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1. Introduction 

Optical holography is an excellent technology which can be applied in many fields, such as 

3D-displays, information storage, products packaging, interferometer survey, optical 

connection and computer and so on. The conventional holography include reference wave, 

object wave and diffracting wave. These optical waves are spatial light and the whole 

hologram set up is fair size. The optical waveguides which are set up in optical routs can be 

integrated into a mini-chip. A new class of holography is proposed by many researchers 

[Suhara, et al., 1976; Putilin, et al., 1991; Singher & Shamir, 1994], in which the evanescent 

part of a guided wave or the guided wave in a waveguide is utilized as the reference wave 

or the illuminating one. This kind of hologram is defined as “waveguide hologram”, and it 

has significant advantages in integration, wide field of view, compactness and other special 

functions. In this chapter, three sections are used to introduce the new development of 

waveguide hologram in the optical memory, optical connection and see-through planar 

displays fields.  

2. The multilayered waveguides and holograms structure (MWH) for memory 

With the development of information era, the dramatic increasing of information data needs 

new technologies of high density data storage. The holographic storage is regarded as a 

promising candidate for the next generation of optical memory. However, the conventional 

reconstructed holographic system includes reference wave and diffracting wave, which are 

spatial lights. The whole hologram system devices are large, so they are not suitable for 

personal use. The commercially available optical compact disc (CD) products have many 

advantages and play a key role in data storage area. But the data density of the optical disc 

can be hardly increased. We also know that the waveguide holography offers many 

advantages compared with conventional holograms. Waveguide holograms provide 

capability for the recording and reconstructing of holographic images or data information 

with light which propagates along optical waveguides. A higher image-to-background 

contrast and diffraction efficiency can be obtained because the direction of diffracted light 

wave is vertical to the illuminating light wave. Furthermore, waveguide holograms provide 

minimized illumination space and obstruction-free viewing. Therefore, multilayered 

waveguide and hologram technology is a promising candidate to solve the problems for the 

www.intechopen.com



 Holography, Research and Technologies 

 

110 

next generation of optical data storage systems, many researchers have focused on this 

work[Imai, et al.,2003; Ishihara, et al., 2004; Mitasaki & Senda, 2006; Yagi, et al., 2007; Yagi, 

et al., 2008 ]. 

2.1 The principle of multilayered waveguide hologram memory 

At present, there are many types of multilayered waveguide hologram structure. In this 

chapter, only three main types of multilayered waveguide structure for optical data storage 

are introduced. The first is shown in Fig. 1(a), a multi-layered structure where a layer with a 

high refractive index (core layer) and a layer with a low refractive index (clad layer) are 

alternately stacked. The hologram structures are fabricated in each waveguide core layer or 

on the surface of waveguide core layer in the style of pits, bumps or bubbles, as shown in 

Fig. 1(b). In general, they are computer-generated planar holograms. When light is 

introduced to this structure, the light is confined in the core layer and then propagates along 

waveguide core layer as reference wave. The diffracted light become spatial wave 

propagating in free space and containing the information from holograms, and the 

reconstructed images focused on the special position above of MWH, a detector such as 

charge-coupled device(CCD) is located at this position without any optical lenses. Because 

that the reference light can be confined in a target layer, and hence, the other layers do not 

interact with the reference light, so there are no or low crosstalk between different interlayer 

from the diffracted object light from one of target waveguide layer. A 100-periodic 

multilayered structure has been successfully fabricated and a data density of 100Gbit/inch2 

can be achieved in the reference [Imai, et al., 2003], Fig. 2 shows bumps on the surface of 

waveguide core layer by Scanning electron microscope (SEM). 

 

     

                                         (a)                                                                                       (b) 

Fig. 1. (a) The firstly type structure of multilayered waveguide holograms, (b) Schematic 
diagram of element layer in MWH 

The second type of multilayered waveguide hologram structure element is shown in Fig.3 

[Mitasaki & Senda, 2006; Gao, et al., 2007], which is composite of a holographic data 

recording layer, a core layer(high refractive index n1 )with waveguide grating, and two 

cladding layers with lower refractive index n2, underneath the data recording layer. The 
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light was coupled into the waveguide core at the edge of MWH by cylindrical lens and then 

excited guide-mode light which propagated along the waveguide core. When meeting the 

waveguide gratings, the guide-mode light are diffracted into free space light as reference 

wave of holographic data recording layer. When the hologram recording layer is 

illuminated with these reference waves, the data information or holographic image is 

reconstructed by diffracted light of hologram recording layer. The direction of diffracted 

light of waveguide gratings can be different for each layers, thus the angle of β of light can 

be changed according to the structure of waveguide gratings for each layer. This type MHW 

also can be applied in three-dimension displays when many waveguides layers are 

illuminated at the same time. 

