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1. Introduction

Analog circuits form an important part in integrated circuits and in particular in ASICs
(Application Specific Integrated Circuits). However, due to the high complexity, design of
this part has become a bottle-neck in the design flow (Gielen, 2007; Rutenbar et al., 2007). To
overcome this problem and to guaranty that the analog part can be designed in reasonable
time even for future technologies, methods supporting automatic design of analog circuits
must be advanced.
This chapter focuses on sizing of analog circuits. It starts from the point where a topology is
given. The task now is to choose design parameters, e.g., lengths and widths of transistors,
such that certain properties of the circuit are fulfilled.
Current tools to solve the sizing task mostly treat it as a continuous optimization problem
and use, e.g., certain gradient-based approaches to solve the problem in the continuous
domain (Graeb, 2007). However, many design parameters are discrete in reality, e.g.,
transistor multipliers (i.e., the number of transistors connected in parallel), or must be
discretized for some practical purposes, e.g., transistor lengths and widths which should
match to a manufacturing grid. Furthermore, for some future technologies as, e.g., FinFETs
(Knoblinger et al., 2005), the transistor parameters must fulfill certain geometrical properties,
and accordingly have to be discrete.
Considering discrete parameters, it is not sufficient to treat the sizing task as a continuous
optimization problem and rounding the result. This can be followed from mathematical
theory, where it is shown that continuous optimization with sub-sequent rounding might not
solve the original discrete optimization task (i.e., a optimization task that considers discrete
and continuous parameters) and leads to a suboptimal result (Li & Sun, 2006; Nemhauser &
Wolsey, 1988). This can be confirmed by experiments.
To solve discrete optimization problems, statistical and evolutionary approaches have been
proposed (Alpaydin et al., 2003; Cao et al., 2000; Gielen et al., 1990; Ochotta et al., 1996; Phelps
et al., 2000; Somani et al., 2007). However, for practical approaches these tools are usually
more slowly in comparison to deterministic gradient-based tools if a good initial solution
can be given for the task (what is normally true for analog sizing). Even if statistical and
evolutionary approaches might be the first choice if a global search is necessary, for many
cases deterministic gradient-based approaches are more suitable. Deterministic approaches
for discrete sizing of analog circuits have barely been published till today (Pehl & Graeb, 2009;
Pehl et al., 2008). In this chapter a new deterministic gradient-based approach is presented. It
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consists of Sequential Quadratic Programming and Branch-and-Bound.
For the approach in this chapter, the problem is sub-divided into a non-linear program (NLP)
and a discrete program (DP). Afterward, a discrete program is modeled by a discrete quadratic
program (DQP) to speed up the algorithm.
Before the algorithm is presented, it is shown in Section 2 how the task of analog sizing can be
formulated as a discrete minimization program. The task is said to be solved if any parameter
set is found, where sizing constraints as well as performance specifications are fulfilled.
Introducing a relaxation of the parameters (i.e., all parameters are considered to be
continuously scalable), a non-linear, but continuous sub-problem can be defined, called the
relaxed program. To solve this NLP, in Section 3.1 of the chapter a sequential quadratic
programming (SQP) algorithm is introduced.
Obviously, the result of the relaxed program is a point in the relaxed - i.e., continuous -
domain. So, in Section 3.2 of the chapter a Branch-and-Bound approach is introduced to find
a discrete solution to the sizing task.
The algorithm based on SQP and Branch-and-Bound can be used to solve the discrete sizing
problem. However, to improve the run time of the approach, in Section 3.3 of the chapter a
modification to speed up the algorithm is described. In the modification, the quadratic model
of the objective function - which is computed in the SQP algorithm - is used to get a discrete
quadratic model of the original sizing task. By solving the discrete quadratic program a
discrete point can be found which gives an approximation for the obtainable discrete solution.
This approximation can be used to cut non-promising parts of the Branch-and-Bound tree and
to speed up the algorithm.
Experimental results in Section 4 show that in contrast to continuous optimization with
subsequent rounding the presented approach is able to find a discrete feasible solution in each
test case. Furthermore, it can be seen that the modification described in Section 3.3 decreases
the run time of the algorithm significantly without reducing the result quality.
Section 5 concludes and gives an outlook to future research.

2. Problem formulation

2.1 Sizing task

In the analog sizing step appropriate values for the design parameters d of a given topology
must be computed such that certain properties of the circuit are fulfilled. Typical design
parameters are, e.g., lengths and widths of transistors, which were normally considered
as continuous scalable in previous gradient-based approaches. However, in reality most
parameters in the circuit sizing step are discrete, e.g., due to manufacturing grids, due to
modern transistor types as FinFETs, or due to properties from the layout step.
For the approach presented in this chapter, the sizing task is formulated as a discrete
optimization task, i.e., a sizing task considering scalable discrete and continuous parameters.
For this purpose the vector of design parameters d can be subdivided into three parts
corresponding to different parameter classes:

1. Continuous parameters dc are used to model design parameters which do not require the
consideration of any grid and which lie in an Nc-dimensional domain D

