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Linear Analog Circuits Problems by  
Means of Interval Analysis Techniques 

Zygmunt Garczarczyk 
Silesian University of Technology, Gliwice 

Poland 

1. Introduction  

Inevitable fluctuations in the manufacturing processes and environmental operating 

conditions of linear analog circuits cause circuit parameters to vary about their nominal 

target values. The mathematical model of an engineering system evaluated by a transfer 

function (e.g. of an active and even passive circuit) never describes exactly the system’s 

behavior. The changes in the performance of linear circuit due to the variations in circuit 

parameters are of great practical importance in engineering analysis and design. The 

tolerance problem for linear analog circuit have been extensively studied and many results 

have been published, e.g. (Antreich et al., 1994; Spence & Soin, 1997). Because of 

uncertainties, the values of the parameters of a given circuit may be treated as belonging to 

some intervals. In recent years, interval analysis becomes powerful tool for tolerance 

computations of some design problems (Kolev et al., 1988; Femia & Spagnuolo, 1999).  

Some results have been reported using algorithms for linear interval equations for  

solving tolerance problems (Tian et al., 1996; Garczarczyk, 1999;  Shi et al., 1999; Tian & Shi, 

2000). 

The structure of the chapter is the following: section 2 explains an interval analysis 

techniques for linear analog tolerance problem. In that approach we are interested in 

calculation tolerances (the range of values) for real and imaginary part of transfer function 

with respect to change of one parameter of the circuit. Section 3 deals with the problem of 

computing the frequency response of an uncertain transfer function whose numerator and 

denominator are interval polynomials. Studying a solution set of corresponding 2×2 linear 

interval equation one can obtain bounds on the frequency response. Using Kharitonov 

polynomials family and complex interval division it’s also possible to evaluate the bounds. 

In this section we compare results obtained by applying presented approaches. Numerical 

studies are also reported in order to illustrate presented methods. 

2. Evaluation of linear circuits tolerances 

The objective of this section is to develop the interval analysis techniques for linear analog 
circuit tolerance problem. In that approach we can compute effectively tolerances for real 
and imaginary parts of the transfer function with respect to change of one parameter of a 
circuit. 
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2.1 Bilinear and biquadratic form of a circuit function 

The functional dependence of circuit performance on the designable parameters is known 
implicitly through the circuit transfer function. If the dependence on the R, L, C elements 
and on the controlled sources is investigated, the transfer function is a quotient of two linear 
polynomials, i.e., a bilinear relation, is arrived at. We have the following well-known result:  

 
)s(xD)s(C

)s(xB)s(A

)x,s(M

)x,s(L
)x,s(F

+
+

==  (1) 

In the above equation the symbol x denotes dependence on the network element parameter 
(R or L or C or gain of the controlled source). A(s), B(s), C(s) and D(s) are functions of the 
complex frequency s. They depend on kind of transfer function and on the structure of a 
circuit examined. A similar biquadratic relation was derived for the dependence on the ideal 
transformer ratio n, on the ideal gyrator resistance r and on the conversion factor k of the 
ideal negative impedance converter (Geher, 1971). The transfer function has the following 
form: 
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A(s), B(s), etc. are depending on the type of the transfer function and the topology of the 
circuit. For some fixed frequency transfer function can be represented by its real and 
imaginary part, i.e. 
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=ω=  (3) 

Here L1(ω,x), L2(ω,x), M1(ω,x) denote polynomials in x of second order and fourth order 

(maximally) for bilinear and biquadratic transfer functions, respectively. We are interested 

in calculation tolerance (the range of values) for real and imaginary part of the transfer 

function caused by some parameter x ranging in known interval, i.e. x ∈ x = [ x, x ] .  

This one-parameter tolerance problem can be solved by means of the well-known circle 

diagram method for bilinear transfer function, unfortunately biquadratic transfer function is 

more difficult problem. Here we propose a unified approach to tolerance problem for 

bilinear and biquadratic transfer function based on the range evaluation of a rational 

function by means of interval analysis techniques.  