 

 

Fig. 2. SEM micrograph of a waveguide hologram (Imai, et al., 2003) 

 

 

Fig. 3. Another type structure of multilayered waveguide holography element 

Until now, we just discuss the type of MWH memory in which diffracted lights are coherent 

ly interfered. Guo et al. proposed a waveguide multilayered optical memory (WMOM) with 

bits stored as a refractive index change [Guo, et al., 2007], such as in Fig.4. The principle of 

reading data from a WMOM is based on scattering light from waveguide defects. In Fig. 4, 

when the incident light is coupled by the reading system L1 into the core of the nth- Dn layer 
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waveguide element of the waveguide multilayered disc (WMD), a series of guided modes 

and radiated modes will be excited. It is assumed that only guided modes remain and that 

radiated modes are attenuated to zero before meeting bits. Partial powers of guided modes 

confined in the core of the waveguide will be scattered from the core by bits. Hence, light 

scattered by the bits recorded in the core of the Dn layer waveguide element of the WMD 

will form an array of bright dots against the dark background. The dot array is imaged with 

a confocal microscope, and only the light scattered from the bit located at the focus of the 

confocal microscope is collected effectively by a detector and converted to electric signals for 

further processing. This memory system includes a confocal microscope, so the cost of this 

type of waveguide multilayered memory would be higher. 

 

 

Fig. 4. Schematic diagram of a waveguide multilayered optical memory 

2.2 Design methods of MWH 

Generally, waveguide-hologram is based on computer generated hologram (CGH), 

especially for the first type MWH. Because information is implied by the style of pits or 

bumps on the surface of waveguide core layer or in the waveguide core layer, the 

distribution and shape of pits or bumps affect the quality of reconstructed image or data 

information. A waveguide hologram is a type of off-axis hologram where a guided wave is 

diffracted into free space, thus the reference light is guide-wave light propagated along the 

waveguide core layer and the diffracted light propagates along the direction normal to the 

waveguide core layer according to the distribution of bumps or pits. In a free-space CGH, 

the dimension of a rectangular element is typically of the order of more than ten times the 

optical wavelength. In order to effectively outcouple a guided wave, however, a grating 

period of wavelength dimension is preferred, thus the pits or bumps in rectangular element 

is small at the dimension of subwavelength. 

In order to make diffracted light carry storage information, the bump or pit pattern needs to 

be designed by CGH method [Yagi, et al., 2008]. The guided-wave light disturbance in the 

waveguide plane can be represented by a scalar function ( , )U x y  and the image detector 

plane can be represented by ( , )V x y .When the desired image is represented by a light 

intensity distribution, ( , )I x y , can be expressed as: 
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2

( , ) ( , )I x y V x y=  (1) 

Because of the image detector parallel to the waveguide, then the relations is  

 ( , ) ( , ) ( , )V x y G x y U x y d dξ η ξ η= − −∫∫  (2) 

Where G is a weight diffracted function such that 

 
2 2 2

2 2 2

exp( )jk x y d
A

x y d

+ +

+ +
 (3) 

Here d is the distance between the plane of image detector and the waveguide storage layer. 

A is a constant. As V(x, y) is a convolution of U(x, y) and G(x, y), we can obtain U(x, y) for a 

given V(x, y) by Fourier-transform calculations. The next step involves finding a way to 

modulate the bump pattern and thus generate a light, represented by U(x, y), from the 

guided wave. The area of the bump pattern can be divided into minute square cells whose 

size at the level of micrometer. The above calculations are performed with sampling at this 

interval. The wave function of each square cell is 0 0( , )ijU U x i y jδ δ= + +  by the magnitude 

ija and the phase ijφ , where exp( )ij ij ijU a jφ= . In each cell, such as in Fig.5, the lines of bumps 

are perpendicular to the propagation direction of the guided wave so that the total length is 

proportional to ija and the locations of the lines are shifted in the propagation direction 

according to ijφ .Then the drawn bump pattern works as a hologram that generates the wave 

represented by ( , )U x y  as the object wave from the guided wave, which is the reference 

wave. Such a hologram may be regarded as a type of Lohmann’s binary hologram. 
We also know that the data information are implied by style of pits or bumps at the surface 

of waveguide core layer, and the pits or bumps are usual fabricated by using of polymers 

material; thus this type of hologram is of phase modulation. Each pit or bump in a unit cell 

can be designed by using an array of rectangular elements each containing a dislocated 

binary phase grating [Li, et al., 1996]. 

 

       

                                          (a)                                                                      (b) 

Fig. 5. (a) Schematic diagram of free space light coupled from guided-wave light in a 
waveguide hologram. (b) Magnified picture describing the geometry of a fraction of the 
waveguide grating in (a). The grating period is Λ , and the two sections of the grating, 
separated by the x axis, have a relative dislocation of Δ  in the x direction. 
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The phase-matching condition must be fulfilled between the guided wave and the radiation 
wave: 

 0 02 / sin 0, 1, 2,effn k m nk mπ θ+ Λ = = ± ± ⋅ ⋅ ⋅  (4) 

Where effn is the effective refractive index of guided-wave and n is the refractive index of 

the material within which the diffracted light propagates, θ  is the radiation angle with 

respect to the normal of waveguide, such as in Fig. 5(a). 0 02 /k π λ=  and 0λ is the free-space 

wavelength. M is the order of diffraction. In order to increase the output efficiency of 

diffracted light, only the -1st diffraction order satisfies the equation (4) when m= -

1.Therefore, the grating period Λ  (the unit cell size) must satisfy,  

 0 0/ effnλ λ≤ Λ <  (5) 