Nc that is bounded
by any upper bound dc,U and any lower bound dc,L

dc ∈ D
Nc = {d |dc,L ≤ d ≤ dc,U } (1)
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2. Scalable discrete parameters dd are used to model design parameters which can only lie
on a – not necessarily uniform – Nd-dimensional grid. These parameters dd are subset of a
domain D

Nd :

dd ∈ D
Nd =

Nd

×
k = 1

Di (2)

Di is a set corresponding to the i-th discrete parameter di. Furthermore, Di is ordered by a
relation < (Pehl & Graeb, 2009). Assuming ni discrete parameter values for parameter di,
the ordered set can be formulated as:

di ∈ Di := (D,<) =
{

di,1, ..., di,k, ..., di,ni

}

∀
1 ≤ k < ni

di,k < di,k+1

(3)

3. Non-scalable discrete parameters dx can be used to consider design options which can not
be expressed by a scalable parameter and must be enumerated instead, e.g., the exchange
of different technologies. This class of parameters is non-numerical in many cases. One
way to consider this class of parameters, which fits to the approach presented in this
chapter, is to define binary surrogate parameter for each design option. Assuming ni

discrete design options di,1, ..., di,ni
for a parameter di, i.e.,

di ∈ Di :=
{

di,1, ..., di,k, ..., di,ni

}

(4)

the values are collected in a vector dx,i:

dx,i =
[

di,1, ..., di,k, ..., di,ni

]T
(5)

Additionally the vector db,i of surrogate design parameters is defined as:

db,i =
[

db,1, ..., db,k, ..., db,ni

]T

db,k =

{

1; when option di should be chosen
0; otherwise

(6)

Thus, the vector of surrogate design parameters can be mapped to the value of the
corresponding non-scalable discrete parameter di by

di = dT
b,idx,i (7)

To avoid that different options are chosen for the same parameter, an additional constraint
must be added to the optimization task defined below for each non-scalable discrete
parameter:

dT
b db = 1 (8)

The set of all binary variables corresponding to options for non-scalable parameters is
assigned as D

Nb .
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In this chapter only continuous and scalable discrete parameters are used. However, using
the binary surrogate parameters defined above, the approach in Section 3 can be applied
accordingly.
For continuous parameters dc, and scalable discrete parameters dd the domain D

N of the
design parameters d can be defined as:

d ∈ D
N = D

Nc × D
Nd (9)

Thus, vector d is composed by a continuous part dc and a discrete part dd:

d =
[

dT
d dT

c

]T
(10)

The task of choosing a parameter point, such that certain circuit properties are fulfilled, now
is formulated as:

min
d∈DN

ϕ(d) s.t. c(d) ≥ 0 (11)

wherein c(d) are sizing constraints, which ensure a reasonable sizing of the circuit (Graeb
et al., 2001; Massier & Graeb, 2008). ϕ(d) is the objective function, which maps a multi
objective optimization task to a scalar minimization problem.
The objective function for analog sizing should support improvement of any circuit property
when the specification for a certain performance is fulfilled as well as when the specification
is violated. To build up such a function, an error ε(d) for each performance fi(d) is defined,
which is the normalized distance from the current performance value to the specification
bound fB,i of the performance:

ε(d) =
fi(d)− fB,i

fN,i
(12)

fN,i is a normalization factor which ensures that the values for all performances are
comparable. Without loss of generality it can be assumed that fB,i is a lower bound for the
performance such that

ε(d) ≥ 0 when specifications are fulfilled
ε(d) < 0 when specifications are not fulfilled

(13)

This is illustrated in Figure 1. To support improvement of the performances when the
specifications are violated as well as when the specifications are fulfilled, in this approach
an exponential sum of the normalized errors for all N f performances is used:

ϕ(d) =
N f

∑
i=1

e−ε i(d) (14)

Although the given formulation leads to a Pareto-optimal point, i.e. a solution where one
performance can not be further improved without deteriorating another performance, we
choose to stop the optimization problem – and consider the sizing task solved – as soon as
a point is found which fulfills all specifications. Thus, the minimization is stopped as soon as
a point is found with:

∀
i = 1, ..., N f

ε(d) ≥ 0 (15)
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specification
fulfilled

specification
fulfilled

specifications
fulfilled

performance 1

performance 2

scalar task

dcont

dcont

dcont

ddisc

ddisc

ddiscd1

d1

d1

d2

d2

d2

d3

d3

d3

ϕ(d)

ε1 ≥ 0

ε1 < 0

ε2 ≥ 0

ε2 < 0

Fig. 1. Sizing task with two performances, one discrete parameter ddisc ∈ {d1, d2, d3}, and one
continuous parameter dcont is mapped to a scalar optimization task by ϕ(d).