2.2 Range values of a rational function 

Let L(x) be a polynomial of degree n and M(x) a polynomial of degree m so that  

f(x) = L(x)/M(x) is a rational function. We want to expand f(x) into its Taylor series  

 ∑
=

−=
k

0i

i
0i )xx(c)x(f  (4) 

For computing the first k Taylor coefficients of f(x) at some point x0 where M(x0) ≠ 0, we 

start by developing the polynomial L(x) into its Taylor series about the point x0  
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 ∑
=

−=
n

0i

i
0i )xx(a)x(L  (5) 

Similarly, let 

 ∑
=

−=
m

0i

i
0i )xx(b)x(M  (6) 

Note that max(m,n) = 2 or 4. 
Coefficients ai and bi are obtained directly as 

 ai=L(i)(x0)/i! ,   bi=M(i)(x0)/i! ,  (7) 

i = 1,2,...,m(n) 

More effectively we can compute them by using the extended Horner scheme (Elden & 
Wittmeyer-Koch, 1990). 
It was derived in (Garczarczyk, 1995) that one can compute the values of the first k Taylor 

coefficients of a rational function by solving a (k + 1)×(k + 1) lower triangular Toeplitz 
system of the form: 

 

b

b b

b b b

b b b b

c

c

c

c

a

a

a

ak k k

0

1 0

2 1 0

2 1 0

0

1

2

0

1

2

0

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅

⋅

⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= ⋅

⋅

⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (8) 

Note that for the case k > m(n), the lower triangular Toeplitz system is lower banded.  
To compute the values of the Taylor coefficients of a rational function the main work is to 
solve the lower triangular Toeplitz system (8). Special structure of Toeplitz systems leads to 
the variety of solving algorithms, so they belong to more elaborated linear systems. Because 
system (8) is lower triangular for a small k, we can use the usual forward substitution method 
for its solving. For large k more efficient method is a variant of Trench algorithm for Toeplitz 
band matrices (Trench, 1985). Inversion of a nonsingular Toeplitz matrix of the form 

 
T
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 (9) 
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band or not may be computed following: 
Let (without loss of generality) b0 = 1, then 

 T-1 = [hrs]kr,s=0 (10) 
is the matrix given by 

 hrs = -ψr-s-1 ,  r = 0,1,...,k , s = 0,1,...,r  (11) 

with ψj  = 0 if j < -1, ψ-1 = -1, and 

 ∑
−

=
−+ ψ−=ψ

1j

0s

ssj1jj bb  ,   0 ≤ j ≤ k – 1 . (12) 

Note that matrix T-1 is also lower triangle Toeplitz matrix and is uniquely determined by its 

first column (h00,...,hk0)t = (-ψ-1,-ψ0,...,-ψk-1)t. The solution  

 [c0,c1,...,ck]t  = T -1 [a0,a1,...,ak]t  (13) 

of (8) can be calculated by using the fast Fourier transform. 
For any function f(x) which has an interval arithmetic evaluation the range of values of f 
over the interval x 

 R(f,x) := {f(x)⏐ x ∈ x} (14) 

is contained in the interval arithmetic evaluation f(x), i.e. 

 R(f,x) ⊆ f(x) (15) 

Additionally, it is strongly dependent on the arithmetic expression which is used for the 
interval evaluation of the function (Neumeier, 1990; Moore et al., 2009). 
Exact Taylor expansion for a rational function f(x) is following 

 f(x) = p(x) + r(x) (16) 
where 

 ∑
=

α=
k

0i

i
ix)x(p  ,  with  ∑

=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=α

k

ir

ir
0ri )x(

i

r
c   (17) 

and 

 r(x) = f(k+1)(x0 + ξ(x - x0))(x - xk+1 )/(k + 1)! (18) 

ξ ∈ [0,1] , x0 ∈ x (e.g. x0 = m(x)). 

