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1. Introduction

The influence of process variations is becoming extremely critical for nano technology nodes
(90nm and below), due to geometric tolerances and manufacturing non-idealities (such
as edge or surface roughness, or the fluctuation in the number of doping atoms). The
most worrying of all is the statistical variability introduced by discreteness of charge and
granularity matter in the transistors approaching molecular and atomic scale dimensions.
The main sources of statistical variability are the random distributions of discrete dopants
and charged defects, the line edge roughness of the photo resist and the granularity of the
materials (Bernstein et al., 2006; Boning & Nassif, 1999). As a result, production yields and
circuit figures of merit (such as performance, power, and reliability) have became extremely
sensitive to incontrollable statistical process variations (PV). The main sources of variations
are: environmental factors, whose transient arises during the operation of a circuit (e.g. power
supply or temperature variations), and physical factors due to the manufacturing process,
which result in a (permanent or aging) variation of the device structure and interconnections.
The latter reflect into random (possibly spatial) drifts of the design parameter.
Although already considered in the past, the increasing impact of these drawbacks constitutes
a completely new challenge. While process engineers have traditionally coped with die-to-die
fluctuations, the today within-die variations are more subtle since they imply that different
areas of the same die exhibit different values of the various parameters. With a further
shrinking of process technology, the on-chip variation is getting worse for each technology
node, thus having a direct impact on the design flows. By contrast, the latter conventionally
rely on deterministic models.
At a front end, parameter variability has a significant impact both on the power dissipation
and performance of a circuit, with a consequent yield decrease and remarkable cost
implications. Indeed, to maintain production efficiency we must raise up control costs and
cycle time, a drawback which dramatically increases with the process complexity. To contrast
it, the following two joint tasks become essential:
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• to characterize statistically integrated circuits (IC) manufacturing process fluctuations;

• to predict reliably circuit performance spreads at the design stage.

Failure in the former can result in a low parametric yield, since ICs do not meet design
specifications. On the one hand, a successful statistical characterization promotes a robust
manufacturability reflecting in a high fabrication yield (i.e. a high proportion of produced
circuits which function properly). On the other hand, it requires managing complex design
flows in the design-verification-production life-cycle of ICs.
Summing up, random and systematic defects as well as parametric process variations have
a big influence on the design/production cycle, causing frequent re-spinning of the whole
development and manufacturing chain. This leads to high costs of multiple manufacturing
runs and entails extremely high risks of missing a given market window. One way to
overcome these drawbacks is to implement the DFM/DFY paradigm (Bühler et al., 2006)
where Design for Manufacturability (DFM) mates Design for Yield (DFY) to form a synergistic
manufacturing chain to be dealt with in terms of: i) relationships between the statistical circuit
parameters matching the production constraints, and ii) performance indicators ensuring
correctly functioning dies. This chapter introduces a pair of procedures aimed at identifying
these parameters exactly with the goal of maximizing performance indicators defined as a
function of the parameters’ confidence region.
The material is organized as follows. In Section 2 we discuss the statistical aspect of IC design
and introduce the lead formalism. In Section 3 we focus on the statistical modeling task
with special regard to two advanced solution methods. Hence we introduce benchmarks in
Section 4 to both provide a comparison between the performances of the above methods and
show their behaviors w.r.t. state-of-the-art procedures introduced by researchers in the last
years. Concluding remarks are drawn in the final section.

2. Statistics in IC design

Electronic devices are replicated multiple times on a wafer and different wafers are produced,
but each device cannot be produced in the same way in terms of electrical performance. Main
factors that make the fabrication result uncertain are: the imperfections characterizing the
masks and tolerances in their positionings, various changing effects of ion plant temperature
during production, tolerances in size, etc. Generally fluctuations’ processes produce fluctuations
in electrical performance. Consequently, an essential tool for electronic circuit designing is
represented by the statistical model which formally relates the former to the latter.
A circuit is classified as acceptable in performances if all specifications on its electrical behavior
are met. In the context of the microelectronics industry, the term yield phrases the ratio
between the number of acceptable chips and total number of produced chips:

yield =
# accetable chips

# manufactured chips
(1)

The acceptability of each chip is decreed by checking that the questioned electrical parameters
individually fall into tolerance intervals. In addition, each wafer contains several sites with
special test structures that enable further performance measurements in order to verify the
manufacturing process. All the measurements are collected in a database which statistically
characterizes the electrical behavior of the devices.
As for the final product we may classify the integrated circuits into:

• acceptable chips, which satisfy all performance requests,
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• functional failures, when malfunctions affect chips,

• parametric failures, when chips fail to reach performances.

Coming to their manufacturing, we are used to distinguish three categories of failures that we
synthesize through:

2.1. random yield (sometimes called statistical yield), concerning the random effects occurring
during the manufacturing process, such as catastrophic faults in the form of open or short
circuits. These faults may be a consequence of small particles in the atmosphere landing
on the chip surface, no matter how clean is the wafer manufacturing environment. An
example of a random component is that of threshold voltage variability due to random
dopant fluctuations (Stolk et al., 1988);

2.2. systematic yield (including printability issues), related to systematic manufacturability issues
deriving from combinations and interactions of events that can be identified and addressed
in a systematic way. An example of these events is the variation in wire thickness
with layout density due to Chemical Mechanical Polishing/Planarization (CMP) (Chang
et al., 1995). The distinction from the previous yield is important because the impact of
systematic variability can be removed by adapting the design appropriately, while random
variability will inevitably impact design margins in a negative manner;

2.3. parametric yield (including variability issues), dealing with the performance drifts induced
by changes in the parameter setting – for instance, lower drive capabilities, increased
leakage current and greater power consumption, increased resistance and capacitance (RC)
time constants, and slower chips deriving from corruptions of the transistor channels.

