 

6.2  Select M random molecules from AR and transfer them to the E set. Return the 

state of all molecules j in E to the state of the best solution found, gt
j jx x= , and 

build the trial vector as in Step 3 using Eq. (1).  

6.3 If the performance is improved, g tx x← , and go to step 1. 
6.4 Improvement criterion for AR:  

6.4.1 If F(xt) ≤ RP, add all molecules in E to S and update ( )tRP F x= . 

6.4.2 If F(xt) > RP, generate a new activated state for all elements in E 

( ,ga
j j jx x x j E= ≠ ∀ ∈ ) and transfer all molecules in E to AR ( E = ∅ )  

6.5 Exit the inner loop if AR is too small or if the ratio of the number of iterations 
relative to the initial size of AR exceeds a given parameter, RRT. Otherwise go to 
Step 6.1. 

7. If the size of L is less than a parameter LT, transfer all S molecules to L. 

In Step 1, 1 0F V c= × ; in Step 6.1 2 0 iF AR c= × . In both cases, if the number of molecules 

selected is larger than the set, all molecules in the set are selected. The parameters used for 
this algorithm are: RRT = 1.0, co = 0.3, ci = 0.25, LT = V/2.  
The algorithm was shown to be fast and robust when tested with problems of different 
degrees of multi-modality, discontinuity and flatness. The molecular representation allows 
the solution of a large class of problems. This structure is general in purpose but also has the 
flexibility to add problem-specific features. For example, the “locality” of these operators 
allows the inclusion of bias in the sub-set formation (Steps 3 and 11) or the transformation 
rule (Step 5).  

2.3 Algorithm performance 

This algorithm has been tested and extensively utilized to solve many optimization 
problems. Its performance in some of the test problems is reviewed in this section. The 
multi-modal random problem generator of Spears (Spears, 1998) was utilized to test LARES 
over various degrees of modality for binary representation. The problem generator 
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generates a set of P random V-bit strings representing the location of the P peaks in space. 
To evaluate the performance of an arbitrary string, the nearest peak is located (in Hamming 
space).  Then the fitness of the bit string c is calculated as the number of bits the string has in 
common with that nearest peak, divided by V. The optimum fitness for an individual is 1.0. 

 
1

1
( ) max{ - min ( , )}

P

i
i

f c V Ham g c Peak
V =

=  (2) 

The objective function used in LARES was ( ) 1 - ( )F c f c= , while –F(c) was used for the 

fitness function in GA simulations.  
Table 1 shows the results for four study cases.  For each set of parameters V and P, 20 
random problems were generated in each case. Each algorithm was run on each problem 

generated. LARES found the global maximum in all cases ( ( *) 0f c = ), while GA failed to 

find the global maximum for cases 3 and 4, and μGA failed to find the global maximum in 
three out of four cases.  For the first case, LARES converged to a global optimum in 78 

function evaluations on average, while GA converged in 900 function evaluations and μGA 
converged in less than 350 function evaluations.  For the second case, LARES found the 
global maximum in 647 evaluations on average, while GA converged in approximately 3,700 

evaluations and μGA failed to find the global maximum in 20,000 function evaluations (see 
Figure 3). For the third and fourth study cases, LARES was the only algorithm that 
converged to the global maximum in nearly 30,000 function evaluations. This behavior was 
explored systematically by De Jong et al. (1997). In their analysis, the authors found that for 
V = 20, the simple GA will converge in less than 5,000 function evaluations. For V = 100, 
many trials failed to find the global optimum after 20,000 evaluations.  
The algorithm has also being tested with Boolean satisfiability problems (SAT), which refers 
to the task of finding a truth assignment that makes a Boolean expression true. The Boolean 
satisfiability problem generator of Mitchel et al. (1992) was used to test the performance of 
LARES in solving random problems with different levels of epistasis. The model assumes a 
conjunctive normal form of the Boolean expression with C clauses. All clauses are also 
assumed to consist of the same number of literals, L.  The vector of variables V is 
represented as a binary string.   
A random problem is generated to create C random clauses. Each clause is generated by 
randomly selecting L variables, and then each variable is negated with probability 0.5. Once 
a random L-SAT problem is defined, the fitness function, f, is given by the fraction of clauses 
that are satisfied by the assignment.  Note that the main goal of this section is to study 
LARES with different levels of epistasis. For practical solution of this type of problem, 
methods such as GSAT (Selman and Kautz, 1993) and WSAT (Gottlieb et al., 2002) have been 
specially developed. 
 

V P 
Number of 
Iterations 

GA μGA LARES 

20 20 20,000 0 0 0 
100 20 20,000 0 0.03 0 
1000 20 30,000 0.16 0.29 0 
1000 200 30,000 0.16 0.29 0 

Table 1. Comparison of LARES performance with GA for the multi-modal random problem 
generator. 
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Fig. 3. Average best-so-far curves for LARES, GA and μGA using a multi-modal problem 
generator with V = 100 and P = 20. 

Table 2 shows the solution of a series of L-SAT random problems using LARES and GA.  
Each test consists of an average of over 20 randomly generated problems. In all simulations, 
the length of clauses, L, had a fixed value of 3. The number of variables, V, was also fixed at 
a value of 100. The number of clauses was used as a parameter in the simulation, ranging 
from 200 to 2400. LARES was faster than GA in all cases, but in the last two cases GA found 