2.2 Relaxation

To set up the relaxation of a discrete optimization task, the domain for each discrete parameter
is replaced by a continuous domain. As the domain for the discrete parameters in (3) can be a
ordered, the lower bound di,L and upper bound di,U for a discrete parameter di can be defined
as the first and the last element of the ordered set Di

di,L := di,1 and di,U := di,ni
(16)

For all discrete parameters, the lower bounds can be collected in a vector dd,L

dT
d,L =

[

...di,1...
]

(17)

and, respectively, the upper bounds can be collected in a vector dd,U

dT
d,U =

[

...di,ni
...
]

(18)

Thus, a vector of lower and upper bounds for discrete and continuous parameters can be built
up:

dT
L =

[

dT
d,L dT

c,L

]

; dT
U =

[

dT
d,U dT

c,U

]

(19)

For the relaxed optimization task all parameter points must be in the domain

D
N
rel = {d |dL ≤ d ≤ dU } (20)

and the relaxed program can now be defined as:

min
d∈DN

rel

ϕ(d) s.t. c(d) ≥ 0 (21)

The relaxation of a problem is illustrated in Figure 2.
Obviously, the discrete parameter set D

N is a subset of its relaxation D
N
rel and
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specifications
fulfilled

specifications
fulfilled

dcontdcont

ddisc ddiscd1 d1d2 d3 d3

D
2
rel

D
2

dU dU

dL dL

discrete program relaxed program

relaxation

Fig. 2. Relaxation of the parameter domain D
2 (see Figure 1) into the domain D

2
rel

D
N = D

N ∩ D
N
rel (22)

must be true.
The evaluation of the circuit performances in this approach is done by simulations. Thus, in
the rest of this chapter it is assumed, that – even if parameters are discrete – simulation of the
circuit is possible for each continuous point. In the future work the algorithm will be extended
to use exclusively simulation results from discrete points.

3. Discrete sizing approach

3.1 Sequential Quadratic Programming

In the approach, presented in this paper, the relaxed optimization problem in (21) is solved
by a Sequential Quadratic Programming (SQP) approach (e.g., (Nocedal & Wright, 1999)).
SQP converts a constrained nonlinear optimization problem in the continuous domain into a
sequence of unconstrained quadratic programming problems.
Using a vector of Lagrange multipliers λ, the Lagrangian function of the problem can be given
as

L(d,λ) = ϕ(d)− λ
Tc(d) (23)

and the optimization problem (21) can be reformulated as the unconstrained optimization
task:

min
d,λ

L(d,λ) (24)

From the first-order necessary optimality conditions for unconstrained optimization, it
follows that ∇d,λL(d,λ) =0 must hold true in the optimum point. Thus, to find the optimum
of the Lagrangian function, Newtons method can be applied to the gradient ∇d,λL(d,λ).
Using ∆d and ∆λ for the change in parameters and µ as a linearisation index, the equation
system which must be solved can be given as:

⎡

⎣

∇2
dd ϕ(d(µ)

λ
(µ))− ∑

i
λi,0ci

(

d(µ)
λ
(µ)

)

−∇dcT

−∇dc 0

⎤

⎦ ·

[

∆d(µ+1)

∆λ
(µ+1)

]

=

[

−∇dL(d
(µ)

λ
(µ))

c(d(µ))

]

(25)
or with H = ∇2

dd ϕ(d(µ)), J = ∇dc(d(µ)), Ci = ∇2
ddci(d

(µ)), and g = ∇d ϕ(d(µ)).

[

H − ∑
i

λi,0Ci −JT

J 0

]

·

[

∆d
∆λ

]

=

[

−g
c(d0)

]

(26)
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Algorithm 1: Branch and Bound(dinc,DN , D̂
N
rel)

Input: incumbent dinc, parameter domain D
N , relaxed domain D̂

N
rel

//compute minimum for given relaxed domain

1d∗ = arg min
d∈D̂N

rel

ϕ(d) s.t.: c(d ≥ 0)

2if No feasible solution in D̂
N
rel then

// pruning by infeasibility

3return dinc

4else if ϕ(d∗) ≥ ϕ(dinc) then
// pruning by value dominance

5return dinc

6else if d∗ ∈ D
N and ϕ(d∗) < ϕ(dinc) then

// pruning by optimality

7return d∗

8else
// branching

9Choose parameter di for branching

10D̂
N
down =

{

d ∈ D̂
N
rel

∣

∣di ≤
⌊

d∗i
⌋}

11D̂
N
up =

{

d ∈ D̂
N
rel

∣

∣di ≥
⌈

d∗i
⌉}

12dinc =Branch and Bound(dinc, D
N ,D̂N

down)

13dinc =Branch and Bound(dinc, D
N , D̂

N
up)

14return dinc

15end

If the second derivative of the Lagrangian function is convex, the optimization problem in
(24) can be solved by iteratively solving the equation system in (26). The result describes
the direction from the current point to the minimum of the quadratic model of the objective
function subject to the constraints. In the SQP approach a model of the matrix is usually
built up iteratively. This can be realized by different approaches, e.g., BFGS (Broyden Fletcher
Goldfarb Shanno) update formula, which is used in this approach.
After computing the direction by solving (24), a step size is computed at the original relaxed
program using line search. In this approach a Wolfe Powell step size algorithm is used.
The solution which is computed by SQP on the relaxed program is obviously no discrete
feasible point in general. In the next section of this chapter a Branch-and-Bound method is
described, which can be used to find a discrete solution for the original sizing task based on
the solution of the relaxed problem.