In Fig. 5(b), the unit cell is divided into two sections. Each section of the grating acts 

independently as an outcoupler, and the grating grooves in the two sections are relatively 

dislocated by a distance Δ along the guided wave propagating direction u. The grating 

period (Λ ) satisfies (5). According to Fig. 5(b), there is an optical path difference, Lδ , 

between the radiation light outcoupled by two sections of the grating, which can be 

expressed as  

 
( sin )

eff

eff

L n AB nAC

n n

δ

θ

= −

= − Δ
 (6) 

Taking into equation of (4) and noting that m= -1, the phase difference between the 

diffracted light,δφ , as 

 0= 2 /k Lδφ δ π= Δ Λ  (7) 

It shows that a phase shiftδφ can be introduced by a grating dislocation Δ , and there exists 

a linear relation betweenδφ and Δ . Fig. 6 shows a computer-generated waveguide hologram 

(CGWH) structure by this method. 
 

                     

                                            (a)                                                                 (b) 

Fig. 6. (a) The desired diffraction pattern, (b) a fraction of CGWH.  
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Yagi et al. discussed an optical design for multilayered waveguide holographies that utilizes 

an orthogonal aperture multiplexing (OAM) technique [Yagi, et al., 2007]. With OAM 

holography, the diffracted lights first concentrate in small isolated areas on the aperture 

plane (dashed line) and then expand and overlap on the imaging plane (solid line), as 

shown in Fig. 7. All the multiplexed images are diffracted simultaneously, as depicted by 

the solid and dashed lines. Any designated page (solid line) can be read without crosstalk 

by blocking all the diffracted lights on the aperture plane except for one selected area 

because one isolated area on the aperture plane corresponds to one page.  

Fig. 8 shows a schematic view of the direct imaging optics. The diffracted light passes 

through an aperture, and then expands and constructs an image on the imaging plane, 

where h is the distance between the imaging and aperture planes, a is the size of the square 

aperture, and θ is the angle of expansion from the aperture. The aperture and imaging 

planes are parallel. Also, both the centres of the aperture and constructed square image form 

a line whose direction is normal to both planes. 

 

 

Fig. 7. Principle of orthogonal aperture multiplexing. 

 

 

Fig. 8. Schematic view of direct imaging optics. 
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They discussed two types of optical design for OAM installed waveguide holograms. Both 

types can eliminate the need for an active focusing servo for imaging optics. The direct 

imaging optics offers a thinner driver, but it has a lower bit density and a shorter 

wavelength margin than the telecentric imaging optics. On the other hand, the telecentric 

imaging optics requires a thicker driver, but it offers a three fold higher bit density and a 

longer wavelength margin than the direct imaging optics. 

2.3 Fabrication process of MWH  

A multilayered waveguide hologram consists of a stack of single-mode slab waveguides 

with polymer as the main materials. So the fabrication methods of MWH are mainly 

concerned with the processing of polymer optical waveguides and the holograms. The size 

of pits or bumps of hologram designed by computer-generated hologram is small in 

dimension of subwavelength, so it is necessary to use the high precision micro-fabricating 

technology, such as photoresist-based patterning, direct lithographic patterning, soft 

lithography, embossing process and so on. In this section, we only introduce some key 

fabricating technologies for MWH.  

• Spin-coating technology  
Spin coating is an effective method to fabricate multilayered films with different thickness. 

We also know that the element of MHW is consist of the waveguide core layer with high 

refractive index of material and cladding layer with low refractive index of material. In this 

case, the substrate (rigid glass or flexible polyimide film) is mounted horizontally on a 

rotating platform. The substrate then spins very rapidly and the coating solution is 

dispensed onto it. The high-speed rotation throws off most of the solution, leaving behind a 

thin, uniform coating. Film thickness is precisely controlled by the rotational speed of the 

substrate. Faster rotation results in a thinner waveguide film layer. It is easy to form the film 

with thickness of 1~100Ǎm by this method. However, Spin coating technology must be 

combined with other micro-manufacturing technology (such as photoresist patterning, 

reactive ion etching) to process computer-generated waveguide hologram.  

• Lithographic patterning  
Lithography is playing a critical role in micro- and nano-fabricated patterns for 

semiconductor devices and optics devices. It also can be adapted to process bits or bumps 

patterns on the surface of waveguide core layer in the computer-generated hologram. The 

techniques that can be used for patterning MWH included photoresist-based patterning, 

direct lithographic patterning, and soft lithography. The technology of photoresist-based 

patterning is seldom applied in fabrication of MWH, because that it needs cleaner room and 

reactive ion etching process, thus the cost of MWH is higher that other lithography 

patterning technology.  

The direct laser lithography is a useful technique to fabricate a large planar areas with 

precision patterns, and it has the advantage of being maskless, allowing rapid and 

inexpensive prototyping in contrast to conventional mask-based photolithographic 

approaches. Mitasaki et al. proposed a write-once recording technique for MHW cards by 

laser directly writing, which can be suitable to record individual data easily in each MWH 

card [Mitasaki et al., 2006]. Soft lithography is a micro-fabrication technique that has been 

shown to generate high quality micro and nanostructures. It eliminates the use of costly and 

time consuming lithographic techniques and equipment. Unlike photolithography, it has 
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flexibility in material selection, can be applied to large planar surfaces, and provided high 

precise control over chemistry of patterned surfaces. Some of the diverse fabrication 

methods known collectively as soft lithography include: replica molding, micromolding in 

capillaries, microcontact printing, and microtransfer molding.  