From a complementary perspective, the unacceptable performance causes for a circuit may be
split into two categories of disturbances:

• local, caused by disruption of the crystalline structure of silicon, which typically determines
the malfunctioning of a single chip in a silicon wafer;

• global, caused by inaccuracies during the production processes such as misalignment of
masks, changes in temperature, changes in doses of implant. Unlike the local disturbance,
the global one involves all chips in a wafer at different degrees and in different regions.
The effect of this disturbance is usually the failure in the achievement of requested
performances, in terms of working frequency decrease, increased power consumption, etc.

Both induce troubles on physical phenomena, such as electromagnetic coupling between
elements, dissipation, dispersion, and the like.
The obvious goal of the microelectronics factory is to maximize the yield as defined in (1). This
translates, from an operational perspective, into a design target of properly sizing the circuit
parameters, and a production target of controlling their realization. Actually both targets are
very demanding since the involved parameters π are of two kinds:

• controllable, when they allow changes in the manufacturing phase, such as the oxidation
times,

• non controllable, in case they depend on physical parameters which cannot be changed
during the design procedure, like the oxide growth coefficient.

Moreover, in any case the relationships between π and the parameters φ characterizing
the circuit performances are very complex and difficult to invert. This induces researchers
to model both classes of parameters as vectors of random variables, respectively Π and
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Φ
1. The corresponding problem of yield maximization reverts into a functional dependency

among the problem variables. Namely, let Φ = (Φ1, Φ2, . . . , Φt) be the vector of the
performances determined by the parameter vector Π = (Π1, Π2, . . . , Πn), and denote with
DΦ the acceptability region of a given chip. For instance, in the common case where each
performance is checked singularly in a given range, i.e.:

φl
k ≤ Φk ≤ φu

k k = 1, . . . , t (2)

DΦ reads:

DΦ =
{

Φ|φl
k ≤ Φk ≤ φu

k k = 1, . . . , t
}

(3)

The yield goal is the maximization of the probability P that a manufactured circuit has an
acceptable performance, i.e.

P = P [Φ ∈ DΦ ] =
∫

DΦ

fΦ(φ)dφ (4)

where fΦ is the joint probability density of the performance Φ.
To solve this problem we need to know fΦ and manage its dependence on Π. Namely,
methodologies for maximizing the yield must incorporate tools that determine the region
of acceptability, manipulate joint probabilities, evaluate multidimensional integrals, solve
optimization problems. Those instruments that use explicit information about the joint
probability and calculate the yield multidimensional integral (4) during the maximization
process are called direct methods. The term indirect is therefore reserved for those methods
that do not use this information directly. In the next section we will introduce two of these
methods which look to be very promising when applied to real world benchmarks.

3. Statistical modeling

As mentioned in the introduction, a main way for maximizing yield passes through mating
Design for Manufacturability with Design for Yield (DFM/DFY paradigm) along the entire
manufacturing chain. Here we focus on model parameters at an intermediate location
in this chain, representing a target of the production process and the root of the circuit
performance. Their identification in correspondence to a performances’ sample measured
on produced circuits allows the designer to get a clear picture of how the latter react to the
model parameters in the actual production process and, consequently, to grasp a guess on
their variation impact. Typical model and performance parameters are described in Table 1 in
Section 4.
In a greater detail, the first requirement for planning circuits is the availability of a model
relating input/output vectors of the function implemented by the circuit. As aforementioned,
its achievement is usually split into two phases directed towards the search of a couple of
analytic relations: the former between model parameters and circuit performances, and the
latter, tied to the process engigneers’ experience, linking both design and phisical circuit
parameters as they could be obtained during production. Given a wafer, different repeated
measurements are effected on dies in a same circuit family. As usual, the final aim is the model

1 By default, capital letters (such as X, Y) will denote random variables and small letters (x, y) their
corresponding realizations; bold versions (X,Y ,x,y) of the above symbols apply to vectors of the
objects represented by them. The sets the realizations belong to will be denoted by capital gothic
symbols (X,Y).
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identification, in terms of designating the input (respectively output) parameter values of the
aforementioned analytical relation. In some way, their identification hints at synthesizing
the overall aspects of the manufacturing process not only to use them satisfactory during
development yet to improve oncoming planning and design phases, rather than directly
weigh on the production.
For this purpose there are three different perspectives: synthesize simulated data, optimize
a simulator, and statistically identify its optimal parameters. All three perspectives share the
following common goals: ensure adequate manufacturing yield, reduce the production cost,
predict design fails and product defects, and meet zero defects specification. We formalize
the modeling problem in terms of a mapping g from a random vector X = (X1, . . . , Xn),
describing what is commonly denoted as model parameters 2, to a random vector Y =
(Y1, . . . , Yt), representing a meaningful subset of the performances Φ. The statistical features
of X , such as mean, variance, correlation, etc., constitute its parameter vector θX , henceforth
considered to be the statistical parameter of the input variable X . Namely, Y = g(X) =
(g1(X), . . . , gt(X)), and we look for a vector θY that characterizes a performance population

where P(Y ∈ D̂Y ) = α, having denoted with D̂Y the α-tolerance region, i.e. the domain
spanned by the measured performances, and with α a satisfactory probability value. In turn,