3.2 Branch and Bound

Branch and Bound (e.g., (Nemhauser & Wolsey, 1988)) is one of the most popular approaches
in discrete optimization. In the form which is used in this work, it decomposes the discrete
optimization task in a sequence of relaxed optimization tasks which are nonlinear but can be
solved in the continuous domain. A description of the recursive method is given in Algorithm
1 and in the following.
The algorithm is primarily based on two principles:
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1. As the domain of discrete points is a subset of its continuous relaxation (22), the optimum
of the relaxed program is better than or equal to the continuous solution. For the
minimization in (11) and with (21):

(

min
d∈DN

rel

ϕ(d) s.t. c(d) ≥ 0

)

≤

(

min
d∈DN

ϕ(d) s.t. c(d) ≥ 0

)

(27)

Consequently, the minimum of the relaxed program is a lower bound for the discrete
minimum.

2. Each discrete point with objective function value better than the best discrete point so far,
is an upper bound for the discrete solution of the optimization task.

Initially in each recursion the relaxed optimization task is solved in the current relaxed domain
D̂

N
rel (Algorithm 1, line 1 and Figure 3(a)). In the approach presented in this chapter SQP is

used at this point (Section 3.1). Following the first principle, the objective function value at the
minimum of the relaxed task ϕ(d∗) is smaller than or equal to the value at the best discrete
solution in the current sub-domain ϕ(d∗

disc) , i.e.,

(

ϕ(d∗) = min
d∈D̂N

rel

ϕ(d) s.t. c(d) ≥ 0

)

≤

(

ϕ(d∗
disc) = min

d∈DN∩D̂N
rel

ϕ(d) s.t. c(d) ≥ 0

)

(28)

Thus, even if d∗
disc is not explicitly known at this point, the objective function value at the

optimum of the relaxed sub-problem ϕ(d∗) is a lower bound for the sub-domain.
The minimum d∗ which is computed for the relaxed optimization task is not necessarily
discrete. Thus, one of the parameters di ∈ Di (3) which must be discretized is chosen, and a
constraint is set on it to be greater than the next higher or smaller than the next lower discrete
value (called branching). In Algorithm 1 (lines 10, 11) this is assigned by di ≥

⌈

d∗i
⌉

and
di ≤

⌊

d∗i
⌋

, with
⌊d∗i ⌋ = max

d∈Di

s.t. d < di and ⌈d∗i ⌉ = min
d∈Di

s.t. d > di (29)

Figure 3(b) shows that adding one pair of such constraints can be considered as building up
two new relaxed sub-problems with reduced parameter domain (D̂N

up, D̂
N
down in Algorithm

1 and D̂
2
1, D̂

2
2 in the example in Figure 3(b)). Typically, this is represented by a branching

tree (Figure 4): If the parent node of this tree represents the current domain, branching is
equivalent to adding two child nodes which correspond to the subsets D̂

N
up and D̂

N
down. The

edges of the branching tree correspond to the constraints, which are added to define the
sub-problems.
For each sub-problem which is set up in the branching step, Algorithm 1 is executed
recursively (Algorithm 1, lines 12, 13). Following the heuristic order in Algorithm 1,
always D̂

N
down is explored before considering D̂

N
up. Thus, in Figure 3 D̂

2
1 is explored before

considering D̂
2
2. In the example, after computing the continuous solution of sub-domain D̂

2
1

the sub-problem is further branched, as the continuous solution of the sub-problem is not
element of the original discrete domain (Figure 3(c)).
If for each sub-problem branching constraints are added, until the solution of the relaxed
sub-problem is a discrete point and thus a leaf of the search tree is reached, the discrete
solution with the best objective function value is the optimum of the discrete optimization
task. However, without further modification, the computational effort of the method is
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better

d1

d2

d∗

Constraint 1

Constraint 2

ϕ(d)

d∗
disc

(a) The solution of the relaxed optimization
task d∗ is a lower bound for the solution of
the discrete minimization d∗

disc, which is not
explicitly known at this point of time.

d1

d2

d1 ≥ ⌈d∗1⌉

d1 ≤ ⌊d∗1⌋

d∗

D̂2
1

D̂
2
2

(b) Branching leads to two sub-sets e.g.,
D̂

N
down = D̂

2
1 and D̂

N
up = D̂

2
2 , and

two corresponding sub-problems. The
parameter which is chosen for branching, is
computed by equation (30).

d1

d2

d∗

D̂2
3 D̂

2
4

(c) Following Algorithm 1, the lower
sub-domain D̂

2
1 is considered next. The

relaxed solution of the optimization task
in sub-domain D̂

2
1 is non-discrete in

parameter d2. Thus branching constraints
are added for this parameter and the
sub-domains D̂

N
down = D̂

2
3 , D̂

N
up = D̂

2
4 are

generated.

d1

d2

D̂2
3 D̂

2
4

dinc = d∗

(d) Following Algorithm 1, D̂
N
down = D̂

2
3 is

considered next. The solution of domain D̂
2
3

is the discrete optimum dinc. The region can
be pruned by optimality.

d1

d2

D̂2
3 D̂2

4

dinc

(e) Domain D̂
2
4 is considered next. It does

not include any feasible point and can be
pruned by infeasibility.

d1

d2

d∗

D̂2
2

dinc

(f) Finally sub-domain D̂
2
2 is explored. The

continuous optimum in this region has a
higher value than dinc from Figure 3(d). It
can be pruned by value dominance

Fig. 3. Illustration of Branch and Bound for a two-dimensional optimization task
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d1 ≥ ⌈d∗1⌉

d2 ≥ ⌈d∗2⌉

d1 ≤ ⌊d∗1⌋

d2 ≤ ⌊d∗2⌋

Continuous solution in relaxed
domain D

2
rel gives lower

bound for discrete
minimum (Figure ??).