a slightly better solution while μGA found a slightly worse solution to the L-SAT problem 
(see Figure 9). These results indicate that LARES also behaves very well with problems 
involving different levels of epistasis. 
The LARES algorithm was also applied to a very challenging test bed used by many authors 
to test real function optimization algorithms. Binary encoding was used to represent real 
variables. The algorithm was compared with GA using the same test bed, starting with the 
same initial guesses, and performing the same number of iterations.  Comparisons are also 
made with other methods specifically designed for real-function optimization reported in 
the literature. Although literature in this field is extensive, few studies involve methods that 
are efficient for real function optimization. Reported algorithms include Differential 
Evolution (DE) (Storn and Price, 1997), the Breeder Genetic Algorithm (BGA) (12 
Mühlenbein and Schlierkamp-Voosen, 1993), Evolutionary Algorithm with Soft Genetic 
operators (EASY) (Voigt, 1995), the Line-up Competition Algorithm (LCA) (Yan and Ma, 
2001), Continuous Ant Colony Optimization (CACO) (Mathur et al., 2000), Adaptive 
Simulated Annealing (ASA) (Ingber and Rosen, 1992), Very Fast Simulated Annealing 
(VFSA) (Ingber, 1993), Guided Evolutionary Simulated Annealing (GESA) (Yip and Pao, 
1995) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, Muller and 
Koumoutsakos, 2003). In summary, LARES had better performance than GA in most 
instances, and in many cases the speed of LARES is comparable to that of methods specially 
designed to operate with real-value optimization problems. 
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Number of 
classes, C 

Number of 
iterations 

GA μGA LARES 

200 30,000 0 0 0.0003 
1200 30,000 0.0433 0.050 0.0469 
2400 30,000 0.0651 0.071 0.0675 

Table 2. Comparison of LARES and GA performance with the LSAT random problem 
generator 

 
Fig. 4. Average best-so-far curves for LARES, GA, and μGA using a L-SAT problem with C = 
200, L = 3, and V = 100. 

3. Solution of dynamic optimization problems using LARES 

As discussed in the introduction, dynamic optimization is a very important type of 
optimization problem in operation research and engineering, since many systems of interest 
are dynamic. In particular, most processes in the chemical industry are batch processes in 
which optimal reactant addition (and/or temperature) profiles determine product quality. 
Dynamic optimization is also used in model predictive control systems. These types of 
problems are more effectively solved using stochastic optimization methods that can escape 
from local minima and are not affected by singularities. In Banga, Irizarry-Rivera, and 
Seider (1998), an efficient and robust algorithm was developed to solve dynamic 
optimization problems using a flexible parametrization of the control law, consisting of a 
piecewise variable-length linear function. This method resulted in a big improvement over 
the more traditional piecewise constant approximations (Roubos et al., 1999; Luus, 2000). A 
generalized algorithm that uses LARES with a very flexible control law representation has 
also been considered (Irizarry, 2005a). This algorithm is reviewed in this section.  
Unlike standard optimization to determine the optimal value of a set of real variables, in 
dynamic optimization, we seek an optimal function u(t) or a set of functions ui(t), i= 1,M. 
The dynamic optimization problem for a single control law can be formulated as: 
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Find u(t) over [ , ]o ft t t∈ such that 

 
( )

( ( ))f
u t

F x tmin  (3a) 

subject to: 

 ( ( ), ( ), )
dx

x t u t t
dt

= Ψ  (3b) 

 ( )o ox t x=  (3c) 

 ( ( ), ( )) 0h x t u t =  (3d) 

 ( ( ), ( )) 0c x t u t ≤  (3e) 

 ( )L Uu u t u≤ ≤  (3f) 

where F is the performance index, u is the control law, and x the vector of state variables. 
The set of constraints consists of the dynamic model (Eqn. 3b), the initial conditions of the 
state variables (Eqn. 3c), the equality constraints (Eqn. 3d), the inequality constraints (Eqn. 
3e), and bounds on the control variables (Eqn. 3f). Different methods to solve this type of 
problem have been reviewed recently by Banga et al. (2003). 

3.1 LARES-PR algorithm 

The previously introduced algorithm (Irizarry, 2005; Irizarry, 2006) consists of interfacing 
the LARES algorithm with a generalized representation of the control law. This procedure 
decodes the LARES decision variables (molecules) into a flexible representation of the 
control law based on three key elements: (a) variable-length segments, (b) the use of finite 
element trial functions to represent the control function in each segment (Zienkiewics, 1977), 
and (c) switching between different representations to model each segment with different 
functions. Figure 5 shows an example in which the possible profile is represented by three 
segments of different lengths. In the first segment, the control function is modeled with a 
quadratic finite element. The second segment is modeled with a constant function (step 
function). The third segment is modeled with a linear finite element. In this representation, 
the segment sizes, the type of function representing each segment, and the adjustable 
parameters of the selected function for each segment are all decision variables of the 
optimization problem to be solved. This representation spans a large functional space in 
which smooth regions, drastic changes in functionality, singularities, and discontinuities of 
the control function can be found as part of the solution for the optimization problem with a 
reduced number of decision variables.    
The unknown control profile is encoded according to the following procedure. For the 
segments represented with finite elements, the node values of the finite element are part of 
the decision variables. Molecules are assigned to encode each of these variables using binary 
encoding. The function selection for each segment is then performed as follows. The data 
structure starts with all segments represented by finite-element function using the highest 
order of elements to be considered in the analysis. Then, a logical variable is defined for 
each segment, which is used as a switching mechanism. The logical variable can replace the 
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Variable-length segments

Node location is part of the problem

Time

u(t)

E1 E2 E3

 

Fig. 5. Profile representation: generalized structure. 

element with a lower-order element or with user-defined functions over the same segment 
interval. Figure 6 illustrates the hybrid formulation. This example consists of quadratic finite 
elements with three nodes representing each element. The logical variable with state 

(1,1,2,3,0)δ =  replaces the first two elements with lower-order linear elements (eliminating 
the middle node as a variable), the third and fourth elements are replaced with user-specified 
functions, and element 5 is represented with a quadratic element. The combinatorial variables 
for each finite element, iδ , is an integer number whose range equals the number of possible 
functions to be used. One molecule is selected for each combinatorial variable. The number of 
states for the molecule equals the number of possible functions that can represent a segment. 
 