If f(x) : D ⊆ R → R is  k + 1 times continuously differentiable, then for all x ⊆ D it’s fulfilled 
(Garczarczyk, 1993): 
(inclusion) 

 R(f,x) ⊆ V(f,x) := R(p,x) + f(k+1)(x)w(x)k+1/(k + 1)! (19) 
(distance) 

 q(R(f,x),V(f,x)) ≤ γw(x)k+1 ,     γ ≥ 0 , (20) 
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where R(p,x) is the exact range of the polynomial p(x) over x, and  

q(R,V) = max(|R - V|,|R  - V |) means distance between intervals R = [ R , R ] and V = [ V , V]. 
Relation (19) gives the way of range values evaluation: we need to calculate the range of 
polynomial and the range of remainder term. It’s seen from (20) that the overestimation of 
R(f,x) by V(f,x) decreases with a power k + 1 of w(x) (width of x), so if f(k+1)(x) is bounded we 
can omit the remainder term in V(f,x) and then  

 R(f,x) ≈ R(p,x) (21)  

2.3 Bernstein polynomials 
Estimates for the maximum, resp. the minimum, of the polynomial over x are obtained by 
computing Bernstein coefficients. 
For some order v of Bernstein polynomial we have (Ratschek & Rokne, 1984) 

 min Bj  ≤  min p(x)  ≤  max p(x)  ≤  max Bj ,  (22) 

0 ≤ j ≤ v ,  x ∈ x , 

where v ≥ k and 
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The coefficients Bj are computed using a following finite difference table 
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The initial slanted entries are generated basing on coefficients of polynomial p(x) following 
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where 

1
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)(wA
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⎜⎜
⎝

⎛ν
= x ,  r = 0,1,...,ν, ]x,x[=x . 

The top row of table contains the desired Bernstein coefficients. Finite differences are 
computed following 

 j
1r

1j
1r

j
r BBB −

+
− Δ−Δ=Δ ,  r > 0, j = 0,1,...,ν. (27) 
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For example 

 001010 BBBBBB +Δ=⇒−=Δ  (28) 

and 

 1111 BBBBBB −νν−ν−νν−ν Δ−=⇒−=Δ . (29) 

Relations (24) – (29) lead directly to the following scheme of computing of Bernstein 

coefficients 
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It’s seen we can develop the algorithm of a parallel computation of Bernstein coefficients 

starting from slanted entries. We note that since αl = 0 for l > k there is no need to compute 

entries j
r BΔ  for r > k ; a triangle table turns into trapezium one. In the trapezium table a 

bottom row has all entries equal, i.e.  

 s,BBB s
s

1
s

0
s >νΔ==Δ=Δ −νA . (31) 

Realisation of scheme (30) leads to the three cases of parallel computation slightly different 
according to the value of ν (Garczarczyk, 2002). 

2.3 Numerical examples 

To illustrate the basic ideas of our approach two examples are considered. The first example 

refers to the bilinear transfer function and the second to the biquadratic one. Taylor 

coefficients ai and bi i = 0,1,...,k, k = 2 or 4, were computed by means of extended Horner 

scheme. For example, polynomial  L(x) was developed by the algorithm written in Pascal-

like code as: 

 
 

for i = 0,1,...,n 

  a
i
 = coefficient(L(x));  

for k = 0,1,...n 

  for i = n-1, n-2,...,k 

  a
i
 = a

i+1
x

0
 + a

i
; 

 
In both examples Toeplitz system (8) is banded and was solved using algorithm based on 

Trench’s concept (10) – (13). 

EXAMPLE 1. Consider a second-order low-pass filter section of Fig.1, originally proposed 

by Sallen and Key. 
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A
G2G1

C1

C2

U1 U2

 

Fig. 1. Second-order low-pass filter section 

Bilinear transfer function considered here is following 
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where x = A.  
Assuming G1 = G2 = 1 and C1 = C2 = 1 for fixed frequency we obtain 
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ω
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=ω=  

where M(ω,x) = 1+7ω2+ω4-6ω2x+ω2x2 . 
We have applied relation (21) for Taylor expansion of degree k = 5 and Bernstein coefficients 

of degree v = 10 were used. For x ∈ x = A0[1-ε, 1+ε] with A0 = 1, ε = 0.01 we obtained results 
presented in the Table 1. In the second column there are values of the ranges for real and 
imaginary part of the transfer function, the third column contains their nominal values.  
 

