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1. Introduction 

Dynamic state-space models are useful for describing data in many different areas, such as 
engineering, finance mathematics, environmental data, and physical science. An important 
task when analyzing data by state-space models is estimation of the underlying state 
process based on measurements from the observation process. Bayesian filtering represents 
a solution of considerable importance for this type of problem definition as demonstrated by 
many existing algorithms based on the Kalman filter and particle filtering (PF) 
(Arulampalam 2002, Doucet et al. 2001, Yang et al. 2006). The PF has been extensively 
studied in the situation where the unknown attributes are time-varying dynamic states. 
Although PF have been successful in many applications, a main problem with it is how to 
handle the presence of the unknown static parameters, especially in models with 
realistically large numbers of fixed parameters. 
The estimation of both the dynamic state and static parameters is commonly known in 
literatures as the dual estimation. Numerous papers have been written on the construction 
of estimation algorithms based on Markov chain Monte Carlo (MCMC) (Spall 2003). 
Although such methods may be effective for offline estimation, they are not suitable for 
online estimation because the MCMC algorithm needs to be restart at each time point. In 
engineering, a common trick to problem is to include the parameters as part of the state 
space vector. Berzuini et al. (Berzuini et al. 1997) put this approach into Bayesian estimation. 
However, the non-dynamics in the parameters cause the degeneracy of the algorithm. Jane 
and West (Jane & Mike 2001) introduced diversity in the particles by Kernel method, which 
is similar to replace the original static parameter with an alternative dynamic model. Polson 
et al (Polson & Stroud 2008) proposed a sequential parameter learning and filtering based on 
approximating the target posterior by a mixture of fixed lag smoothing distributions. Lee 
and Chia (Lee & Chia 2002) combined the particle filtering and MCMC to achieve an 
estimation algorithm in which the measurements are processed sequentially by particle 
filtering. When the degeneration occurs, the particles are rejuvenated by MCMC. Storvik 
(Storvic 2002) considered models with sufficient statistics for the parameters and applied 
particle filters to an augmented vector of states and sufficient statistics. Djuric et al (Djuric & 
Miguez 2002) proposed an alternative approach for a certain class of state-space model, 
which suppose that the marginal distribution of parameter can be analytically tractable. 
However, both algorithms suffer from an accumulation of error over times, albeit more 
slowly, leading to instability eventually. On the other hand, Andrieu et al (Andrieu et al. 
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2003, 2004, 2005, Yang et al. 2008) considered maximum likelihood parameter point 
estimation based on gradient. But in reality the graduate computation is intractable for 
complex nonlinear system function. 
In this chapter, we propose a new algorithm that preserves the static nature of the unknown 
parameters. The maximum likelihood parameter estimation is performed based on particle 
filtering and an effective stochastic approximation gradient algorithm is used to optimize 
cost function. The estimation of static parameters and dynamic state variables is performed 
simultaneously. 

2. Problem formulation 

The state-space models have the form 

 
1( , )

( , )

t t t

t t t

x p x x

y p y x

θ

θ
−∼

∼
  (1) 

where  tx  is unobserved state vector at time  t , ty  is an observation at time  t , mRθ ∈  is 

m  dimensional unknown static parameters vector, and ( )p ⋅ ⋅  is generic conditional 

distribution. Optimal filtering consists of estimating recursively in time the sequence of 

posterior densities function (PDF)  1:( )t tp x y  which summarizes all the information about 

the system states tx as given by the collection of observations  1: 1( , , )t ty y y= A . For non-

linear and non-Gaussian dynamic models, the particle filtering can achieve approximated 

estimation of PDF based on Monte Carlo simulation. Although particle filtering has been 

successful in many simulation experiments and in analysis of real data, a main problem 

with it is how to handle the presence of unknown static parameters. In this paper, we 

present a method referred to as point estimation, i.e. we do not aim to estimating the PDF of  

θ . We focus rather on the estimation of  θ  directly by maximum-likelihood (ML) principle. 

The dynamic state is estimated by particle filtering and static parameter is estimated by 

recursive ML method online.  

Given a set of measurements 0:ty , the estimation of ML requires maximization of likelihood 

with respect to parameter θ . Firstly, the cost function is presented, and the likelihood of 

measurements 0:ty is given by 

 

0: 0: 1 0: 1

0 0: 1
1

( , ) ( , ) ( , )

( , ) ( , )

t t t t

t

k k
k

p y p y y p y

p y p y y

θ θ θ

θ θ

− −

−
=

=

= ∏
  (2) 

where  

0: 1 0: 1

1 1 0: 1 1

( , ) ( , ) ( , )

( , ) ( , )

k k k k k k k

k k k k k

p y y p y x p x y dx

p y x p x y dx

θ θ θ

θ θ

− −

− − − −

=

=

∫
∫

 

0 0 0 0 0( , ) ( , ) ( )p y p y x p x dxθ θ= ∫  

In practice, one uses the log-likelihood which is numerically better behaved and satisfies 
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To simplify the computation, the cost function is chosen as predicted likelihood, i.e. 