Master finite elements

Linear Linear f g Quadratic

Hybrid formulation

Logical variable, δi
1 1 2 3 0

Master finite elements

Linear Linear f g Quadratic

Hybrid formulation

Logical variable, δi
1 1 2 3 0

 

Fig. 6. Encoding a hybrid formulation. 
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The encoding of the segment size is the most difficult aspect of this formulation. The size of 

each segment is a component of the decision variables of the optimization problem, 

represented by a partition 1.... Nτ τ . For each trial solution, a new partition is generated ( t
iτ , 

where the sequence is in increasing order, 1
t t
i iτ τ +≤ ). These variables cannot be encoded 

directly into LARES, and if standard binary encoding of these parameters in the range 

[0, ]i ftτ ∈  is utilized, this constraint will be violated frequently during LARES iterations. 

This problem is avoided by the following two-step procedure, called Moving Partition (MP) 

transformation (Irizarry, 2005a). First, computational variables are chosen for each partition 

variable ( 0,1is ∈⎡ ⎤⎣ ⎦  to represent each iτ ). Mapping from this computational domain to the 

physical domain is made with the help of the disjoint segments, each one around the 

partition of the best solution found. Let b
iτ  be the sequence for the best solution found. Then 

the following boundaries are calculated: 

 ( ),
1 / 2L b b b b

i i i iτ τ β τ τ −≡ − ⋅ −  (4) 

 ( ),
1 / 2U b b b b

i i i iτ τ β τ τ+≡ + ⋅ −  (5) 

where the parameter β is used to control the gap between the disjoint segments. With this 

boundary for each partition node and the trial vector, t
is , the actual trial partition is 

calculated from the following MP mapping, , ,: [0,1] [ , ]L b U b
i i iT τ τ→ , defined as follows: 

 ( ), , ,t L b t U b L b
i i i i isτ τ τ τ= + ⋅ −  (6) 

The MP is shown schematically in Figure 7. As shown in this figure, the trial variables 

1 ,... Ns s  are not in ascending order ( 2 1s s< ), but the trial partition values, 1 ,... Nτ τ  are in 

ascending order ( 1 2τ τ< ). 
With this description of the control law, the LARES-PR algorithm can be described as follows: 
LARES-PR algorithm. The overall algorithm is discussed in Irizarry (2005). It consists of 
interfacing this profile representation with LARES. After a new trial molecular state from 
LARES, the procedure described in this section consists of (1) decoding, (2) applying MP 
transformation, (3) building the control law determined by element type, size, and 
parameters, (4) integrating the model, and (5) feedback to LARES regarding the 
performance of the control  

3.2 Simulation results 

LARES-PR performance has been studied with a set of benchmark problems with low 
sensitivity of the objective function, bang-bang behaviors, singular arc, and discontinuities in 
the optimal profile. In all cases, the algorithm has proven to be efficient and robust. Figure 8 
shows the solution of four optimization problems used by several authors as benchmark 
problems. The Van der Pol oscillator problem has been studied by Vassiliadis (1993), Tanartkit 
and Biegler (1995), Banga, Irizarry-Rivera and Seider (1998), and Vassiliadis et al. (1999). This 
problem was solved using the generalized control function, where each element can be 
represented by either linear or quadratic Lagrange polynomials. The optimal profile is shown 
in Figure 8a, with an improved performance index over other methods using only four 
elements and a smoother profile compared to previous results reported in the literature. 
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Fig. 7. Moving partition transformation. Each variable in a computational domain is 
mapped into a corresponding space/time subdomain. 

The second case shown in Figure 8b is a plug-flow reactor with singular arc. In this problem, 
a plug-flow reactor packed with a mixture of catalysts is used to perform the reaction 

A B C⇔ ⇔ . The fraction of catalyst is adjusted throughout the reactor to maximize the 

product C. This problem was solved using the generalized control law approximation with 
three possible functions for the element Ei: δi = {1, 2, 3} = {u(t) = constant finite element, u(t) 
= umax, u(t) = umin}. The optimal control law is shown in Figure 8b. Figure 8c shows the 
optimal production of secreted protein in a fed-batch reactor. This problem consists of a 
bioreactor operated in fed-batch mode studied by Park and Ramirez (1988), Luus (1992), 
Banga, Irizarry-Rivera and Seider (1988), Vassiliadis et al. (1999), and Sarkar and Modak 
(2003). This problem shows very low performance index sensitivity of the control profile, 
often leading to computational difficulties particularly when gradient-based algorithms are 
used. The fed-batch reactor problem was also solved using the generalized control law 
approximation, with three possible functions for the element Ei: δi = {1, 2, 3} = {u(t) = 
quadratic finite element, u(t) = umax, u(t) = umin}with 10 elements. The control law gives a 
global optimum for this problem. 
Figure 8d shows the optimal profile for the bang-bang control problem (see Irizarry 2005a 
for a detailed description of the problem). To solve this problem, eight elements were used, 
and the function approximation of each element is either a linear interpolation function or 
the bang-bang constant functions δi={1, 2, 3}={u(t)=linear trial function, u(t)= umax, u(t)= 
umin}. LARES-PR found the correct bang-bang feature as part of the solution, that is, δ*= 
{4,3,4,3,4,3,4}. This is an important element of the proposed method, which can be used with 
general-purpose approximation functions or with problem-specific functionalities for which 
the proposed algorithm will identify problem features in addition to the solution.  
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In most cases, the near optimum value (less than 0.5% of global optimum) was found in less 
than 1,000–10,000 function evaluations. The algorithm continues to refine the solution at a 
slower rate, resulting in very accurate solutions. In most cases, a very accurate solution can 
be found in 50,000–100,000 iterations. The results demonstrate that LARES-PR is robust and 
has fast convergence properties when compared with other stochastic optimization 
methods.   
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Fig. 8. Optimal profiles: (a) Van der Pol oscillator problem, (b) plug-flow reactor with 
singular arc, (c) fed-batch bioreactor, (d) bang-bang control problem. 