Solution of sub-problem

in domain D̂2
1 is not

discrete. Further branching
is necessary.

Solution in sub-region

D̂2
3 discrete. No further

branching necessary
(pruning by optimality).

Sub-region D̂2
4 does not

include any feasible point.
Node can be cut from search
tree (pruning by infeasibility).

Continuous solution of sub-region

D̂2
2 is worse than discrete upper

bound dinc. Node can be cut from
the search tree
(pruning by value dominance)

Fig. 4. Illustration of Branch and Bound from Figure 3 as a branching tree.

extremely high, as many non promising sub-problems must be solved. Thus pruning rules
(e.g., (Nemhauser & Wolsey, 1988)) are introduced to reduce the run time of the algorithm.
The pruning step can be understood as cutting non promising nodes from the search tree.
Three pruning rules can be found:

1. If a relaxed sub-problem does not include any feasible solution, the corresponding node
can be cut from the search tree. For this rule (known as pruning by infeasibility) it is
considered that each discrete domain is subset of its relaxation ( Algorithm 1, line 2, 3, and
Figure 3(e)).

2. If a discrete solution dinc has been found which is smaller than the value of the current
relaxed sub-problem, the node corresponding to the relaxed sub-problem can be cut off.
This pruning by value dominance uses that – due to principle 1 from above – the relaxed
program can not include a discrete point which is better than dinc (Algorithm 1, line 4, 5,
and Figure 3(f)).

3. If the solution of the relaxed program is discrete and better than the best solution found
so far, it is a new best solution (dinc) for the discrete sizing task. However, at the same
time it is a lower bound for the corresponding relaxed sub-problem which can not include
any better point. Thus, no further branching is necessary in the sub-region. This is called
pruning by optimality (Algorithm 1, line 6, 7, and Figure 3(d)).

The recursive approach described so far realizes a "Depth-First" search. For branching always
the most fractional parameter is used (most fractional or most infeasible branching, e.g.,
Achtenberg et al. (2005)), i.e., assuming an index i = 1, ..., Nd for the discrete parameters di

with value d∗i , the branching index i is chosen by

i = arg max
i=1,...,Nd

∣

∣

∣

∣

0.5 −
d∗i − ⌊d∗i ⌋

⌈d∗i ⌉ − ⌊d∗i ⌋

∣

∣

∣

∣

(30)

However, some problem specific properties can be used to speed up the algorithm in case of
analog sizing. This is described in the following sub-section.
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Algorithm 2: Modified Branch and Bound(dinc,D
N , D̂

N
rel)

Input: incumbent dinc, parameter domain D
N , relaxed domain D̂

N
rel

1if dinc solves the sizing task then
// stop due to pruning rule 2’

2return dinc

3end
4Run SQP (Section 3.1) on optimization problem

min
d∈D̂N

rel

ϕ(d) s.t.: c(d ≥ 0)

until the sizing task is solved or an optimum is found.
5Get solution d∗ and quadratic model from SQP.

6if d∗ does not solve the sizing task (i.e., no solution in D̂
N
rel) then

// pruning rule 1’

7return dinc

8else if d∗ ∈ D
N (i.e., d∗ solves the problem) then

// pruning rule 2’

9return d∗

10else
// compute incumbent

11Get d∗
model by solving the discrete quadratic optimization task (31) using Algorithm 1

12if d∗
model solves the sizing task then
// stop

13return d∗
model

14end
// branching

15Choose parameter di for branching
16Compute

⌊

d∗i
⌋

and
⌈

d∗i
⌉

according to (34) and (35)

17Set D̂
N
down =

{

d ∈ D̂
N
rel

∣

∣di ≤
⌊

d∗i
⌋}

18Set D̂
N
up =

{

d ∈ D̂
N
rel

∣

∣di ≥
⌈

d∗i
⌉}

19dinc =Modified Branch and Bound(dinc, D
N ,D̂N

down)

20dinc = Modified Branch and Bound(dinc, D
N , D̂

N
up)

21return dinc

22end

3.3 Modification of Branch and Bound

To reduce the computational effort of Branch and Bound, the most promising way is to
improve the pruning and the branching heuristic. Certain properties of the underlying
optimization problem can be used to speed up the process. The modified approach is shown
in Algorithm 2 and explained in the following.