 0: 1 0: 1( ) ( , ) ( , ) ( , )t t t t t t tf p y y p y x p x y dxθ θ θ θ− −= = ∫  (4) 

However, except in a few simple cases, it is impossible to compute the optimal filter and the 
likelihood in closed-form, the numerical approximation schemes are required. 

The problem of maximizing the cost function can be translated into finding the zeros of the 

gradient  ( )f θ∇ . A recursion procedure to estimate θ  such that  ( ) 0f θ∇ =  proceeds as 

follows 

 1 1( )t t t tfθ θ γ θ− −= + ∇
&

 (5) 

where 1( )tf θ −∇
&

 is the estimation of gradient estimated at the point 1tθ − and { 0}tγ >  denotes 

a sequence of decreasing step-size. One selects a step-size sequence satisfying 0,tγ →  

1
t

t

γ
∞

=
= ∞∑ . Under appropriate conditions, the iteration in (5) will converge to the true value 

of θ  in some stochastic sense. The essential part of (5) is how to obtain the gradient 
estimate, however, it is impossible to compute the closed-form gradient and we must resort 
to the numerical approximation. 

The particle filtering (Gordon 1993, Doucet et al. 2001, Yang et al. 2006) is based on 

importance sampling where tx is simulated sequentially from some importance distribution 

1:( )t tq x y , and the whole trajectory 1:tx  is given importance weight  

1:

1:

( )

( )
t t

t
t t

p x y

q x y
ω =  

N such sequences are simulated parallel, giving a weighted particle set ( ) ( )( , ), 1, ,i i
t tx i Nω = A  

at each time point t . The problem with the particle filtering is the degeneracy phenomenon, 

where the variance of the importance weights can only increase over time, making the 

estimate unstable (Kong et al. 1994). A common trick to avoid this is to re-sample from 

particle set with probabilities proportional to the importance weight (Gordon et al. 1993). 

The convergence result is surveyed in (Crisan & Doucet 2002), where the error in the 

approximate distribution is stable with increasing the number of particles to infinity. Given 

a set of weighted particle ( ) ( )
1 1( , )i i

t tx ω− −  which approximate 1 0: 1( , )t tp x y θ− −  and given the 

estimate of parameter 1tθ −  at time 1t − , the cost function can be approximated as follows 

 ( ) ( )
1 0: 1 11

1

ˆ ˆ( ) ( , ) ( , )
N

i i
t t t t t t tt

i

f p y y p y xθ θ ω θ− − −−
=

= =∑ #  (6) 

where the particles ( )( )
11( , )ii

t t ttx p x x θ −−∼#   are obtained using a one-step ahead state evolution 

prediction. 
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Stochastic optimization techniques apply in the cases where a closed-form solution to the 
optimization problem of interest is not available and where the input information into 
optimization method may be contaminated with noise. One of the techniques that have 
attracted considerable recent attention for difficult multivariate problems is the 
simultaneous perturbation stochastic approximation (SPSA) method introduced by Spall 
(Spall 1987, 1998). SPSA is based on a highly efficient and easily implemented 
“simultaneous perturbation” approximation to the gradient. The SPSA technique requires 

all elements of θ  to be varied randomly simultaneously to obtain two estimates of the cost 

function. Only two cost function measurements are required regardless of the dimension of 
the parameters be optimized. The SPSA has proven to be an effective and easy implemented 
algorithm and success among other finite difference methods with reduced number of 
estimates required for convergence (Chan et al. 2003, Doucet & Tadic 2002, Andrieu et al. 
2003). 

A step-by-step guide to implementation of SPSA for stochastic optimization is presented in 

(Spall 1998). It is assumed that ( )f θ is a differentiable function of θ and that the minimum 

point of θ corresponding to a zero point of the gradient. In SPSA, the gradient estimate  

1 1 1 1( ) ( ( ), , ( ))t t m tf f fθ θ θ− − −∇ = ∇ ∇
& & &

A  

is given by  

1 1
1

,

( ) ( )
( )

2
t t t t t t

j t
t t j

f c f c
f

c

θ θ
θ − −

−
+ Δ − − Δ

∇ =
Δ

& &
&

 

where tc  denotes a sequence of positive scalars such that 0tc →  and 

,1 ,2 ,( , , , )t t t t mΔ = Δ Δ ΔA  is a m-dimensional random perturbation vector. The choice of gain 

sequences is critical to the performance of SPSA. Careful selection of algorithm parameters 
, , , ,a c A rα and gain sequences is required to ensure convergence. The tγ and tc generally 

take the form of 
( 1)t

a
A t αγ =
+ +

 and 
( 1)t r

cc
t

=
+

. The practically effective values for α  

and r  are 0.602 and 0.101 respectively. As a rule-of-thumb, it is effective to set c  at a level 

approximately equal to the standard deviation of the measurement noise in  ( )f θ . The 

values of  ,a A  can be chosen together to ensure effective practical performance of the 

algorithm. Each components of  tΔ  is usually generated from Bernoulli  1±  distribution 

with probability of  
1

2
  for each  1±  independently. 