LARES-PR has also being applied to large-scale optimal control problems with discrete-time 
dynamics and multiple control laws. The dynamic integrated climate-economy (DICE) 
model for global warming (Nordhaus, 1994) is a model of a very important problem, which 
posed several challenges in finding the optimal profile. This model consists of maximizing 
the discounted sum of per capita utilities consumption subject to the dynamics of emissions, 
economic impact, and economic cost of policies to control global warming. Moles, Banga 
and Keller (2004) made an extensive study of optimal policy with a modified version of this 
model using different global optimization algorithms (ICRS, LJ, DE, SRES, GLOBAL, 
GCSOLVE). As discussed in Moles, Banga and Keller (2004), the numerical solution of this 
multimodal NLP is very challenging, due to the non-convexities and discontinuous nature 
of the dynamics.  
As the time horizon is discrete, the dynamic optimization problem can be formulated as a 
standard NLP problem with the value of the control laws at each discrete time as a decision 
variable. Using this approach, the number of decision variables increases as the time 
horizon, Nt, increases (number of decision variables = Nt*Nu), resulting in a large-scale 
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nonlinear optimization problem. Alternatively, the profile representation of LARES-PR can 
be utilized to represent the control law with a very small set of decision variables. 
Figure 9 shows the performance of LARES, DE, CRS, and LARES-PR in solving the original 

DICE model for a time horizon of 50 decades. As shown in Figure 9, LARES and LARES-PR 

are faster than DE and CRS in converging to a near global optimum. In particular, LARES-

PR was much faster than all methods with a high-quality solution: The best value found for 

each algorithm was: W* = 966.91767 (DE), 966.91632 (LARES-PR), 966.91353 (LARES), and 

966.69733 (ICRS). When the number of finite elements was increased from five to eight, the 

solution was improved to almost identical to the DE results in fewer iterations, with W* = 

966.91711 (LARES-PR).  

LARES-PR effectively solved this problem, which consisted of finding the optimal 

functionality of two simultaneous control laws. To implement multiple control laws, a 

representation is defined for each unknown profile (PR1 and PR2). 
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Fig. 9. Performance for the DICE climate-economy discrete time model: (a) DE, (b) CRS, (c) 
LARES, (d) LARES-PR. 

4. Monte Carlo methods for population balance problems 

A great majority of products are composed of finely divided solids or contain finely divided 

particles as part of their composition. One example is metallic microparticles and 

nanoparticles used in electronic ink compositions. Another example is the dispersion of 

pigments in paints. Most pharmaceutical products include a crystallization of organic 

powders. The particle size distribution, shape, and composition of these finely divided 

particles control the properties of the final product. Therefore, the understanding of these 

particles and how they form is of great importance (Irizarry, 2010a). The macroscopic 

modeling of particle formation consists of formulating population balance equations for the 

problem at hand. When optimization of these systems is pursued, the population balance 

equations appear as part of the constraints (Irizarry, 2005; Irizarry, 2006). 
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Population balance models are continuity equations of a particle population evolving by 

different mechanisms (such as aggregation, breakage, nucleation, and growth). The 

continuous population balance equation, PBE, is a deterministic integro-differential 

equation that describes the dynamics of a particle density function as a function of 

continuous particle properties (i.e. volume, particle radius, surface area, etc.). As the 

dimensionality of the PBE increases, the direct numerical solution of these equations 

becomes more difficult. For a multidimensional population balance equation, the Monte 

Carlo (MC) solution is an attractive alternative (and in many cases the only option). In these 

methods, the system evolution is modeled by a simple stochastic game, which is robust and 

easy to implement (Gillespie, 1975; Garcia et al., 1987). For systems close to the 

thermodynamic limit, both the MC solution and the direct numerical solution of the PBE 

converge to the same results. In many situations of practical interest, the MC solution may 

become very slow. Several optimization approaches have been developed to increase the 

MC simulation speed. The point ensemble Monte Carlo (PEMC) algorithm and the τ−PEMC 

algorithm developed in 2007 (Irizarry, 2007a; Irizarry, 2007b) are approximated MC 

methods that increase simulation speed by orders of magnitude when compared with 

existing MC methods.  

Population balance models can be formulated as discrete events Markov processes (also 

known as a jump Markov process). The standard exact simulation method (exact MC) for 

jump Markov processes consists of selecting the time for the next event and the type of 

event sequentially until a final time is reached (one trajectory). Many trajectories are 

calculated to generate the probability distribution function of the Markov process variables. 

This simulation method uses the propensity functions of each event, sE , defined as follows: 

R(Es) dt ≡  the probability that the event Es occurs in the time interval (t, t + dt). 

The time for the next event, τ, is sampled from an exponential distribution:   

 ( ) exp[ ]P R Rτ τΣ Σ= .  (7) 

where RΣ  is the total propensity of all possible events ( ( )i
i

R R EΣ = ∑ ). The probability of 

the event, iE , occurring next (i.e. that particles will aggregate) is proportional to the event 

propensity, ( )iR E :  

 ( ) ( ) /i iP E R E RΣ= . (8) 

 

In the inverse method, this distribution is sampled using a uniform random variable 

(0,1)r ∈  and then solving the following equation:  

 
1

1 1

( ) ( )
f f

i i
i i

R E r R R E
+

Σ
= =

< ≤∑ ∑  (9) 

where , 1,iE i T=  is the indexed list of all possible events, and T  is the total number of 

events. The solution of this equation, fE , is the next event to be executed at time t τ+ . 