3.3.1 Consideration of the quadratic model

As the continuous solution of the relaxed program is computed by an SQP approach, beside
the continuous solution a quadratic model of the objective function is computed during
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d2 d2

d∗d∗

Constraint 1

Constraint 2

ϕ(d)

Quadratic model
of the program

d∗
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Linearisation of
constraint 1

Linearisation of
constraint 2

quadratic model

Fig. 5. The quadratic model (right) and the continuous solution of the optimization task d∗

are computed for the original program (left) during SQP. Solving the quadratic model in the
discrete domain gives a discrete solution d∗

model which is an upper bound for the original
program. In this example, d∗

model is equal to the discrete optimum of the original task.

solving the relaxed program. Furthermore, a linear model of the constraints is computed
(Algorithm 2, lines 4, 5). As these models are good local approximations for the relaxed
program, they are also a good local approximation for the discrete approach. Thus a quadratic
optimization task with linear constraints can be formulated as a surrogate optimization task
for (11):

min
d∈D̂

1

2
· dT · H · d + gT · d s.t. J · d + c(d0) ≥ 0 (31)

wherein H and g are the Hessian matrix and the gradient for the objective function at the
solution point of the relaxed program, J is the Jacobian matrix for the constraints and c0 are
the constraint values at this point. D̂

N is the set of discrete points D in a relaxed sub-problem,
i.e.,

D̂
N = D

N ∩ D̂
N
up or D̂

N = D
N ∩ D̂

N
down (32)

By solving the program in (31) using the discrete domain of the original task, the discrete
optimum d∗

model for the approximation of the objective function can be found (Figure 5;
Algorithm 2, line 11). Due to the second principle from Section 3.2, the value of d∗

model in
the original objective function – i.e., ϕ(d∗

model) – is an upper bound for the discrete optimum if
it is feasible for the original task. Consequently, sub-regions with a continuous solution worse
than the discrete optimum of the model can be cut from the search tree. Thus, early pruning
by pruning rule 2 is possible, as – in contrast to standard branch and bound – a discrete upper
bound exists in the first branching node and not after discretizing all parameters, i.e., in the
first leaf of the search tree. This fact is especially important if many discrete parameters exist.
Additionally, solving the quadratic surrogate problem is computational much less expensive,
as no circuit simulations are necessary, which cause the highest time consumption in solving
the sizing task. Thus, the Branch and Bound algorithm from Section 3.2 can be used to solve
the discrete quadratic program with linear constraints in (31).

3.3.2 Consideration of non-optimality

For analog sizing the SQP approach is stopped as soon as any point is found which fulfills
specifications and constraints. Thus, the solution which is found is in general non-optimal
in terms of the objective function. Taking into account that it is a binary decision if a certain
point solves the sizing task or not, the branching rules can be reformulated.
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Specifications
fulfilled
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Fig. 6. SQP can be stopped as soon as a continuous point d∗ is found which fulfills
constraints and specifications (left). At this point the quadratic model (right) is set up. In the
example, the objective function value at the discrete optimum of the quadratic model d∗

model
is better than the value at d∗ and specifications and constraints are fulfilled at d∗

model.

Assuming that there is at least one discrete solution for the sizing task, obviously only these
sub-domains must be considered during Branch and Bound which include such a point. As
– due to (22) – the discrete solutions must be also in the relaxed domain, all sub-domains
can be cut which do not include a solution of the sizing task in their relaxation. This can be
considered by reformulating pruning rule 1 as:

1’. If a relaxed sub-problem does not include any solution for the sizing task, the
corresponding node can be cut from the search tree (Algorithm 2, lines 6, 7).

If pruning rule 1 is replaced by 1’ the discrete point dinc – which represents a solution
candidate – is only set up, if a discrete solution is found. The Branch and Bound algorithm
can be stopped in this case. Thus, pruning rule 2 (pruning by value dominance) becomes
redundant and can be left out. Pruning rule 1 is reformulated as a stop criterion, to set up
the discrete solution correctly and to avoid insufficient computational effort when the discrete
solution has been found:

3’. If any discrete solution for the sizing task has been found, no further branching is required
(Algorithm 2, lines 1, 2 and 8, 9).

The modifications of the pruning rules have an even stronger influence if the quadratic model
from Section 3.3.1 is considered. In this case, the quadratic model is set up once again in
the point d∗ which is computed by SQP and solves the sizing task in the relaxed domain.
The point d∗ can be non-optimal in terms of the objective function and thus in may cases the
solution of the quadratic optimization problem in the relaxed domain is also a better solution
for the underlying sizing task. The continuous solution of the quadratic model is of course
not evaluated by simulation. However, as the quadratic model is set up once again at d∗, it
is a locally better approximation of the objective function than the quadratic model used for
the last SQP step. Thus, even the discrete optimum d∗

model of the quadratic problem in (31)
computed by use of the quadratic model at d∗ is often a better solution for the sizing task than
d∗ itself (Figure 6).
Hence, in many cases the discrete solution of the model solves the sizing task in the initial