• UV embossing process technology  
The ultraviolet (UV) embossing process technology [Ishihara, et al., 2004] is preferred with 

the advantages of mass produce and low cost. To reconstruct holographic images, bumps 

need to be patterned at the interface between the cladding and the core. In this process, 

these bumps are patterned by UV embossing using a metal stamper, which has holographic 

patterns. By repeating this process, a multilayered waveguide structure can be fabricated. 

The process flow is shown in Fig. 9. Firstly, the metal stamper is fabricated by the 

conventional process used for stampers of compact disks (CDs) and DVDs. This stamper has 

patterns which are designed to produce holographic images. Two types of UV curable resin 

are prepared, whose refractive indices are adjusted to form the core and the cladding, 

respectively.  

 

 

Fig. 9. Process flow of MWH 
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On the metal stamper, the UV curable resin for the core is spin-coated and UV-cured. Next, 

the UV curable resin for the cladding is spin-coated. A plastic film is laminated on it. After 

the resin is UV-cured, the film/cladding/core structure is detached from the metal stamper. 

By this process, the patterns of the metal stamper are replicated on the core layer surface. 

This process is repeated until the designated number of layers is fabricated. From the second 

cycle, the detached structure at the end of the former cycle is laminated instead of the plastic 

film, as shown in Fig. 9. 

Using this process, Ishihara K. et al. have successfully fabricated a multilayered waveguide 

structure. Fig. 10 shows a picture of the 100-layer media structure. The thickness of the 

media is 2 mm. The thicknesses of core and cladding layers are 1.6 mm and 11 mm, 

respectively. 100-layer waveguides compose this media, and the holographic patterns are 

replicated in each layer. 

 

 

Fig. 10. 100 layer MWH , [Ishihara, et al., 2004]. 

2.4 Materials of MWH 

Many different materials have been used in MWH in different mechanisms. In general, the 

materials for MWH need to have low optical absorption at the working wavelength. With 

the development of optical waveguide technology, many new materials with special 

functions have been introduced into this family. Several main optical materials are 

summarized in this section according to their mechanism. 

• Optical polymers 
Polymeric materials are particularly attractive in integrated optics because of their ability to 

be processed rapidly, cost-effectively, flexibility, and with high yields. Polymeric materials 

are allowed to form compact optical patterns by offering large refractive index contrasts and 

then easy to fabricate the planar waveguide structures. Some optical material, such as 

PMMA, PDMS, Epoxy resin and so on, now have been adopted in this field.. Polymer can be 

deposited by using spin coating or polymerization technique. Furthermore, the unique 

mechanical properties of polymers allow them to be processed by unconventional forming 

techniques such as molding, casting, stamping and embossing, therefore permitting rapid 

and low-cost shaping for waveguide formation. 

• Dichromated gelatin 
A normal gelatin film with less sensitive to light is sensitized through adding ammonium 

dichromate layer on it. Gelatin can absorb a very large amount of water and remain rigid, 

that means it swells. The chemical reaction happens on the interface of dichromated gelatin 

once it is exposed under light. The gelatin molecular chains in the exposed region have more 

www.intechopen.com



The Composite Structure of Hologram and Optical Waveguide   

 

119 

cross-linking. These regions swell less when immersed in water. Rapidly dehydrated by 

exposure to alchohol, the dichromated gelatin film shows differential strains between 

regions of maximum and minimum swelling. These strains modify the way of local 

refraction. Information can be recorded as the refraction characteristics in exposed and 

unexposed zones. 

• Photopolymers 
Some monomer molecule materials can be polymerized either through direct interaction 

with light or through an intermediary photosensitizer. These materials are called as 

photopolymer. Once exposed under light beam with information, the polymerization of 

such material depends on the local intensity of the recording radiation. The diffusion of 

surrounding monomers takes place during and after the exposure. A uniform postexposure 

using a fluorescent light has also been applied to increase the diffraction efficiency and to 

desensitize the photosensitizer. The variation in polymer concentration corresponds to the 

refractive index modulation. 

• Photoresists 
Photoresists are organic photosensitive materials, which can be classified into two types: 

negative and positive. The negative photoresists become insoluble in a solvent due to the 

polymerization. The rest unexposed area can be washed away. The positive case is just 

reverse when exposed on light. An image or holographic interference pattern is recorded on 

the surface of the photoresist layer through the insoluble and soluble area. 

• Thermoplastic film 
Thermoplastic film under a light beam produces a surface deformation of a transparent 

layer, which makes the phase of the light beam passing through the layer is modulated. The 

incident light pulses heat the thermoplastic layer to be molded according to the electrical 

field pattern. 