D̂Y is the statistic we draw from a sample sy of the performances we actually measured
on correctly working dies. Its simplest computation leads to a rectangular shape, as in (3),
where we independently fix ranges on the singular performances. A more sophisticated
instance is represented by the convex hull of the jointly observed performances in the overall
Y space (Liu et al., 1999). At a preliminary stage, we often appreciate the suitability of θY by
comparing first and second order moments of a performances’ population generated through
the currently identified parameters with those computed on sy .
As a first requisite, we need a comfortable function relating the Y distribution to θX .
The most common tool for modeling an analog circuit is represented by the Spice
simulator (Kundert, 1998). It consists of a program which, having in input a textual
description of the circuit elements (transistors, resistors, capacitors, etc.) and their
connections, translates this description into nonlinear differential equations to be solved
using implicit integration methods, Newton’s method and sparse matrix techniques. A
general drawback of Spice – and circuit simulators in general – is the complexity of the
transfer function it implements to relate physical parameters to performances which hampers
intensive exploration of the performance landscape in search of optimal parameters. The
methods we propose in this section are mainly aimed at overtaking the difficulty of inverting
this kind of functions, hence achieving a feasible solution to the problem: find a θX
corresponding to the wanted θY .

3.1 Monte Carlo based statistical modeling

The lead idea of the former method we present is that the model parameters are the
output of an optimization process aimed at satisfying some performance requirements. The
optimization is carried out by wisely exploring the research space through a Monte Carlo
(MC) method (Rubinstein & Kroese, 2007). As stated before, the proposed method uses the
experimental statistics both as a target to be satisfied and, above all, as a selectivity factor
for device model. In particular, a device model will be accepted only if it is characterized by
parameters’ values that allow to obtain, through electrical simulations, some performances
which are included in the tolerance region.

2 We speak of X as controllable model parameters to be defined as a suitable subset of Π.
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Performance Space

central value

ẙ2

ẙ1

Y = (Y1, . . . , Yt)

Statistical Modeling

Model Parameter Space

X = (X1, . . . , Xn )

x̊2

x̊1

Fig. 1. Proposed flow: from the experimental statistics we determine a statistical Spice model
for the device.

The aim of the proposed flow is the following: on the basis of the information which
constitutes the experimental statistics, we want to map the space Y of the performances (such
as gain and bandwidth) to the space X of circuit parameters (such as Spice parameters or
circuit components values), as outlined in Fig. 1. Variations in the fabrication process cause
random fluctuations in Y space, which in turn cause X to fluctuate (Koskinen & Cheung,
1993). In other words, we want to extract a Spice model whose parameters are random
variables, each one characterized by a given probability distribution function. For instance,
in agreement with the Central Limit Theorem (Rohatgi, 1976), we may work under usual
Gaussianity assumptions. In this case, for the model parameters which have to be statistically
described, it is necessary and sufficient to identify the mean values, standard deviations and
correlation coefficients. In general, the flow of statistical modeling is based on several MC
simulation steps (strictly related to bootstrap analysis (Efron & Tibshirani, 1993)), in order to
estimate unknown features for each statistical model parameter. The method will proceed by
executing iteratively the following steps, in the same way as in a multiobjective optimization
algorithm, where the targets to be identified are the optimal parameters θX of the model.
In the following procedure, general steps (described in roman font) will be specialized to the
specific scenario (in italics) used to perform simulations in Section 4.

Step 1. Assume a typical (nominal) device model m0 is available, whose model parameters’

means are described by the vector ν̊X (central values). Let D̂Y be the corresponding
typical tolerance region estimated on Y observations sy . Choose an initial guess of X

joint distribution function on the basis of moments estimated on given X observations sx.
Let M denote the companion device statistical model, and set k = 0.

In the specific case of hyper-rectangle tolerance regions defined as in (3), let ν̊Yj
± 3σ̊Yj

, j = 1, . . . , t
denote the two extremes delimiting each admissable performance interval. Moreover, since model
parameters X of M follows a multivariate Gaussian distribution, assume (in the first iteration)
a null cross-correlation between {X1, . . . , Xn}, hence θXi

= {νXi
, σXi

}, i = 1, . . . , n, where by
default νXi

= ν̊Xi
, i.e. the same mean as the nominal model is chosen as initial value, and σXi

is
assigned a relatively high value, for instance set equal to the double of the mean value.

Step 2. At the generic iteration k, an m-sized 3 sample sMk
= {xr}, r = 1 . . . , m will be

generated according to the actual X distribution.

3 A generally accepted rule to assign m is: for an expected probability level 10−ξ , the sample size m
should be set in the range [10ξ+2, 10ξ+3] (Johnson, 1994).
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In particular, when Xi are nomore independent, the discrete Karhunen-Loeve expansion (Johnson,
1994) is adopted for sampling, starting from the actual covariance matrix.

Step 3. For each model parameter xr in sMk
, the target performances yr will be calculated

through Spice circuit simulations.

Step 4. Only those model parameters in sMk
reproducing performances lying within the

chosen tolerance region D̂Y will be accepted. On the basis of this criterion a subsample
s̃
Mk

of sMk
having size m′ ≤ m will be selected.

In particular, by keeping a fraction 1 − δ, say 0.99, of those models having all performance values
included in D̂Y , we are guaranteeing a confidence region of level δ under i.i.d. Gaussianity
assumptions.

Step 5. On the basis of the subsample s̃
Mk

, a new model M ′
k will be computed through

standard statistical techniques.

For each model parameter Xi, i = 1, . . . , n, the n standard deviations could be computed on
the sample s

M̃
through Maximum Likelihood Estimators (MLE) (Mood et al., 1974), Spearman

Rank-Order correlation coefficient (Lehmann, 2006; Press et al., 1993) may be used to estimate
cross-correlation, while, according to circuit designers’ report, the n means will be kept equal to the
nominal ν̊Xi

, i = 1, . . . , n.