node of Branch and Bound and Branch and Bound can be stopped after computing the discrete
solution of the quadratic model (Algorithm 2, lines 12, 13).
If the initial solution of the quadratic model does not fulfill the specifications, the
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non-optimality of the SQP solution d∗ can also be used to improve the branching heuristic
which has significant influence on the runtime of standard Branch and Bound. The gradient
at a non-optimal point d∗ is not equal to zero. Thus, it can be assumed that discrete solution
candidates can be found in direction of degression of the objective function. The gradient g at
the solution of the SQP algorithm has been already computed to improve the quadratic model
and comes without additional cost. For the branching heuristic used in this approach, now the
parameter which should be discretized and which corresponds to the gradient component gi

with the strongest influence to the objective function is discretized first (Algorithm 2, line 15).
In the "Depth First" search, then the sub-region is chosen which lies in direction of greatest
improvement (Algorithm 2, line 16), i.e., assuming the next discrete values for the parameter
di in domain Di from (3) are da and db, with

da = max
d∈Di

s.t. d < di and db = min
d∈Di

s.t. d > di (33)

the rounding operator ⌈•⌉ and ⌊•⌋ in Algorithm 1 is modified such that

⌈di⌉ =

{

da ; if gi > 0
db ; if gi ≤ 0

(34)

and, respectively,

⌊di⌋ =

{

da ; if gi < 0
db ; if gi ≥ 0

(35)

Thus, discrete points in gradient direction are considered first during branch and bound.

4. Experimental results

To show the effectiveness and efficacy of the algorithm, the sizing process of three different
circuits will be presented in this section. For each example, the results and the runtime of SQP
with sub-sequent rounding, of SQP and modified Branch and Bound (BaB) without quadratic
model, and of SQP and modified Branch and Bound considering the quadratic model (Section
3.3) is presented. The modified Branch and Bound algorithm considering the quadratic model
is presented in Section 3.3 Algorithm 2. The modified Branch and Bound algorithm without
the quadratic model is implemented identically, but the consideration of the quadratic model
(lines 11 - 14 in Algorithm 2) is switched off. I.e., both Branch and Bound approaches stop as
soon as a discrete solution for the sizing task is found. Branching in both Branch and Bound
algorithms is realized according to (34) and (35).
The circuit in the first example is the Miller amplifier in Figure 7. For the sizing tasks the
lengths, widths, and multipliers of the transistors are used as discrete parameters. The lengths
of all transistors shall be equal. Furthermore some multipliers and transistor widths (e.g.,
multipliers and widths of the differential pair) are set equal to avoid mismatch effects. For
transistor lengths and widths a 5nm manufacturing grid is assumed. The Miller capacitance is
represented by a continuous parameter. A 0.5pF load capacitance and a 2V supply voltage are
given for the circuit and the 45nm low power predictive technology (PTM; (Balijepalli et al.,
2007; Cao et al., 2000; Zhao & Cao, 2006)) from (Nanoscale Integration and Modelling Group,
Arizona State University, 2008) is used.
The simulated performance values of the amplifier before and after sizing are shown in Table
1. It can be seen from the results, that – as proposed in Section 1 – the continuous optimization
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Fig. 7. Miller Amplifier

Fig. 8. Runtime for up to 8 times parallelized algorithm on a 16 core 2.67GHz computer for
sizing of the Miller amplifier

and subsequent rounding violates two specifications in this case. In contrast, the goal of the
discrete sizing task was achieved if Branch and Bound with or without quadratic model has
been used. The result quality of Branch and Bound with quadratic model is as good as the
result quality achieved without the modification. However, the runtime comparison in Figure
8 clearly shows that the additional runtime for Branch and Bound considering the quadratic
model presented in this paper, is significantly smaller, than without the modification and the
additional cost compared to the optimization with subsequent rounding is neglectable in this
case.
In the second example the sizing of the more complex amplifier in Figure 9, which is
proposed in (Martins, 1998), is shown. For this example the 45nm high performance
predictive technology model from (Nanoscale Integration and Modelling Group, Arizona
State University, 2008) is used and again a 5nm manufacturing grid is assumed. The lengths
of all transistors and the widths of transistors which are in the same current mirror or in the
same differential pair are set equal. Additionally, some multipliers are set equal considering
the symmetries of the circuit. Thus, 14 multipliers, 11 widths, and the length are considered
as discrete parameters. Additionally, the compensation capacitance Cc and the bias voltages
Vbias,1 and Vbias,2 are represented by continuous parameters. A 20pF load capacitance and a 2V
supply voltage are given for the circuit. Again the sizing rules from (Massier & Graeb, 2008)
are used which define 93 constraints in this case. Specifications and simulated performances
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Perfor-
mance

Specifi-
cation

Initial
values

SQP
+

Rounding

SQP + BaB
w/o

quadratic
model

SQP + BaB
with

quadratic
model

PSRR
[dB]

> 135 134 138 139 137

Gain
[dB]

> 85 89 89 90 89

CMRR
[dB]

> 135 172 167 167 166

ftransit

[MHz]
> 15 19 24 22 23

ϕ [◦] > 60 50
59

(violates
spec)

61 60

SR (rising)

[ V
µs ]

>15 10 18 16 17

|SR (falling)|
[ V

µs ]
>15 14 37 31 32

Area
[(µm)2]

< 10 7 9 9 9

Power
[µW]