In cases where the gradient has  more than one zero point, then the algorithm may only 

converge to a local minimum, Spall further gives some modifications to the basic SPSA 

algorithm to allow it to search for the global solution among multiple local solutions[15]. 

3. Sampling algorithms for combined estimation of parameter and state 

We present here how to incorporate maximum-likelihood algorithm within the particle 

filtering framework. To enhance the global convergence and Robust of the parameter 

estimate, for each state particle, i.e. a possible state trajectory, we produce a particle of 
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parameter and resample correspondingly. The ultimate parameter estimate is produced by 

weighted sum of parameter particles. This process can alleviate the divergence of estimate 

of parameter. The algorithm proceeds as follows. 

Step 1. Initialization:  

For 1, ,i N= A , sample ( )
0
ix ～ 0( )p x  and initial particles of parameters estimate ( )

0
iθ . 

Assign initial important weights as  ( ) 1
0
i

Nω = .  

The initial estimate of parameter is  ( ) ( )
0 0 0

1

N
i i

i

θ ω θ
=

=∑  

Step 2. State sampling: 

Given a set of weighted state and parameter particles ( ) ( ) ( )
1 1 1( , , )i i i

t t tx θ ω− − − , 1, ,i N= A at 

time  1t − ,  sample  ( )i
tx# ～ ( ) ( )

1 1( , )i i
t t tp x x θ− −  for  1, ,i N= A .  

Step 3. Cost function evaluation: 

For each parameter particle  ( )
1

i
tθ − , generate a m-dimensional simultaneous perturbation 

vector  ( )i
tΔ . Compute the perturbed parameter particle ( ) ( )

1( )i i
t tt cθ − + Δ  and ( ) ( )

1( )i i
t tt cθ − − Δ . 

For 1, ,i N= A ,  

Sample ( )ix +# ～ ( ) ( ) ( )
1 1( , )i i i

t t tt tp x x cθ− − + Δ  and compute the likelihood ( )( ) ( )
1( , )ii i

t t ttp y x cθ+
− + Δ# . 

Sample ( )ix −# ～ ( ) ( ) ( )
1 1( , )i i i

t t tt tp x x cθ− − − Δ  

Compute the likelihood ( )( ) ( )
1( , )ii i

t t ttp y x cθ−
− − Δ#  

Evaluate cost function 

( ) ( )( ) ( ) ( )
1 1

ˆ( ) ( , )i ii i i
t t t t tt tf c p y x cθ θ+

− −+ Δ = + Δ#  

( ) ( )( ) ( ) ( )
1 1

ˆ( ) ( , )i ii i i
t t t t tt tf c p y x cθ θ−

− −− Δ = − Δ#  

 

Step 4. Gradient approximation: 

For each parameter particle, the corresponding gradient 

( ) ( ) ( )
11 1 1( ) ( ( ), , ( ))i i i

mt t tf f fθ θ θ− − −∇ = ∇ ∇
& & &

A  

where the components of gradient 

( ) ( )( ) ( )
( ) 1 1

1 ( )
,

( ) ( )
( )

2

i ii i
i t t t tt t

j t i
t t j

f c f c
f

c

θ θ
θ − −

−
+ Δ − − Δ

∇ =
Δ

& &
&

, 

and ( )
,
i

t jΔ denote the j-th component of ( )i
tΔ . 
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Step 5. Parameter update: 

For each parameter particle ( ) ( )( )
1 1( )i ii

t tt tfθ θ γ θ− −= + ∇
&

 

Step 6. Re-sampling: 

For each particle ( ) ( )( , )i i
t tx θ# , compute the normalized importance weights as 

( )( ) ( ) ( )
1 ( , )ii i i

t t t tt p y xω ω θ−∝# #  at time t . 

Multiply/discard particles ( ) ( )( , )i i
t tx θ#  with respect to high/low importance weights ( )i

tω# . 

Re-assign even importance weights ( ) 1i
t N

ω = .  

Step 7. Output: 

The obtained weighted particles  
( ) ( ) ( )( , , ), 1, ,i i i
t t tx i Nθ ω = A  approximate to 0:( , )t tp x y θ .  

The posterior density function of state is approximated as 

( ) ( )
0:

1

( , ) ( )
N

i i
t t t t t

i

p x y x xθ ω δ
=

= −∑  

The estimate of state is  ( ) ( )

1

N
i i

t t t
i

x xω
=

=∑ . 