   ω               x ∈ x       X = A0 

  0.2 [0.878692,0.899103] + j[-0.372772,-0.367971] 0.888889 - j0.370370 

  2.0 [-0.127097,-0.122930] + j[-0.168624,-0.164735] -0.125005 - j0.166667 

 20.0 [-0.024009,-0.023489] + j[-0.002395,-0.002367] -0.023749 - j0.002381 

Table 1. Range values of transfer function of Sallen-Key low-pass section 

 EXAMPLE 2. Consider the gyrator circuit with feedback shown in Fig.2. 
 

u2
u1

r

Y

Z

 

Fig. 2. Gyrator circuit 
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Let Y = sC1 and Z = 1/sC2. Biquadratic transfer function is of the form 

1CCsx

xsC
1

U

U
)x,s(F

21
22

2

1

2

+
+==  

where x = r is the gyration resistance. This circuit appriopriately loaded can realize a 
transfer function of phase equalizer. 
For fixed frequency we have 

)x,(M

xC
j1

U

U
)x,j(F)x(F 2

1

2

ω
ω

−==ω=  

where M(ω,x) = ω2C1C2x2 – 1. 

It was assumed for simplicity C1 = C2 = 1. For x ∈ x = r0[1-ε, 1+ε] with r0 = 2, ε = 0.05 we 
have obtained following results 
 

ω x ∈ x x = r0 

0.1 1 + j[0.197086, 0.219623] 1 + j0.208333 

1.0 1 – j[0.615803, 0.727913] 1 – j0.666667 

10.0 1 – j[0.047712, 0.052745] 1 – j0.050125 

Table 2. Range values of transfer function for circuit with gyrator 

Degrees of Taylor and Bernstein coefficients were analogous to previous example. 

3. Frequency response envelopes of interval systems 

The computation of the frequency responses of uncertain transfer functions plays a major 

role in the application of frequency domain methods for the analysis and design of robust 

systems. There is a rich resource of prior works on this subject, e.g. (Bartlett et al., 1993; 

Chen & Hwang, 1998a, 1998b; Tan & Atherton, 2000; Hwang & Yang, 2002; Tan, 2002; 

Nataraj & Barve, 2003). 

In this section we consider continuous-time systems characterized by rational transfer 

functions. Motivated by the above we incorporate uncertainties into the transfer function. 

We assume that the system’s performance is governed by the interval transfer function  

 
n
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m
m10

sbsbb
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)s(K

A
A
++

+++
==  (32) 

where coefficients of numerator and denominator are not known exactly, but are given in 

prescribed real intervals 

 
.n,,0j,bbb

m,,0i,aaa

jjj

iii

A
A

=≤≤
=≤≤

 (33) 

A problem of major importance and significance is to be able to determine the envelopes of 

the amplitude and phase of K(jω) of the above family of transfer functions. Phase and 
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amplitude bounds have a simple geometric interpretation: they represent envelopes of the 

Nyquist plot. 

The objective of this section is to develop the interval analysis techniques to the problem 
presented above. Focusing on this specific class of uncertain systems we compare two 
approaches to computation of Nyquist plot collections. 

3.1 Linear interval equations approach 

In this section we collect some known results on the linear interval equations and their use 
to the problem explained in the previous section. This approach was explicitly presented in 
(Garczarczyk, 1999). 
Let G(s) be the inverse of interval transfer function K(s). Introducing input signal x(jω) and 
output signal y(jω) the input-output relationship for linear continuous-time system, can be  
written as 

 ))(jy)(y()})p,j(GIm{j)}p,j(G(Re{)(jx)(x 2121 ω+ωω+ω=ω+ω  (34) 

where  

{ } { }
{ } { }.)j(yIm)(y,)j(yRe)(yand

,)j(xIm)(x,)j(xRe)(x

21

21

ω=ωω=ω
ω=ωω=ω

 