Alternatively, the acceptance-rejection method can be used to sample the next event [5]. 
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This simulation procedure has been used to develop the stochastic simulation algorithm, 

SSA, for chemical kinetics (Gillespie, 1976; Gillespie, 1977). In this method the firing of a 

chemical reaction represents a discrete chemical kinetic event of the Markov process. This 

algorithm is also known as kinetic Monte Carlo (KMC). The exact MC has also been used for 

the MC solution of population balance models. In many situations of practical interest, the 

MC solution may become very slow, especially when the number of particles in the 

simulation box is increased and the total number of events becomes very large or when the 

computational cost of calculating all the rates, RΣ  is large. In these cases the calculation of 

Eqs. (1) and (3) becomes very computationally expensive, slowing down the generation of 

trajectories.  

To further accelerate the MC simulation of population balance models, a new approach was 

introduced in 2007 (Irizarry, 2007a; Irizarry, 2007b). These algorithms are based on the 

construction of a jump Markov process called PERP, which approximates the actual jump 

Markov model. These algorithms are shown to reduce CPU time by orders of magnitude 

without sacrificing simulation accuracy, when compared with optimized exact MC methods. 

Unlike other coarse graining (or lumping) strategies in which information and identity is 

lost, in these algorithms, the history of each particle is retained while a coarse view of the 

process is taken. These two algorithms are summarized in the next section.  

5. Fast Monte Carlo algorithms   

The PEMC and τ-PEMC algorithms are based on the simulation of an approximated jump 

Markov process called PERP (Irizarry, 2007a; Irizarry, 2007b). This approximated Markov 

process is based on three ideas. First, the total population is "discretized" into 

subpopulations of particles with sizes of specified intervals. Each subpopulation is viewed 

as a "chemical species" with the number of particles in the subpopulation representing the 

number of molecules of that species in the simulation volume. Second, the inter-particle 

interactions (i.e. aggregation, nucleation, breakage) are viewed as a set of special types of 

reaction, in which the reaction products are allocated stochastically to the existing species 

using probability functions that are mass conserving on average. Third, the original set of 

subpopulations is coupled with the system of "chemical species". The PERP Markov process 

is described next.  

5.1 PERP Markov process and PEMC algorithm 

The first step in this approximated Markov process is the partition of the particles in the 

simulation volume into a set of sub-ensembles, Φi , called point ensembles. This partition is 

made using a set of M grid points of representative sizes v1,…vM. All simulation particles in 

an interval around the grid point vi are allocated in point ensemble Φi. Let Ni be the number 

of particles in point ensemble Φι. The state vector is then defined as ( ),N Φ  were 

1 2( , ,..., )T
MN N N=N  and 1 2( , ,..., )T

MΦ = Φ Φ Φ . Here, each grid point is viewed as a 

chemical pseudo-specie, Si, with Ni molecules in the simulation volume. For example, Figure 

10 shows a size-dependent partition of 17 particles (each with a set of different properties) 

into five point ensembles. The five pseudo-species  ( 1 2 5, ,...,S S S ) defined by this partition 

have (3, 4, 6, 3, 1) molecules in the simulation volume.   
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Fig. 10. Schematic of PERP jump Markov model 

In this approximated process, the discrete events consist of a set of “reaction channels” 
where the reaction part involves the pseudo-species to mimic the actual particle event (i.e. 
aggregation between two particles). Unlike standard reaction channels of chemical kinetics, 
the product component consists of several steps, some of them also stochastic processes.  

In the exact Markov process, an event, E, is defined in terms of the possible interactions 

between the simulation particles. For example, an aggregation between two particles i and j 

is an event that creates a new particle in the simulation volume ( : new i jE x x x= + ) and 

eliminates the mother particles from the simulation volume. The reactant component of the 

RPC mimics the same event, but between the pseudo-species instead of actual particles. For 

example, the events representing the aggregation mechanism in the original Markov process 

are replaced by an “aggregation reaction” of pseudo-species ( :s i jE S S+ ) in the PERP 

Markov process. In the case of aggregation, the propensity function for these “reaction 

channels” is given by: 

 
1

( ) 1 ( , ) /
2

s ij i j i j sR E N N q v v Vδ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (10) 

The propensity functions for other mechanisms have also been described (Irizarry, 2007a). 
Notice that the propensity of each event in the PERP Markov process is given only in terms 
of N. For the aggregation case discussed here, the PERP event is summarized in the 
following algorithm: 
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Algorithm M1: Fire an aggregation RPC event: f i jE S S= +  with 1( ) [ , ]i j k kv v v v ++ ∈ . 

1. Reduce iN  and jN  by one. 

2. Select random particles, n and m, from point ensembles i and j ( n ix ∈Φ and m jx ∈Φ ). 

3. Form a new particle from the mother particles, new n mx x x= + . 

4. Eliminate the particles n and m from their ensembles.   

5. Find the product sub-specie pS : p = k with probably fP  or p = k + 1 otherwise. 

6. Allocate the new particle to the product point ensemble new px ∈Φ , increase Np by one. 

 

The product pseudo-specie newS  in the current event is determined by letting the landing 

interval 1,k kv v +⎡ ⎤⎣ ⎦  be defined as the interval such that 1,new i j k kv v v v v += + ∈ ⎡ ⎤⎣ ⎦ . The product 

pseudo-specie is kS ( new kS S= ) with probability sP . In this case, the number of molecules 

kN  is increased by one, and newx  is allocated to kΦ . Otherwise 1new kS S += , 1kN +  is 

increased by one, and newx  is allocated to 1k+Φ . The product probability parameter, sP , is 

calculated using the mass conservation equation for this landing interval: 

1(1 )k s k s newv P v P v++ − = . All these events in the product component of the RPC are simply 

called PERP events. RPCs can be defined for any mechanism (Irizarry, 2007a)  
The PEMC algorithm is the exact MC simulation of the approximated PERP Markov 
process. A detailed description of these steps has been published (Irizarry, 2007b). Let 

, 1,..,iE i T=  be the list of all possible RPCs describing the population balance model at 

hand. The PEMC method is summarized in the following algorithm:  
 

Algorithm M2: PEMC (one iteration).   
1. Find the time to fire the next RPC using Eq. (7). Update the time t t τ= + . 