Step 6. If the number m̃ of selected model parameters which have generated M ′ is sufficiently
high (for instance they constitute a fraction 1 − δ, let’s say 0.99, of the m instances, then the
algorithm stops returning the statistical model M ′. Otherwise, set k = k + 1 and goto Step
2.

The iterative procedure described above is based on Attractive Fixed Point method (Allgower
& Georg, 1990), where the optimal value of those features to be estimated represents the
fixed point of the algorithm. When the number of the components significantly increases, the
convergence of the algorithm may become weak. To manage this issue, a two-step procedure
is introduced where the former phase is aimed at computing moments involving single
features Xi while maintaining constant their cross-correlation; the latter is directed toward the
estimation of the cross-correlation between them. The overall procedure is analogous to the
previous one, with the exception that cross-correlation terms will be kept fixed until Step 5 has
been executed. Subsequently, a further optimization process will be performed to determine
the cross-correlation coefficients, for instance using the Direct method as described in Jones
et al. (1993). The stop criterion in Step 6 is further strengthen, prolonging the running of the
procedure until the difference between cross-correlation vectors obtained at two subsequent
iterations will drop below a given threshold.

3.2 Reverse spice based statistical modeling

A second way we propose to bypass the complexity handicap of Spice functions passes
through a principled philosophy of considering the region DX where we expect to set the
model parameters as an aggregate of fuzzy sets in various respects (Apolloni et al., 2008).
First of all we locally interpolate the Spice function g through a polynomial, hence a mixture
of monomials that we associate to the single fuzzy sets. Many studies show this interpolation
to be feasible, even in the restricted form of using posynomials, i.e. linear combination of
monomials through only positive coefficients (Eeckelaert et al., 2004). The granular construct
we formalize is the following.
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Given a Spice function g mapping from x to y (the generic component of the
performance vector y), we assume the domain DX ⊆ R

n into which x ranges to be
the support of c fuzzy sets {A1, . . . , Ac}, each pivoting around a monomial mk. We
consider this monomial to be a local interpolator that fits g well in a surrounding of
the Ak centroid. In synthesis, we have g(x) ≃ ∑

c
k=1 µk(x)mk(x), where µk(x) is the

membership degree of x to Ak, whose value is in turn computed as a function of the
quadratic shift (g(x)−mk(x))

2.

On the one hand we have one fuzzy partition of DX for each component of y. On the other
hand, we implement the construct with many simplifications, in order to meet specific goals.
Namely:

• since we look for a polynomial interpolation of g, we move from point membership
functions to sets, to a monomial membership function to g, so that g(x) ≃ ∑

c
k=1 µkmk(x).

In turn, µk is a sui generis membership degree, since it may assume also negative values;

• since for interpolation purposes we do not need µk(x), we identify the centroids directly
with a hard clustering method based on the same quadratic shift.

Denoting mk(x) = βk ∏
n
j=1 x

αkj

j , if we work in logarithmic scales, the shifts we consider for

the single (say the i-th) component of y are the distances between zr = (logxr, log yr) and the
hyperplane hk(z) = wk · z + bk = 0, with wk = {αk1, . . . , αkn} and bk = log βk, constituting
the centroid of Ak in an adaptive metric. Indeed, both wk and bk are learnt by the clustering
algorithm aimed at minimizing the sum of the distances of the zrs from the hyperplanes
associated to the clusters they are assigned to.
With the clustering procedure we essentially learn the exponents αkj through which the
x components intervene in the various monomials, whereas the βks remain ancillary
parameters. Indeed, to get the polynomial approximation of g(x) we compute the mentioned
sui generis memberships through a simple quadratic fitting, i.e. by solving w.r.t. the vector

µ = {µ1, . . . , µc} the quadratic optimization problem: µ = arg minµ̃ ∑
m
r=1 (g(xr)− yr))

2,
where xrj denotes the j-th component of the r-th element of the training set sx, yrj its
approximation, with

yj =
c

∑
k=1

mjk(x) =
c

∑
k=1

µjk

n

∏
i=1

x
αjki

i (5)

where the index r has been hidden for notational simplicity, and µks override βks.

3.2.1 A suited interpretation of the moment method

An early solution of the inverse problem:

Which statistical features of X ensure a good coverage (in terms of α-tolerance regions) of
the Y domain spanned by the performances measured on a sample of produced dies?

relies on the first and second moments of the target distribution, which are estimated on
the basis of a sample sy of sole Y collected from the production lines as representatives of

properly functioning circuits. Our goal is to identify the statistical parameters θ̃X of X that
produce through (5) a Y population best approximating the above first and second order
moments. X is assumed to be a multidimensional Gaussian variable, so that we identify
it completely through the mean vector νX and the covariance matrix ΣX which we do not
constrain in principle to be diagonal (Eshbaugh, 1992). The analogous νY and ΣY are a
function of the former through (5). Although they could not identify the Y distribution in full,
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we are conventionally satisfied when these functions get numerically close to the estimates
of the parameters they compute (directly obtained from the observed performance sample).
Denoting with νXj

, σXj
, σXj,k

and ρXj,k
, respectively, the mean and standard deviation of Xj and

the covariance/correlation between Xj and Xk, the master equations of our method are the
following:

1.

νYi
=

c

∑
k=1

αikjνMik
(6)

where Mik on the right is a short notation of mik(X), and νMik
denotes its mean.