• Two-color-absorption photopolymer 
For the time being, two-color-absorption photopolymer is a new kind of recording material 

for MWH discs. It is attractive to be used in read-and-write MWH disks, because 

information can be only recorded on the target layer by illuminating the layer with a gate 

light, as shown in Fig. 11(b). Hirabayashi et al. of NTT photonics laboratories developed a 

 

 
                                          (a)                                                                        (b) 
Fig. 11. (a) Conventional holographic recording in multilayer photopolymers and (b) Two-

color holographic recording in multilayer photopolymers 
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sensitive two-color-absorption photopolymer materials doped with is(silyl)pentathiophene 

as a two-color-photosensitive dye and 2,2-dimethoxy-2-phenylacetophenone as a radical 

photopolymerization initiator and working with a 660 nm interference light and a 410 nm 

gate light. In 2004, Fujitsuka et al. reported that oligothiophenes show two-color absorption, 

and Shimizu et al. recently found that the stepwise two-color absorption of the 

oligothiophene in a Zeonex (Zeon Co.) matrix followed by energy transfer to an aryl azide in 

the matrix is efficient for two-color recording and may be applicable to holographic 

recording in multilayer thin films. 

3. Optical interconnections based on optical waveguides holography 

3.1 Introduction to optical interconnection 

The term “optical interconnection” is often called simply “optical wiring” or “optical 

interconnect” and can be interpreted in the broadest sense of the word as “any 

interconnection using optical means”. In term of linkages using optical means, optical fiber 

communication has been in practical use for more than twenty years, mainly for long 

distance links. In contrast, there has not been a strong need for short-reach optical links. 

However, as the problems of associated with hard-wired links become more apparent, this 

approach is gathering new focus. Optical interconnection is the most promising candidate 

for hard-wired circuitry. As optics become a major networking media in all communications 

needs, optical interconnects will also play an important role in interconnecting processors in 

parallel and distributed computing systems. Optical interconnect not only can provide 

much more connections than a traditional electronic interconnect, but also can offer much 

richer communication patterns for various networking applications. Such an optical 

interconnect can be used to serve as a cross-connect in a wide-area communication network 

or to provide high-speed interconnections among a group of processors in a parallel and 

distributed computing system.  

Optical interconnections may be formed in substrates with waveguide structures and 

through the use of optical fiber, or in free-space either by beam spreading, or using 

holograms. The former is referred to as index-guided optical interconnection and the latter 

is referred as free-space optical interconnection. Fig. 12 depicts an example of free space 

interconnects [Gruber, et al., 2000]. A space between two circuit boards or a circuit board 

and optical interface board is purely empty. Light signals coming out from the sources 

propagate to designated location on the other substrate. 

The purpose of the optical interconnection is to replace the electrical wire with the optical 

waveguide and associated optical devices. The smaller area the optical waveguide occupies 
on the chip area, the better integration the chip may have. All these approaches may be used 
to form reconfigurable interconnects with active components such as couplers for 
waveguides and optical fibers, modulators for beam spreading, and photo-refractive 

materials as dynamic holograms. Fixed interconnects are adequate for many purposes and 
don't require the use of active beam-steering components. 
Free-space optical interconnections work in a three-dimensional volume in order to 

transport the signals to the desired locations. An earlier model of free-space interconnection 

is similar to a Fourier-plane imaging system with beam-deviating elements. The system has 

an array of sources in the object plane and an array of detectors in the image plane. 

Generally speaking, the light leaving the sources is deflected or fanned out upon passing a 
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holographic element and deflected or fanned out again upon traveling through the 

hologram in the Fourier plane. Both the object plane holographic element and the Fourier 

plane hologram are partitioned into independently programmed regions, each of which 

functions as a sub-hologram, so that light from different sources or falling on distinct 

regions of the Fourier plane may be directed to different detectors in the image plane. 

 

 

Fig. 12. Illustration of free space optical interconnect. 

3.2 Optical interconnections based on optical waveguide holography 

With the rapid advance of integrated optics, the importance of optical waveguides, which 

are the fundamental elements of optical integrated circuits, has been widely recognized. 

Optical waveguides are structures that confine and direct optical signals in a region of 

higher effective index than its surrounding media. By confining wave propagation, the 

waveguides provide communication between the electro-optical (E-O) transmitter and 

receiver, creating optical interconnects. Waveguide couplers play a key role for the 

realization of three-dimensional fully embedded board-level optical interconnection owing 

to their coupling of optical signals into and out of in-plane waveguides. A waveguide 

holographic grating can serve as a surface normal coupler. A classic example would be the 

coupling of guided-wave light to a discrete photodetector placed a few millimeters from the 

waveguide surface. This approach is attractive for a number of reasons. Firstly, the 

waveguide does not need to be cleaved and polished, as no end-faces are used in the 

coupling process. Secondly, making use of a slightly remote detector allows “pick-up” and 

place assembly components to be used in the manufacture of optics-hybrid circuits. 

Optical interconnections using holographic optical elements minimize propagation delays; 

in addition, they reduce space requirements since several signals can propagate through the 

same network without mutual interference, many wiring patterns and high transmission 

rate. The optical signal can be divided to many output ports which are arrayed three-

dimensionally and high densely by using forming function of wavefront with holograms. 