2. Find the RPC to be fired next solving Eq. (9). 
3. Fire the selected PERP event (Algorithm M1) 

 

These steps are repeated until the final time is reached. This algorithm is very fast because 
the set of RPCs is more compact than the set of all possible events between particles, making 
the calculations of Eq. (7) and (9) very fast. 

5.2 τ-PEMC 

The τ−PEMC algorithm is a τ-leap solution of the approximated PERP Markov process. The 

τ-leap method is an approximated stochastic simulation, were many events are fired at once 

over the time interval. Consider a coarser time interval, τ, such that many events occur in 

this interval, but small enough that the propensity functions will not change appreciably 

during τ. When this condition is satisfied, all reaction channels can be considered as 

independent events (Gillespie, 2001), and the number of firings for each reaction, Ej, is a 

Poisson random variable with distribution ( ); ( ),PD j jP k R E τ , where 

 ( ) ( ); ,
!

a
k

PD

e
P k a a

k

τ
τ τ

−

=  (11) 

The accuracy and speed of the method depends on the selection of time τ during the 
simulation (Gillespie and Petzold, 2003). Since the Poisson distribution is not bounded, it 
could generate negative values for the concentration.  
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Another improvement to the method is to replace the Poisson distribution with a binomial 
distribution (Tian and Burrage, 2004; Chatterjee, Vlachos, and Katsoulakis, 2005):   

 ( ) ( ) ( ) maxmax
max

max

; , 1
! !

k kk
BD

k
P k p k p p

k k k

−
= −

−
 (12) 

In this case the number of firings for each reaction, kj, is sampled from a binomial random 

variable with distribution ( )max; , j
PD j jP k p k , where max

jk is the maximum number of times 

reaction j can be fired (after consuming the limiting component). The firing probability for Ej 

is max( ) / j
j jp R E kτ= . The binomial distribution eliminates the problem of negative 

concentrations and is more robust with respect to larger τ values.  

The PERP process can be simulated using the τ-leap method, as previously described 
(Irizarry, 2007b).  A pseudo-code for this algorithm is described as follows: 
 

Algorithm M3:  τ-PEMC (one iteration) 
1. Select the time parameter, τ .  

2. For each RPC, sE , take a sample sk from a binomial distribution (Eq. (12)) using 

the parameter max( ) / s
sp R E kτ= . 

3. Fire each PERP event, sE , sk times (execute algorithm M1 sk  consecutive times). 
 

Continue steps 1-3 until the final time is reached. 

5.3 Performance of the PEMC algorithm with complex kernels 

The numerical accuracy of these algorithms has been studied with complex coagulation 
kernels of physical relevance. Numerical results are compared with the generalized 
approximation method (GA) developed by Piskunov and Golubev (2002) and Piskunov et 
al. (2002). The values for the second moment by the GA method are considered the most 
accurate existing numerical results in the literature. They are used here as benchmark 
values. The following kernels are considered: 
i. The Brownian kernel, 

 ( )( )1/3 1/3 1/3 1/3( , )Bq u v u v u v− −= + +  (13) 

ii. The coagulation kernel simulating the process of migration and coalescence of particles 
on a heated substrate, 

 2/3 2/3( , )q u v u v+ = +  (14) 

iii. The gravitational coagulation of particles in the Stokes regime, 

  ( )2
1/3 1/3 2/3 2/3( , )Cq u v u v u v= + −  (15) 

For the gravitational kernel, some moments diverge after a critical point that depends on 
initial conditions. The critical point for the initial conditions used here is in the range of 0.5–
0.8 (Piskunov et al., 2002). 
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The initial conditions used in the simulation for qB and q+ kernels are a mono-disperse 
solution with unit particle volume and unit total particle concentration. For the case of qC, 

the following initial conditions are utilized: ( ,0) 0.5 ( 1) 0.25 ( 2)n v v vδ δ= − + − . In Table 3, the 

CPU time and final second moments of the simulations for different methods are compared 

as a function of kernel type and number of particles. For the τ-PEMC, two representative 
coarse-graining factors (f = 100 and f = 1,000) were examined. All calculations were 
performed using Visual Fortran 6.6 on an Intel Pentium M 1.6 GHz machine with 504 MB 

RAM. Table 3 shows that τ-PEMC can be 14–44 times faster than PEMC.   

For kernel qB, the τ-PEMC method gives accurate results in all cases with a coarse-graining 
factor f = 100. For the case f = 1,000, the number of particles had to be increased to 50,000 to 
generate accurate second moments (see Table 3). The q+ kernel is more computationally 
challenging than the Brownian kernel, resulting in a wider distribution. Numerical results 
presented previously (Irizarry, 2007a) show that PEMC also quickly converges to the GA 
values. Table 3 shows the solution convergence to the exact value as a function of increasing 
the number of particles. For the factor f = 1000, large deviations of the second moments were 
observed even when a large number of particles was utilized. Good results were obtained 
for f = 100. 
For the qC kernel, some moments diverge at a critical value (gelling point). For the initial 
conditions used here, this critical value is believed to be between 0.5 and 0.8 (Piskunov et al., 
2002). Unlike most numerical methods, the PEMC gives accurate results for all times, 

especially at time 0.6, where all discretization methods diverge (see Irizarry, 2007a). The τ-
PEMC method can converge to the exact solution for times far from the critical point (time ≤ 
0.4). When the time reaches the critical point, the errors for the second moment were quite 
large in all cases.  
 