2. Thanks to the approximations

νΞ ≃ log νX , σΞ ≃ σX/νX , ρΞi,j
≃ ρXi,j

(7)

with Ξ = log X, coming from the Taylor expansion of respectively Ξ, (Ξ − νΞ)
2 and (Ξi −

νΞi
)(Ξj − νΞj

) around (νXi
, νXj

) disregarding others than the second terms, the rewriting
of ΣY reads

σ2
Yi

=
c

∑
k=1

σ2
Mik

+ 2
c

∑
k,r=1
k<r

σMik,ir
(8)

σYi,j
=

c

∑
k,r=1

σMik,jr
(9)

with

σ2
Mik

≃ ν2
Mik

⎛
⎜⎜⎝

n

∑
j=1

a2
ikj

σ2
Xj

ν2
Xj

+ 2
n

∑
j,r=1
j<r

ρXj,r
aikjaikr

σXj

νXj

σXr

µXr

⎞
⎟⎟⎠ (10)

σMik,ir
≃ νMik

νMir

n

∑
j,w=1

aikjairwρXj,w

σXj

νXj

σXw

νXw

(11)

We numerically solve (6) and (8-9) in νX and ΣX when the left members coincide with the
target values of νY and ΣY , respectively, and νMik

is approximated with its sample estimate
computed on samples artificially generated with the current values of the parameters. Solving
equations means minimizing the differences between left and right members, so that the
crucial point is the optimization method employed.The building blocks are the following.
The steepest descent strategy. Using the Taylor series expansion limited to second
order (Mood et al., 1974), we obtain an approximate expression of the gradient components of
νY w.r.t. νX through

∂νYi

∂νXj

≃
c

∑
k=1

αikj

(
1

νXj

+
σ2

Xj

ν3
Xj

)
νMik

(12)

Thus we may easily look for the incremental descent on the quadratic error surface accounting
for the difference between computed and observed means. Expression (12) confirms the scarce
sensitivity of the unbiased mean νX , and its gradient as well, to the second moments, so
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that we may expect to obtain an early approximation of the mean vector to be subsequently
refined. While analogous to the previous task, the identification of X variances and
correlations owns one additional benefit and one additional drawback. The former derives
from the fact that we may start with a, possibly well accurate, estimate of the means. The
latter descends from the high interrelations among the target parameters which render the
exploration of the quadratic error landscape troublesome and very lengthy.
Identification of second order moments. An alternative strategy for X second moment
identification is represented by the evolutionary computation. Given the mentioned
computational length of the gradient descent procedures, algorithms of this family become
competitive on our target. Namely, we used Differential Evolution (Price et al., 2005), with
specific bounds on the correlation values to avoid degenerate solutions.
A brute force numerical variant. We may move to a still more rudimentary strategy
to get rid of the loose approximations introduced in (6) to (12). Thus we: i) avoid
computing approximate analytical derivatives, by substituting them with direct numerical
computations (Duch & Kordos, 2003), and ii) adopt the strategy of exploring one component
at a time of the questioned parameter vector, rather than a combination of them all, until
the error descent stops. Spanning numerically one direction at a time allows us to ask the
software to directly identify the minimum along this direction. The further benefit of this task
is that the function we want to minimize is analytic, so that the search for the minimum along
one single direction is a very easy task for typical optimizers, such as the naive Nelder-Mead
simplex method (Nelder & Mean, 1965) implemented in Mathematica (Wolfram Research Inc.,
2008). We structured the method in a cyclic way, plus stopping criterion based on the amount
of parameter variation. Each cycle is composed of: i) an iterative algorithm which circularly
visits each component direction minimizing the error in the means’ identification, until no
improvement may be achieved over a given threshold, and ii) a fitting polynomial refresh on
the basis of a Spice sample in the neighborhood of the current mean vector. We conclude the
routine with a last assessment of the parameters that we pursue by running jointly on all them
a local descent method such as Quasi-Newton procedure in one of its many variants (Nocedal
& Wright, 1999).

3.2.2 Fine tuning via reverse mapping

Once a good fitting has been realized in the questioned part of the Spice mapping, we
may solve the identification problem in a more direct way by first inverting the polynomial
mapping to obtain the X sample at the root of the observed Y sample, and then estimating
θX directly from the sample defined in the DX domain. The inversion is almost immediate
if it is univocal, i.e., apart from controllable pathologies, when X and Y have the same
number of components. Otherwise the problem is either overconstrained (number n of X

components less than t, dimensionality of Y components) or underconstrained (opposite
relation between component numbers). The first case is avoided by simply discarding
exceeding Y components, possibly retaining the ones that improve the final accuracy and
avoid numeric instability. The latter calls for a reduction in the number of questioned X

components. Since X follows a multivariate Gaussian distribution law, by assumption, we
may substitute some components with their conditional values, given the others.

4. Numerical experiments

The procedures we propose derive from a wise implementation of the Monte Carlo methods,
as for the former, and a skillful implementation of granular computing ideas (Apolloni et al.,
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device
model parameter performance parameter

label description label description

pMOS

U0

A0

VTH0

K1

B01

B11

Mobility at nominal temperature

Bulk charge effect coefficient

Threshold voltage at VBS = 0 for large L

First order body effect coefficient

Bulk charge effect coefficient for channel lenght

Bulk charge effect coefficient for channel width

GM

IDSAT

VTH25−25

VTH25−08

conductance

source drain current

saturation voltage

saturation voltage

nMOS

U0

VSAT

VTH0

K1

Mobility at nominal temperature

Saturation voltage

Threshold voltage at VBS = 0 for large L

First order body effect coefficient

GM

IDSAT

VTH25−25

VTH25−08

conductance

source drain current

saturation voltage

saturation voltage

NPN-DIB12

Bf

Re

Is

Vaf

Ideal maximum foward Beta

Emitter Resistance

Transport Saturation Current

Forward Early Voltage

HFE

VA

Ic

Current Gain

Early Voltage

Collector Current

Table 1. Model parameters and performances of the identification problems.