The holographic technology is expected to be applied for diffractive device of optical 

interconnection. Holographic technologies for optical interconnection devices have been 

studied actively[Yeh & Kostuk, 1995; Yeh & Kostuk, 1996]. Holography is the basis of many 

methods of optical data processing. Holograms are assigned important tasks in research on 
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optical interconnections. Particular interest attaches to multifocus lenses for matrix 

processors and optical synchronization systems, and also to focusing devices that carry out 

prescribed transformations of wave fronts. By using various types of holograms, 

interconnections can be either fixed or variable. Dynamic holograms can make these 

interconnections dynamic; in addition, the method of wave-front reversal is the best 

physical basis for the development of associative two-dimensional memory. Holograms are 

also indispensable in one- and two- dimensional analog-digital converters [Honma et al., 

2007].  

In this section, we introduce some recently results of research about waveguide Holograms 

(WGH). Like any other type of hologram, they have their strong and weak points, but their 

compatibility with integrated-optics circuits is an advantage that allows us to regard them 

as promising. A WGH system is shown in Fig. 13, which is based on thin substrate 

waveguides bearing a hologram on the surface through which light is diffracted out. A light 

source is optically coupled to the waveguide such that light emitted from the source is 

caused to propagate along the waveguide, being diffracted out at intersections with the 

surface of the waveguide on which the hologram is formed. 

 

 

Diffracted light 

Guided wave 

Hologram 

Core 

Cladding  

Fig. 13. Schematic of waveguide hologram system 

Waveguide holograms have been used in many applications including filters, multiplexers, 

and DFB lasers. Since most of these applications require only one grating in the hologram, 

surface relief gratings become an appropriate choice. In the case of massive fanout optical 

holographic interconnects, many multiplexed and superimposed gratings must be recorded 

in the same hologram. Therefore, phase gratings are required for optical interconnect 

applications. Due to the nature of phase gratings, many-to-1 (fanin), 1-to-many (fanout), and 

many-to-many interconnects can be realized in both planar holograms and grating couplers. 

Another advantage of using phase gratings is that the strict phase matching condition of 

grating couplers can be alleviated (e.g., alignment requirements between laser diodes and 

grating couplers can be reduced) by either broadband processing of phase gratings" or 

multiple grating recording (i.e., each grating covers a particular angular acceptance). 

3.2.1 Waveguide holograms of two-dimensional images and application in optical 
interconnects 

Putilin discussed an optical interconnection employing waveguide and total internal 
reflection holograms as a basic element [Putilin, 1991]. It is shown that WGH have an 
extremely high efficiency, it forms high resolution and wide view image and permits to 

increase signal to noise ratio. WGH method permits to reconstruct two-dimensional images 
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by one-dimensional waveguide mode because of distributed interaction between them. The 
efficiency of WGH depends upon length of grating and perturbation of refractive index of 
waveguide mode caused by WGH. So the performance efficiency of WGH can be up to 

100% and all waveguide mode power will be used in image. WGH is situated one by one 
along the direction of waveguide mode propagation and can be reconstructed 
simultaneously as shown in Fig.14. The general efficiency of that WGH array is defined as 
(diffraction efficiency of each waveguide hologram-η) 

 1 (1 )nA η= − −  (8) 

Where n is a number of WGH. For uniform n the brightness of images will decrease and 
some information (recorded on last waveguide hologram) will be lost. For uniform 
brightness of images WGH must be written with increasing efficiency: 

 1 /(1 )i i iη η η+ = +  (9) 

Maximum efficiency is limited for concrete dynamics range of recording material and 
general efficiency will be defined as: 

 max max/[1 ( 1) ]A n nη η= + −  (10) 

 

 

Fig. 14. Scheme of simultaneous waveguide hologram array reconstruction 

The main demand of chip-to-chip interconnects is a very small distance between optical 
elements and image plane. Evidently requirements for chip-to-chip interconnection is 
similar to parameters of photolithographic equipment. WGH permit to obtain such 
characteristics. An application of WGH in chip-to-chip interconnection will be optimal 
because light can be separated from air-spaces completely. One of possible variants of that 
interconnection based on WGH of two-dimensional images is shown in Fig.15. The system 
works as explained in following steps: (1) Central WGH 1 transforms substrate waves from 
diode lasers to waveguide modes, (2) this light reconstructs information stored on WGH2. 
Each LD can reconstruct one line from WGH1 information if LD is arranged on VLSI in X 
direction , if LD array is arranged in Y direction then all lasers reconstruct one line from 
WGH1 information with individual shift in Y direction, so shape of reconstructed images 
from WGH2 will be changed. All variants of interconnect configurations must be recorded 
on WGHs. Modulation and additional reconfiguration of system can be done by integrated 
waveguide modulators situated between WGH1 and WGH2. 

A B C D

 

LD 

WGH
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Fig. 15. The scheme of chip-to-chip interconnects based on WGH of two-dimensional images. 

3.2.2 Optical multiplanar VLSI interconnects based on multiplexed waveguide 
holograms  

Optical interconnects for very large scale integration systems based on planar waveguide 

holograms are analyzed in this section[Lin et al., 1990]. The combination of low loss 

waveguides and multiplexed waveguide holograms allows the construction of various 

compact planar architectures with high interconnect density and low insertion loss. The 

long interaction lengths possible in planar structures result in high angular and wavelength 

selectivity. Schematic diagram of a dual plane architecture of optical VLSI interconnects is 

shown in Fig. 16. One plane of the structure contains both electronic and optoelectronic 

elements (e.g., on a circuit board). Multiplexed holograms are fabricated in the other plane. 