< 50 56
52

(violates
spec)

49 49

Table 1. Specification and performance values for Miller amplifier using 45nm PTM, 2V
supply voltage, 1uA bias current
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Fig. 9. Low-voltage low-power operational amplifier from (Martins, 1998)
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Fig. 10. Runtime for up to 8 times parallelized algorithm on a 16 core 2.67GHz computer for
sizing of amplifier in Figure 9

are presented in Tabular 2.
Also in this case specifications are violated when SQP and sub-sequent rounding is used and
also here Branch and Bound with and without quadratic model solves the sizing task. The
runtime comparison in this case shows that also here Branch and Bound using the quadratic
model is much faster than without consideration of the quadratic model. As the number of
discrete parameters is much higher in this case, also the runtime of Branch and Bound on the
quadratic model is relatively large. Thus potential for further improvement of the algorithm
can be seen: The runtime of the algorithm can be reduced if the Branch and Bound algorithm
presented in (3.2) is advanced, which is used to find the discrete optimum on the quadratic
model and needs approximately half of the computational time in this experiment.
The third example shows the sizing process for the sense amplifier from (Yeung & Mahmoodi,

2006) (see Figure 11). Considering the symmetry of the circuit, 5 multipliers, 5 transistor
widths, and the transistor length are used as parameters. For the sizing process a 16nm low
power PTM is used and a 2nm manufacturing grid is assumed. Specifications and results are
listed in Table 3. For the simulation of the delay it is assumed that the inputs (bit line BL and
negative bit line BLB) are preloaded to VDD = 1.5V and the input signal is a voltage reduction
by 10mV at one of them. “Delay +” in Table 3 is defined as the time between the change of the
input signal at the positive input BL and the point of time when the positive output reaches
0.95 · VDD . Accordingly, the value of “Delay −” is defined as the time between the change of
the signal at the negative input BLB and the point of time when the positive output reaches
0.05 · VDD .
The results for this experiment show that in this case continuous optimization with
subsequent rounding leads to a solution of the sizing task. This especially happens, if only
a few or week constraints and specifications are defined and if only a small number of
parameters is used. However, the additional runtime for the modified Branch and Bound
approach is only a few seconds. Further analysis of the results shows, that the additional
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Perfor-
mance

Speci-
fication

Initial
values

SQP
+

Rounding

SQP + BaB
w/o

quadratic
model

SQP + BaB
with

quadratic
model

PSRR
[dB]

> 70 59
63

(violates
spec)

77 79

Gain
[dB]

> 60 62 65 69 65

CMRR
[dB]

> 70 57
69.7

(violates
spec)

81 83

ftransit

[MHz]
> 150 92 274 256 221

ϕ [◦] > 60 85 65 62 60
SR (rising)

[ V
µs ]

> 10 8 23 16 23

|SR (falling)|
[ V

µs ]
> 10 8 17 14 15

Table 2. Specification and performance values for the amplifier in Figure 9 using 45nm PTM,
2V supply voltage, 20pF load capacity
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Fig. 11. Sense amplifier

runtime (approximately 30 seconds) is used for computing the gradient and setting up the
quadratic model. In contrast to Branch and Bound with consideration of the quadratic model,
Branch and Bound without the quadratic model has a significant higher runtime.

5. Conclusion

Sizing of analog circuits is one important task in the analog design flow. In this chapter a new
deterministic and gradient-based method has been presented to solve this task. The method
solves the relaxed, i.e., continuous sizing task using SQP. Discretization of the result is done
by a subsequent Branch and Bound approach under consideration of the quadratic model
which is computed during SQP. Additionally certain properties of the underlying sizing task
are used to speed up the approach.
The experimental results show that SQP with subsequent rounding can not solve the sizing
task in general. In contrast, SQP combined with Branch and Bound is a reasonable approach
for sizing analog circuits with discrete parameters. Furthermore, the experimental results
show, that the efficacy and efficiency of SQP and Branch and Bound can be increased
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Fig. 12. Runtime for up to 8 times parallelized algorithm on a 16 core 2.67GHz computer for
sizing of the sense amplifier

Perfor-
mance

Speci-
fication

Initial
values

SQP
+

Rounding

SQP + BaB
w/o

quadratic
model

SQP + BaB
with

quadratic
model

Delay +
[ps]

< 60 402 59 46 55

Delay −
[ps]

< 60 423 48 46 48

static power
[µW]

< 5 27.5 1.4 1.4 2.0

Area
[(µm)2]

< 0.025 0.225 0.018 0.022 0.019

Table 3. Specification and performance values for sens amplifier using 16nm PTM, 1.5V
supply voltage, 1 f F Load capacity.

significantly, if the modifications in Section 3.3 are used.
The task presented so far is not able to solve the discrete sizing task, if the circuit performances
can only be evaluated for discrete points. Thus, in the future work this problem will be tackled.
Additionally, the experiments have shown, that the runtime of the algorithm can be reduced
by accelerating the Branch and Bound approach which is used to solve the quadratic model.
Also the consideration of non-scalable discrete parameters mentioned in Section 2 is an open
task for the future work.
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