2008), as for the latter, however without theoretical proof of efficiency. While no worse from
this perspective than the general literature in the field per se (McConaghy & Gielen, 2005),
it needs numerical proof of suitability. To this aim we basically work with three real world
benchmarks collected by manufacturers to stress the peculiarities of the methods. Namely,
the benchmarks refer to:

1. A unipolar pMOS device realized in Hcmos4TZ technology.

2. A unipolar nMOS device differentiating from the former for the sign (negative here,
positive there) of the charge of the majority mobile charge carriers. Spice model and
technology are the same, and performance parameters as well. However, the domain
spanned by the model parameters is quite different, as will be discussed shortly.

3. A bipolar NPN circuit realized in DIB12 technology. DIB technology achieves the full
dielectric isolation of devices using SOI substrates by the integration of the dielectric trench
that comes into contact with the buried oxide layer.

The related model parameter took into consideration and measured performances are
reported in Table 1.
We have different kinds of samples for the various benchmarks as for both the sample
size which ranges from 14, 000 (pMOS and nMOS) to 300 (NPN-DIB12) and the measures
they report: joint measures of 4 performance parameters in the former two cases, partially
independent measures of 3 performance parameters in the latter, where only HFE and VA are
jointly measured. Taking into account the model parameters, and recalling the meaning of t
and n in terms of number of performance and model parameters, respectively, the sensitivity
of the former parameters to the latter and the different difficulties of the identification tasks
lead us to face in principle one balanced problem with n = t = 4 (nMOS), and two unbalanced
ones with n = 6 and t = 4 (pMOS) and n = 4 and t = 3 (NPN-DIB12). In addition, only 4 of
the 6 second order moments are observed with the third benchmark.

4.1 Reverting the Spice model on the three benchmarks

With reference to Table 2, in column θ̃X we report the parameters of the input multivariate
Gaussian distribution we identify in the aim of reproducing the θY of the Y population

observed through sy . Of the latter parameter, in the subsequent column θ̃Y /θ̂Y we compare
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benchmark solution

dataset (n, t) m θ̃X θ̃Y /ˆ̀
Y

benchmark µX σX ρX µY σY ρY

pMOS (6, 4) 14, 000

⎛
⎜⎜⎜⎜⎜⎜⎝

233.424
0.28798
0.99185
0.45255

4.06626 × 10−5

4.67824 × 10−5

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

3.63673
0.01806
0.01083
0.03275

4.48106 × 10−6

9.90006 × 10−6

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.16582
−0.46312
−0.41451
−0.49665
−0.35008
−0.12573
−0.47067
−0.07056
−0.39330
0.09484
−0.16367
0.21068
0.49711
0.22781
0.48312

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.835824
−0.838496
−0.971835
−0.969196

0.000973318
0.00097472
0.00448103
0.00447346

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0118109
0.0187507
0.0121665
0.0164674

0.000029378
0.000029348
0.000146626
0.000130486

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.933746
0.451486
−0.287658
−0.28251
−0.389979
−0.38744
−0.254446
−0.072769
−0.367477
−0.17454
0.900391
0.983658

nMOS (4, 4) 14, 000

⎛
⎜⎜⎝

752.395
152858.0
0.68184

0.521661

⎞
⎟⎟⎠

⎛
⎜⎜⎝

134.099
9667.22

0.0186854
0.131933

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

−0.765278
−0.467972
0.756786
0.306389
−0.786377
−0.468842

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.552391
0.550715
0.66383

0.664162
0.00221691
0.00222077
0.0100527
0.0100711

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.028568
0.0276768
0.0176982
0.0173677

0.0000830626
0.0000619134
0.000355129
0.000280373

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.445093
0.395429
−0.499279
−0.43243
−0.637969
−0.64032
−0.298401
−0.27195
−0.375841
−0.35488

0.92015
0.950419

NPN-DIB12 (4, 3) 322

⎛
⎜⎜⎝

138.302
0.67258

5.28102× 10−18

136.319

⎞
⎟⎟⎠

⎛
⎜⎜⎝

8.3859
0.263238

4.14306 × 10−19

13.6538

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

−0.192107
0.00139749
−0.477207
−0.980327
0.167527

−0.0444712

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

113.244
113.242

0.0000654246
0.0000653275

110.164
110.238

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

6.82099
6.95918

4.96031 × 10−6

4.81021× 10−6

11.1459
11.2166

⎞
⎟⎟⎟⎟⎟⎟⎠

(
−0.490798
−0.56667

Table 2. Benchmarks used for testing the proposed procedure and analysis of the identification solution.
Columns: inferred model distribution parameters (indexed by X) and reconstructed performance param
comparative levels of the tolerance regions (as a function of δ).
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Fig. 2. Comparison between output data and reconstruction provided by Reverse Spice based
procedure for the devices listed in Table 2 when projected on the two principal components
of the target. Points: reconstructed population lying within (dark gray) and outside (light
gray) 0.90 tolerance region (black curves) identified by black points. Gray crosses: original
target output; black crosses: target output uniformly spread with noise terms.