The estimate of parameter is  ( ) ( )

1

N
i i

t t t
i

θ ω θ
=

=∑  

1t t= + . Return to step 2. 

4. Simulation results 

Here, we consider the following set of equations as an illustrative example which has been 
analyzed before in many publications (Gordon et al. 1993, Doucet et al. 2001, Chan et al. 
2003).  

1 1 1
22

1

2

cos(0.1 )
2 1

20

t t
t t

t

t
t t

x x
x t v

x

x
y w

θ θ− −

−

= + + +
+

= +

 

where 0 (0,5)x N∼ , tv and tw are zero mean Gaussian random variables with variances 

tQ and tR ,respectively. We use 10tQ =  and 1tR = . 1θ is unknown parameter with true 

value 1 25θ = and 2 10θ = . This example is severely nonlinear, both in the system and the 

measurement equation. Note that the form of the likelihood ( )t tp y x adds an interesting 

twist to the problem.  

We present two algorithms to deal with the unknown parameters. The first algorithm, titled 

“Augmented State”, includes the parameters as part of the state vector ( , )t tx θ  which 
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proposed in paper (Jane & Mike 2001). θ is replaced by tθ at time t , then add an 

independent, zero-mean normal increment increment to the parameter at each time. That is,  

1

(0, )
t t t

t tN W

θ θ ζ
ζ

−= +
∼

 

For some specified variance matrix tW . We use 10tW =  in simulations. The second 

algorithm is our algorithm, titled “Adaptive estimate”, which includes an on-line adaptive 

estimation of the parameters as proposed in this paper. 

We perform 50 independent Monte Carlo runs with 1000N = particles in each run. The 

initial values of parameters are selected randomly in interval [0,1] . 
For reference, the true states for the exemplar run are shown in Fig.1 and the measurements 

in Fig.2. The sequences of parameter 1θ and 2θ estimate are illustrated in Fig.3 and Fig.4 

respectively where the solid line with the label “adaptive estimation” indicates the estimate 
by our algorithm, the dashed line with the label “augmented state” indicates the estimate by 

the first algorithm. Fig.5 shows the RMSE of dynamic state tx by particle filtering where 

dashed line represents RMSE with true value of parameters, the solid line represent RMSE 
with augmented state estimates of parameters by the first algorithm. Fig.6 shows the RMSE 
of particle filtering where dashed line represents RMSE with true value of parameters, the 
solid line represent RMSE with adaptive estimates of parameters by our algorithm. From the 
simulation results, it can be seen that the parameters converge to true values quickly by the 
proposed algorithm and RMSE of dynamic state with adaptive estimates of parameters 
diminish with time and approach to RMSE with the true values of parameters.  
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Fig. 1. Figure of the true values of state ( )x t  as ma function of t  for the exemplar run 
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Fig. 2. Figure of the measurements ( )y t of the states ( )x t  shown in Fig.1 for the same 

exemplar run 
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Fig. 3. Sequence of parameter 1θ estimate over time 

www.intechopen.com



Joint State and Parameter Estimation in Particle Filtering and Stochastic Optimization   

 

221 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-5

0

5

10

15

20

25

 c
it
a
(2

)

time

augmented state parameter estimate

adaptive parameter estimate

 

Fig. 4. Sequence of parameter 2θ estimate over time 
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Fig. 5. RMSE of state tx  by particle filtering with true parameter and augmented state 

parameter estimation 
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Fig. 6. RMSE of state tx  by particle filtering with true parameter and adaptive parameter 

estimation 

We also compare the performance measure of our results with the “augmented state 
estimate” algorithm. The performance measure is root mean square error as follows: 

2

1 1

1
( ( , ) ( ))

M T

m t

RMS x m t x t
MT = =

= −∑∑ &
 

where ( , )x m t
&

 is the estimate of ( )x t  in the mth Monte Carlo simulation, 50, 5000M T= = . 

The performance of the first algorithm, our algorithm and the particle filtering with true 

parameter for various number of particles are presented in Table 1.  
 

Algorithm / N 800 1000 2000 

Augmented State 0.2017 0.1945 0.1873 

Adaptive estimation 0.1005 0.0996 0.0908 

True parameter 0.0912 0.0852 0.0803 

Table 1. RMS performance measure for the two algorithms 

5. Conclusions 

In this chapter, we proposed an adaptive estimation algorithm for non-linear dynamic 

systems with unknown parameters based on combination of particle filtering and SPSA 

technique. We have demonstrated how to combine the maximum-likelihood parameter 
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estimation with particle filtering. The estimates of parameters are obtained by state samples 

and maximum-likelihood estimation within particle filtering. The SPSA is used to 

approximate the gradient of cost function. The proposed algorithm achieves joint estimation 

of dynamic state and static parameters. 
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