It is also possible to achieve truly monolithic integration if a particular substrate, e.g., GaAs, 

is used to hold electronic, optoelectronic, and optical elements or if a mixed integration 

technique is used. 

 

 

Fig. 16. Schematic diagram of a dual plane architecture of optical VLSI interconnects. 

As depicted in Fig. 16, the laser diodes, driven by electronic signals, emit diverging 

wavefronts which can be transformed to guided waves by focusing grating couplers or a 

combination of microlenses and regular grating couplers. The guided waves are in turn 

redirected or distributed in various directions by multiplexed waveguide holograms. This 

configuration utilizes the advantages of holographic optical interconnects (high density, low 

www.intechopen.com



The Composite Structure of Hologram and Optical Waveguide   

 

125 

loss) and yet allows for compact packaging achievable with integrated optics. It also has less 

stringent alignment requirements compared with conventional optics. Alignment is reduced 

to 2-D problems in the planar waveguide, since the vertical direction alignment is provided 

by grating couplers. The trade-off of this approach is that coupling of laser diodes to single-

mode waveguides remains a difficult problem. Solutions, such as broadband or multiplexed 

grating couplers, are under investigation. In addition, these 2-D alignments can be solved by 

a computer-generated hologram approach in which grating couplers and planar holograms 

are written by an e-beam gun on the same substrate. Thus alignment 

problems/requirements between these holographic optical elements can be significantly 

reduced. 

 

 

Fig. 17. Schematic diagram of a multiplanar interconnect architecture. 

 

 

(a) 

 

(b) 

Fig. 18. (a) Planar hologram fully embedded in the waveguide; (b) Partially embedded 
waveguide hologram structure. 

A multiplanar architecture, illustrated in Fig. 17. This multiplanar architecture preserves the 
advantages of a 3-D holographic optical interconnect system while simultaneously avoiding 
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the drawbacks of bulk system layouts. It should be emphasized that since the typical 
waveguide and substrate thickness can be of the order of a few hundreds of micrometers in 
total, the thickness of the multiplanar system can still be of the order of centimeters, even for 
-100 layers. 
To fabricate waveguides with embedded phase gratings, two material requirements must be 

fulfilled. Waveguides should have low loss and be photosensitive. If a low loss holographic 
material can be found, the grating may be recorded in the entire guided region (the fully 
embedded case illustrated in Fig.18(a)). Partially embedded waveguide hologram structure, 
illustrated in Fig. 18(b), is composed of a low loss ion-exchanged glass planar waveguide 

with a layer of dichromated gelatin (DCG) as the holographic material deposited on top of 
the regions where holograms are to be recorded. This structure gives satisfactory results for 
both grating couplers and planar holograms. To obtain the desired grating vector K parallel 

to the waveguide surface, the two recording beams interfering in the film must be separated 
by an angle 2βr determined by: 

 
(sin sin )

sin
2 2

f r Gr
r

n

d

λ θ βλβ
λ

−
= =  (11) 

where β is the input beam angular deviation from normal, θG is the guided wave angle, λr is 

recording wavelength. The system can realize reconfigurable interconnects (depending on 
incident wavelengths) and a total of a few hundred independent interconnect paths. 
However, multiple planar holograms fabricated in one plane can be stacked in a multiple 

plane system in which thousands, even tens of thousands of interconnects are obtainable. 
The maximum number of interconnects in one plane is limited by the channel angular width 
and grating coupler and detector sizes. The upper limit of the interconnect plane size is 
determined by the waveguide substrate size and waveguide quality. An additional trade-off 

arises between interconnectivity and system bandwidth requirements due to dispersion 
characteristics of the structure. 

3.2.3 Use of waveguide holograms for input and transmission of infromation through 
a optical fiber  

A waveguide hologram as well as any other kind of hologram makes it possible to form a 
structure of a light beam that matches the optical fiber employed for input, i.e., provides 
focusing and input of radiation into a fiber without any additional elements. The waveguide 
nature of the reconstruction process is an advantage of the waveguide hologram, which 

provides rapid reconstruction and almost equal amplitudes of waves reconstructed from 
different areas of the hologram when a short reading pulse is used and the diffraction 
efficiency is relatively low. 

Dianov et al., presented a scheme for input and transmission of information on the complex 
amplitude transmittance of a one-dimensional transparency through a single-mode fiber 
communication channel with a waveguide hologram used for input [Dianov et al., 1996 ]. A 
schematic diagram of an optical setup with specially prepared waveguide holograms for 

input of information on the structure of a one-dimensional light field into a fiber 
communication line is shown in Fig. 19. In order to form a light beam of the required 
structure, the waveguide hologram is illuminated by a short radiation pulse in the form of a 

plane wave Ep(x, y, z, t) propagating along the x axis. The one-dimensional information to 
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be transmitted is represented in the form of the complex amplitude transmittance t(x) of the 
one-dimensional transparency Tr, whose plane is practically aligned with that of the 
hologram. In certain cases, this information can be recorded on the hologram itself in 

addition to the structure that forms the radiation to be introduced into the optical fiber. To 
provide input of radiation modulated in accordance with the transmitted amplitude-phase 
information with the required spatial resolution into an optical communication line 
comprising a single-mode fiber, the waveguide hologram should focus radiation from each 

hologram element onto the fiber input, i.e., each hologram element should produce a 
converging spherical wave in the reconstruction process. The device interconnection level in 
reality is an optical fiber local area. The waveguide holograms just described may be 
integrated with optical fibers it will decrease number and complicacy of coupling elements.  