  PEMC  
τ-

PEMC
f=102 

τ-
PEMC

f=103 AR  GA 

Kernel Np CPU m2(tf) CPU m2(tf) CPU m2(tf) CPU m2(tf) m2(tf) 

qB 10,000 3.68 412 0.22 413 0.06 364 0.18 413 416 
 20,000 7.24 415 0.45 414 0.12 381 0.35 420  
 50,000 18.12 416 1.11 415 0.51 400 0.89 414  
           

q+ 10,000 5.75 2.15E+5 0.52 1.90E+5 0.13 7.45E+4 331.1 2.10E+5 2.29E+5 
 20,000 11.52 2.20E+5 1.01 2.03E+5 0.24 1.14E+5 662.7 2.24E+5  

 50,000 28.74 2.37E+5 2.49 2.29E+5 0.57 1.74E+5
1642.2

 
2.39E+5  

           
qC 10,000 0.36 33.00 0.02 9.02 0.006 0.0 70.2 6E+3 23.27 
 20,000 0.73 28.50 0.06 12.2 0.02 4.36 115.6 5E+3  
 50,000 1.76 23.30 0.18 15.7 0.05 7.16 290.0 5E+3  

Table 3. Comparison of second moments at final time tf  and CPU times between τ-PEMC 
and PEMC for kernels qB, q+, and qC. Numerical results are compared with the generalized 
approximation method (GA) and the acceptance-rejection MC method (AR). 

These results show that the τ-PEMC method generates accurate results if τ is selected to be 
small enough and the number of particles large enough. For the cases studied here,  
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Np = 20,000 and f = 100, give very accurate results for all kernels (away from gelling points). 

For simulations near gelling points, the performance of the τ-PEMC deteriorates, and the 
PEMC should be used in this case.  
Table 3 also shows results using the acceptance rejection (AR) method of Garcia et. al. (1987) 
for comparison. For the coagulation case, this method is very attractive because it is simple 
to implement and avoids calculation of all interactions between particles, making the 
method very computationally efficient. As noticed by other authors, the CPU time and 
accuracy of this method depends drastically on the problem (kernel and initial conditions). 
As shown in Table 1, for some cases the AR method can be very efficient (qB) while in other 
cases the CPU time is very high (q+). Additionally, the AR method diverges for the qC kernel, 
also shown in Table 3.  

6. Hybrid Monte Carlo algorithm for population balance models with 
stochastic and deterministic variables 

Most MC implementations of population balance models have focused on the solution of the 
PBE to approximate macroscopic variables. Less attention has been focused on the solution 
of population balance models where some species are far from the thermodynamic limit 
(very dilute or finite) and other species can be considered deterministic (high concentration). 
In this case the MC is more accurate than direct numerical solution, which ignores the 
inherent fluctuations of the system. This type of problem often results in a stochastic system 
that contains both stochastic and deterministic variables with multiple timescales for the 
different mechanisms. In this case, the direct MC simulation will be accurate but very 
ineffective in terms of CPU time. Furthermore, most of the computational time is spent 
sampling the fast events. This type of situation has been considered in the case of chemical 
kinetics and biological systems for which efficient hybrid algorithms have been developed 
to solve multi-scale problems (Salis and Kaznessis, 2005; Kaznessis, 2006; Haseltine and 
Rawlings, 2002; Haseltine and Rawlings, 2005). In these algorithms, the fast processes are 
approximated by continuous models, and the slow processes are solved by the exact MC 
method in a hybrid algorithm.  
Disparate scales in population balance models may arise because some species are 
concentrated while others are very dilute. For accurate simulation of the dilute species, a 
large number of simulation particles are needed. In this case, the exact MC methods become 
very slow. A recently introduced hybrid strategy (Irizarry, 2010b) is reviewed.  In this 
strategy, the τ-PEMC is used for the parts of the system than can be considered large, and 
the PEMC is used for the stochastic events.     

6.1 Hybrid algorithms in chemical kinetics 

The hybrid strategy for chemical kinetic problems (Salis and Kaznessis, 2005; Kaznessis, 
2006; Haseltine and Rawlings, 2002) is based on partitioning between fast and slow 
reactions. To split the system between slow and fast events, the following criteria for fast 
events are utilized: 
1.     The fast events occur many times in a small time interval. 
2.   The effect of these events on the number of particles and the propensity functions is 
        small relative to the total propensity function and the total number of particles. 

The slow processes are simulated using SSA, while the fast processes are integrated using 
the Langevin equations. To make this hybrid simulation self-consistent, the coupling 
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between both processes must be considered. If we look at the interval between the previous 
slow event at time ot  and the time for the next slow event ( ot τ+ ), the following equation is 
satisfied: 

 

0

ln( ) 0
t

slow

t

R dt r
τ+

Σ + =∫  (16) 

where r is a random number from the uniform distribution (0, 1). This equation replaces Eq. 

(7) for the time of the next slow event. In the interval [ , ]o ot t τ+ , the dynamics of the fast 

system can be integrated in a seamless way since by definition no slow events are present in 

this interval. Thus, Eq. (16) becomes a constraint in the hybrid strategy that needs to be 

monitored while integrating the fast process. 
As previously discussed (Salis and Kaznessis, 2005), one way to implement this constraint is 
to notice that the integral term is monotonically increases, and the second term is a negative 
term. Therefore, the time for the next slow event can by found by monitoring the zero 
crossing of the residual equation:    

 
0

0

( ) ln( )

t t
slow

t

RES t R dt r

+

Σ≡ +∫  (17) 

6.2 Hybrid algorithm in multi-scale MC simulation of particulate processes 

The hybrid strategy described in Section 6.1 is utilized with the slow mechanisms simulated 
using the PEMC algorithm. Instead of approximating the fast mechanism with a continuous 

model, as in the case of chemical kinetics, the τ-PEMC algorithm is utilized to model the fast 

mechanisms. The τ-PEMC method allows for coarse simulation in time while maintaining 
individual particle properties, in contrast to continuous models such as Langevin equations 

in which particle integrity is lost. The hybrid algorithm consists of the τ-leap integration of 
the PERP Markov process for fast events while monitoring the residual Eq. (17) for the firing 
of the next slow event of the PERP Markov process. This process is shown schematically in 
Figure 11.  The detailed description of the algorithm is given in Irizarry (2010b). 