the values computed on the basis of θ̃X (referring to a reconstructed distribution – in
italics) with those computed through the maximum likelihood estimate from sy (referring
to the original distribution – in bold). As a further accuracy indicator, we will consider
tolerance regions obtained through convex hull peeling depth (Barnett, 1976) containing a
given percentage 1 − δ of the performance population. In the last column of Table 2, headed

by (1 − δ̃)/(1− δ), we appreciate the difference between planned tolerance rate (in bold),
as a function of the identified Y distribution, and ratio of sampled measures found in
these regions (in italics). We consider single values in the table cells since the results are
substantially insensitive to the random components affecting the procedure, such as algorithm
initialization. Rather, especially with difficult benchmarks, they may depend on the user
options during the run of the algorithm. Thus, what we report are the best results we obtain,
reckoning the overall trial time in the computational complexity consideration we will do later
on in this section.
For a graphical counterpart, in Fig. 2 we report the scatterplot of the original Y sample and an
analogous one generated through the reconstructed distribution, both projected on the plane
identified by the two principal components (Jolliffe, 1986) of the original distribution. We also
draw the intercept of this plane with a tolerance region containing 90% of the reconstructed
points (hence δ = 0.1).
An overview of these data looks very satisfactory, registering a relative shift between sample
and identified parameters that is always less than 0.17% as for the mean values, 45% for the
standard deviations and 25% for the correlation. The analogous shift between planned and
actual percentages of points inside the tolerance region is always less than 2%. We distinguish
between difficult and easy benchmarks, where the pMOS sample falls in the first category.
Indeed the same percentages referring to the remaining benchmarks decreases to 0.13%, 10%
and 9%.
Given the high computational costs of the Spice models, their approximation through cheaper
functions is the first step in many numerical procedures on microelectronic circuits. Within the
vast set of methods proposed by researchers on the matter (Ampazis & Perantonis, 2002a;b;
Daems et al., 2003; Friedman, 1991; Hatami et al., 2004; Hershenson et al., 2001; McConaghy
et al., 2009; Taher et al., 2005; Vancorenland et al., 2001) in Table 3 we report a numerical
comparison between two well reputed fitting methods and our proposed Reverse Spice
based algorithm (for short RS). The methods are Multivariate Adaptive Regression Splines
(MARS) (Friedman, 1991), i.e. piecewise polynomials, and Polynomial Neural Networks
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θ̃X θ̃′

X

train test train test

RS

0.0000125623⎛
⎜⎜⎜⎜⎝

0.0000350975

0.0000151476

3.06034 × 10−10

3.59774 × 10−9

⎞
⎟⎟⎟⎟⎠

0.0000242739⎛
⎜⎜⎜⎜⎝

0.0000759397

0.0000211444

6.62265 × 10−10

1.10138 × 10−8

⎞
⎟⎟⎟⎟⎠

0.000228931⎛
⎜⎜⎜⎜⎝

0.000751481

0.000164105

1.54286 × 10−8

1.24052 × 10−7

⎞
⎟⎟⎟⎟⎠

0.000369871⎛
⎜⎜⎜⎜⎝

0.00131925

0.000159924

2.33858 × 10−8

2.92353 × 10−7

⎞
⎟⎟⎟⎟⎠

MARS

8.68173 ∗ 10−6⎛
⎜⎜⎜⎜⎝

0.0000246876

0.0000100344

2.80773 × 10−10

4.66935 × 10−9

⎞
⎟⎟⎟⎟⎠

0.0000168024⎛
⎜⎜⎜⎜⎝

0.0000528055

0.0000143915

5.92204 × 10−10

1.19291 × 10−8

⎞
⎟⎟⎟⎟⎠

0.000124012⎛
⎜⎜⎜⎜⎝

0.000401349

0.0000946271

5.3722 × 10−9

6.47147 × 10−8

⎞
⎟⎟⎟⎟⎠

0.0002805⎛
⎜⎜⎜⎜⎝

0.00100927

0.000112503

6.07291 × 10−9

2.22601 × 10−7

⎞
⎟⎟⎟⎟⎠

PNN

0.0000602061⎛
⎜⎜⎜⎜⎝

0.000230822

0.0000100003

2.7761 × 10−10

2.38434 × 10−9

⎞
⎟⎟⎟⎟⎠

0.0000769737⎛
⎜⎜⎜⎜⎝

0.000293665

0.0000142199

5.70282 × 10−10

9.12621 × 10−9

⎞
⎟⎟⎟⎟⎠

0.000125976⎛
⎜⎜⎜⎜⎝

0.000409046

0.0000948249

4.14671 × 10−9

2.84136 × 10−8

⎞
⎟⎟⎟⎟⎠

0.000280898⎛
⎜⎜⎜⎜⎝

0.00101197

0.000111354

7.14833 × 10−9

2.62591 × 10−7

⎞
⎟⎟⎟⎟⎠

Table 3. Performance comparison between fitting algorithms. Rows: algorithms; main
columns: benchmark parameterization; subcolumns: experimental environments (training
set, test set).

(PNN) (Elder IV & Brown, 2000). Namely, we consider the θ̃X reported in Table 2 as the
result of the nMOS circuit identification. On the basis of these parameters and through Spice
functions, we draw a sample of 250 pairs (xr,yr) that we used to feed both competitor
algorithms and our own. In detail we used VariReg software (Jekabsons, 2010a;b) to
implement both MARS and PNN. To ensure a fair comparison among the differente methods,
we: i) set equal to 6 the number of monomials in our algorithm and the maximum number
of basis functions in MARS, where we used a cubic interpolation, and ii) employ the default
configuration in PNN by setting the degree of single neurons polynomial equal to 2. Moreover,
in order to understand how the various algorithms scale with the fitting domain, we repeat

the procedure with a second set θ̃′X of parameters, where the original standard deviations
have been uniformly doubled. In the table we report the mean squared errors measured on a
test set of size 1000, whose values are both split on the four components of the performance
vector and resumed by their average. The comparison denotes similar accuracies with the
most concentrated sample – the actual operational domain of our polynomials – and a small
deterioration of our accuracy in the most dispersed sample, as a necessary price we have to
pay for the simplicity of our fitting function.
As for the whole procedure, we reckon overall running times of around half an hour. Though
not easily contrastable with computational costs of analogous tasks, this order of magnitude
results adequate for an intensive use of the procedure in a circuit design framework.