 

 

Fig. 19. Focusing of radiation into a fiber optics link by means of a waveguide hologram. 

3.2.4 Waveguide coupling using holographic transmission gratings  

Waveguide coupling using gratings has attracted considerable attention as an alternative to 
fibre butt-coupling, and a candidate for opto-hybrid integration of components. Sheard et 
al., studied on useing specially shaped gratings etched into the waveguide surface to couple 
light into the free space region above the waveguide [Sheard et al., 1997; Liao et al., 1998]. 
Figure 20 shows a waveguide core section with light travelling along the waveguide in the 
direction of the arrow on the left. The propagating light is progressively scattered by the 
etched grating and projects the light into the free space region above the waveguide surface. 
The parallelogramic shaped grating teeth are desirable, as this has been shown to be the 
most efficient structure for projecting the waveguide light into a single direction. 
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Fig. 20. Parallelogramic shaped etch grating for coupling light into the free space region 
above the waveguide 

The intensity profile of the light coupled out of the waveguide surface can be varied by 
controlling the coupling efficiency. Either the grating depth can be varied along the length 

of the grating or the mark-to-space ratio of the grating can be varied as shown in Fig. 21 (a) 
and (b), respectively. Varying the mark-to-space ratio is easier using high resolution 
lithography. Varying the grating pitch and curving the grating lines by e-beam writing can 
be used to generate a focused beam from the output coupler or even an array of focussed 

points. A typical illustration of a focussing grating coupler is shown in Fig. 22. Here the light 
from a butt-coupled fibre is collected and focused by the grating a few millimetres above the 
waveguide surface. In most cases a diffraction limited spot size can be achieved. 

 

    

                                        (a)                                                                           (b) 

Fig. 21. There are two simple ways to vary the intensity profile of the light coupled out of 
the waveguide surface, by controlling the coupling efficiency. (a) the grating depth along the 
length of the grating is varied, (b) the mark-to space ratio of the grating is varied. 

 

 

Fig. 22. Focusing grating coupler using a curved a chirped surface relief grating. 
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Because of its periodic nature, the grating perturbs the waveguide modes in the region 
underneath the grating, thus causing each one of them to have a set of spatial harmonics 
with z-direction propagation constants given by 

 0

2
v

νπβ β= +
Λ

 (12) 

where ǎ=0, ± 1, ± 2, . . . , and where Λ is the periodicity of the grating. The fundamental 
factor β0 is approximately equal to the βm of the particular mode in the waveguide region 
not covered by the grating. The principal advantage of the grating coupler is that, once 

fabricated, it is an integral part of the waveguide structure. Hence, its coupling efficiency 
remains constant and is not altered appreciably by vibration or ambient conditions. 

4. The holographic waveguide for see-through planar display 

The technology of see-through planar display (i.e. head-up display) is now used in the fields 
of military aviation, commercial aircraft, automobiles and other applications. A 

conventional see-through planar display system contains three primary components: a 
combiner, a projector unit, and a video-generating computer, so the size of the entire 
instrument is quite large, as shown in Fig. 23. 
Because the holographic waveguide itself is transparent to the free-space light beams in the 

direction of perpendicular to waveguide, the observer can view the image produced by the 
hologram and at the same time can see through the hologram to view the scene at the 
opposite side of the hologram. This property is very useful for head-up display technology 

to eyewear display. 
 

 

Fig. 23. A type of head-up display system. 

In 2008, Sony Co. reported an eyeglass-shaped see-through display that can show full color 

video images, as shown in Fig. 24, and the holographic waveguide is the key component 

that realized the structure and display method in this sample. Fig. 25 illustrates this type 

structure of the holographic planar waveguide of the eyewear display [Mukawa et al., 2009]. 

The waveguide has an in-coupling and an out-coupling reflection volume hologram which 

have exactly the same fringe pattern and a mirror symmetrically positioned. Reflection 

volume holograms were employed because their diffraction bandwidths are much smaller 

than those of transmission holograms and could potentially enlarge the field of view of the 
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eyewear displays. Each of these holograms has red, green, and blue hologram layers to 

transmit full-color images through the waveguide. 

 

 

Fig. 24. A visitor wearing the prototype of eyeglass-shaped see-through display 

 

 
Fig. 25. The structure of holographic waveguide for eyewear display 

5. Conclusion  

The combination of hologram and optical waveguide is versatile technology that can be 
used in the optical data storage, optical connection, optical display and other applications. 
With the development of optoelectronic technology, we think that many new kinds of 
waveguide hologram devices will be invented and used widely in the future. 
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