6.3 Simulation results 

Consider a system with two type of particles, A and B. B particles are much smaller than A 
particles. A particles can grow by an aggregation mechanism. B particles are stable from 
aggregation with other B particles but can condense on the surface of growing A particles. 
Furthermore, it is assumed that B particles are very dilute compared to A particles. These 
conditions make A-B condensation events a stochastic process, while A-A aggregation 
events can be approximated as continuous events.  
Figure 12 shows five instances of the test problem for the case W = 100 (See Irizarry, 2010b 
for details). As shown in Figures 12a and 12b, the condensation of B monomers (measured 
with parameters x1 defined in Irizarry, 2010b) is a stochastic process with considerable 
variability between trajectories, while the aggregation of A particles can be approximated as 
deterministic. In this case all A-particle size distribution trajectories of the second moment 
are almost identical. The PEMC is used as a benchmark for the accurate stochastic 
simulation. As there are disparate rates between condensation and aggregation, the hybrid  
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Fig. 11. Schematic of the hybrid algorithm. Integrate fast processes (panel I) while monitoring 
for the next slow event (panel II). At a zero crossing, a PEMC iteration is executed. 
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              (a)     (b) 

Fig. 12. Five PEMC trajectories of the test problem with W = 100. (a) The fraction of B in A-B 
particles is stochastic A-B (parameter x1). (b) Zero moment of the The size distribution of the 
main population (A) is deterministic. 

algorithm can be utilized. As the rate of aggregation is reduced with time, the hybrid 
algorithm correctly switches to a PEMC simulation of the entire system. The hybrid 

algorithm can simulate stochastic variables (A-B) at speeds approaching τ-PEMC. 
The statistics of the condensation of B monomers for the case W = 100 is summarized in 
Table 4 for 1,000 simulations. The histogram of the parameter x1 (which measures the 
concentration of B particles on A particles) for the hybrid-PEMC and PEMC solutions is 
shown in Figure 13. The hybrid and PEMC solutions are in excellent agreement. This result 
is remarkable considering that condensation events are very rare (~30 condensation events 
vs. ~60,000 aggregation events). The box plot for these parameters is shown in Figure 14. An 
analysis of variance was performed to compare the population generated by both methods. 
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For the case of x1, both simulations are statistically equivalent. The hybrid algorithm is 17 
times faster than the PEMC algorithm per trajectory. This increase in speed is very 
important, since many trajectories (~103) are needed to generate good statistics for the slow 
process. If the model is used for optimization, many design instances are needed (~104), 
each consisting of many trajectories, resulting in a very large number of simulations (~107). 
In this case any increase in the simulation speed of a trajectory will have a tremendous 
impact on the total simulation speed. 
 

 PEMC Hybrid-PEMC 

 Average value of x1 5.20 × 10-4 5.13 × 10-4 

Standard deviation of x1 8.9 × 10-5 9.0 × 10-5 

Average number of slow aggregation events 58,623 58,629 

Average number of condensation events  31.2 30.8 

Table 4. A comparison of hybrid-PEMC and PEMC for the test problem with W = 100 
(Average of 1,000 trajectories). 
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Fig. 13. Histogram of the x1 parameter for the test problem with W=100 (1,000 trajectories). 
(a) Hybrid-PEMC and (b) PEMC.  
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Fig. 14. A box-plot comparison of the hybrid-PEMC and PEMC solutions (W=100). 
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Hybrid and MC simulations produce statistically equivalent results, but the hybrid’s 
increase in computational speed allows optimization problems involving these types of 
models to be solved very efficiently. 

7. Conclusions and discussion 

This chapter reviewed the artificial chemical process paradigm for global optimization. The 
LARES algorithm is very robust and efficient, converging to near-global optimal solutions 
when solving different classes of problems with different degrees of multi-modality, 
epistasis, flatness, and discontinuities. Future research will consider the use of the ACP 
paradigm in the development of new problem-specific algorithms. The algorithm was 
utilized to develop dynamic optimization strategies, LARES-PR and hybrid LARES-PR. The 
power of the algorithm lies in its utilization of a generalized approximation of the control 
function, composed of variable-length segments of finite elements of different orders or 
using specified functions. This generalized representation of the trial control law is possible 
due to the two-step encoding of the decision variables and the capability of LARES for 
multiple encoding. Multiple encoding allows the inclusion of different types of problem-
specific finite elements (constant, linear, quadratic, etc.) and/or specialized functions to 
approximate the control law without any tailoring of the optimization algorithm. This 
approach is particularly effective for the solution of problems in which manipulated 
variables experience transition from smooth variations over time to discrete changes. 
Numerical experiments demonstrate that this algorithm is robust in finding global 
optimums for the different types of problems and definitions of the generalized control law 
introduced in this work.  
To accelerate optimization of systems that use MC simulations as part of their constraints, a 
new general-purpose MC algorithm for the dynamics of the particulate process was 
proposed, PEMC. The method has been shown to reduce CPU time without sacrificing 
simulation accuracy. While a coarse view of the process is taken, particle history is retained. 

The method was extended with the τ-PEMC method, proposed to further improve CPU time 
with negligible simulation errors. As with the original PEMC, internal coordinates can be 
handled effectively. The CPU times reported here show that accurate results can be achieved 
with simulation times less than a second using a low-end PC. These results demonstrate the 

feasibility of stochastic optimization using PEMC and τ-PEMC. A new hybrid strategy was 
developed to solve stochastic population balance models with multiple time scales. This 

self-consistent hybrid method combines the PEMC and τ-PEMC algorithms to accelerate 
simulation time while capturing the stochastic nature of the slow process. The simulation 

speed and accuracy of the hybrid strategy depends on the selection of the τ parameter, the 
criteria for the partition between slow and fast events, and the grid quality of the point 
ensembles. 
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