4.2 Stochastically optimizing the third benchmark model

The same NPN-DIB12 benchmark discussed in Section 4.1 was also used to run the two-step
MC procedure depicted in Section 3.1. In particular, estimation of the sole standard deviations
σXi

s in the former phase alternates with cross-correlation coefficients’ in the latter, while the
means remain fixed to their nominal values νXi

= ν̊Xi
Namely, at each iteration a sample

sM = {xr}, r = 1 . . . , m = 5000 was generated, and the whole procedure was repeated 7
times, until over 99% of sample instances were included in the tolerance region. Fig. 3 shows
the number m̃ of selected instances for each iteration of the algorithm.

240 Advances in Analog Circuitsi

www.intechopen.com



1 2 3 4 5 6 7

90

92

94

96

98

100
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Fig. 3. Percentage of selected instances at each iteration of the two-step MC algorithm.

4.3 Comparing the proposed methods

In order to grasp insights on the comparative performances of the proposed methods, we
list their main features on the common NPN-DIB12 benchmark. Namely, in the first row of
Table 4 we report the reference value of the means and standard deviations of both X and Y

distributions. As for the first variable, we rely on the nominal values of the parameters for the

θ̃X θ̃Y

µX σX µY σY

Reference

⎛
⎜⎜⎜⎜⎝

135

0.8

5.12 × 10−18

138

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

113.242

6.5328 × 10−5

110.238

⎞
⎟⎠

⎛
⎜⎝

6.9592

4.8102 × 10−6

11.2166

⎞
⎟⎠

MC

⎛
⎜⎜⎜⎜⎝

135

0.8

5.12 × 10−18

138

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

8.2375

7.9064 × 10−2

3.9744 × 10−19

9.4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

110.5854

6.346 × 10−5

110.039

⎞
⎟⎠

⎛
⎜⎝

6.6418

4.691 × 10−6

7.507

⎞
⎟⎠

RS

⎛
⎜⎜⎜⎜⎝

138.302

0.6726

5.281 × 10−18

136.319

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

8.3859

0.2632

4.1431 × 10−19

13.6538

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

113.244

6.5425 × 10−5

110.164

⎞
⎟⎠

⎛
⎜⎝

6.821

4.9603 × 10−6

11.1459

⎞
⎟⎠

Table 4. Comparison between both model and performance moments re reference and
reconstructed frameworks.

means, leaving empty the cell concerning the standard deviations. As for the performances,
we just use the moment MLE estimate computed on the sample sy . In the remaining rows we
report the analogous values computed from a huge sample of the above variables artificially
generated through the statistical models we identify.
Both tables denote a slight comparative benefit of using the reverse modeling (row RS),
in terms of both a greater variance of the model parameters and a better similarity of
the reconstructed performance parameters with the estimated ones w.r.t. the analogous
parameters obtained with Monte Carlo method (row MC). The former feature reflects into
less severe constraints in the production process. The latter denotes some improvement in the
reconstruction of the performances’ distribution law, possibly deriving from both freeing the
νX from their nominal values and a massive use of the Spice function analytical forms.

5. Conclusions

A major challenge posed by new deep-submicron technologies is to design and verify
integrated circuits to obtain a high fabrication yield, i.e. a high proportion of produced
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circuits that function properly. The classical approach implemented in commercial tools
for parameter extraction (IC-Cap by Agilent Technology (2010), and UTMOST by Silvaco
Engineered (2010)) requires a dedicated electrical characterization for a large number of
devices, in turn demanding for a very long time in terms both of experimental characterization
and parameter extraction.
Thus, a relevant goal with these procedures is to reduce the computational time to have
a statistical description of the device model. We fill it by using two non conventional
methods so as to get a speed-up factor greater than 10 w.r.t. standard procedures in literature.
The first method we propose is based on a Monte Carlo technique to estimate the (second
order) moments for several statistical model parameters, on the basis of characterizated data,
collected during the manufacturing process.
The second method exploits a granular construct. In spite of the methodology broadness the
attribute granular may evoke, we obtain a very accurate solution taking advantage from strict
exploitation of state-of-the-art theoretical results. Starting from the basic idea of considering
the Spice function as a mixture of fuzzy sets, we enriched its implementation with a series of
sophisticated methodologies for: i) identifying clusters based on proper metrics on functional
spaces, ii) descending, direction by direction, along the ravines of the cost functions of the
related optimization problems, iii) inverting the (X ,Y ) mapping in case of unbalanced
problems through the bootstrapping of conditional Gaussian distributions, and iv) computing
tolerance regions through convex hull based peeling techniques. In this way we supply a very
accurate and fast algorithm to identify statistically the circuit model.
Of course, both procedures are susceptible of further improvements deriving from a more and
more deep statistics’ exploitation. In addition, nobody may guarantee that they will resist to
a further reduction of the technology scales. However the underlying methods we propose
could remain at the root of new solution algorithms of the yield maximization problem.
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