Assuming x1(ω)=1, x2(ω)=0 (sinusoidal input x(t) = cos(ωt) is applied) we can rewrite eq.(34) 
as the system of two linear equations 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
ω
ω

⎥
⎦

⎤
⎢
⎣

⎡
ωω
ω−ω

0

1

)(y

)(y

)}j(GRe{)}j(GIm{

)}j(GIm{)}j(GRe{

2

1 .  (35) 

For a fixed frequency, we obtain following equation  
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Here the ranges of values of { })j(GRe ω  and { })j(GIm ω  are represented by intervals [a, b] 

and [c, d], respectively. 
Equation (36) forms a system of linear interval equations. It can be denoted as 

 Ay = b  (37) 

Such a system represents a family of ordinary linear systems which can be obtained from it 

by fixing coefficients values in the prescribed intervals. Every of these systems, under the 

assumption that each A∈A is nonsingular, has a unique solution, and all these solutions 

constitute a so-called solution set S.  

The solution set of eq. (37) can be expressed as 

 { }bA ∈∈== b,A,bAy:yS  (38) 

It forms some two-dimensional region of output values of a system in the sinusoidal steady-
state. 

www.intechopen.com



 Advances in Analog Circuits 

 

156 

If interval matrix A is regular i.e. if det A≠0 for each A∈A, the solution set of a linear 

interval equation is described by Oettli and Prager in their famous equivalence (Oettli & 

Prager, 1964; Neumeier, 1990) 

 δ+Δ≤−⇔∈ ybAySy   (39) 

where A=m(A), b=m(b)  and  Δ=w(A/2), δ=w(b)/2. 
Applying Oettli-Prager formula to the equation (36) we obtain following inequality  
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where       m1 = (a+b)/2,   m2 = (c+d)/2  

and            ρ1 = (b-a)/2,     ρ2 = (d-c)/2. 
Computation of the regions of values of y1 and y2 for which inequality (40) is true gives us 

the full information about changes of frequency response caused by variations some of 

system parameters. To obtain this information we solve inequality (40) for whole complex 

plane. In Fig. 3 region of solutions (region of uncertainty) in the fourth quadrant is 

represented by the tetragon ABCD. The straight lines l1 and l2 are here defined following 

 122121 y
a

d
y:l,y

b

c
y:l −=−= , (41) 

 

d

1−

c

1−

a

1

b

1y
2

y
1

A

B

C

D
l
1

l
2

 

Fig. 3. Region of uncertainty in the fourth quadrant 

Calculation coordinates of the points of intersections in each quadrant leads to the bounds of 
a frequency response. 
At the border of two quadrants structure for the solution set is quite different. In Fig.4 is 
shown a region at the border of III and IV quadrants, i.e. if m1=0 (a=-b) and m2>0. 
The straight lines l1 and l2 are following  

 121 y
b

c
y:l −= ,  122 y

b

c
y:l =  (42) 
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Fig. 4. Structure of the solution set at the border of  two quadrants  

3.2 Kharitonov polynomials method 

Problem of evaluating the frequency response envelopes can be treated as the task of finding 

the maximum and minimum of )j(P ω  and of Arg [P(jω)] of a family of polynomials 
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sss)s(P

iii

k
k
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=α≤α≤α
α++α+α+α=

 (43) 

The value set of a polynomial with uncertain coefficients at a frequency ω denote the region 
in the complex plane occupied by all the values of the polynomial over all allowable 
coefficients values. 
From (43) we have 

 )}j(P{jJm)}j(PRe{)j(P ω+ω=ω  (44) 

Formula (44) defines for every ω ∈  R, a linear transformation from the (k+1)-dimensional 

real coefficient set to the complex plane. Assuming that the intervals of the coefficients are 

independent, the (k+1)-dimensional interval vector (box) is mapped into a complex 

rectangular interval (rectangle with edges parallel to the axes of the complex plane). 

It has been observed in ( Dasgupta, 1988) that the corners of that rectangular interval clearly 

correspond to the four Kharitonov polynomials (Kharitonov, 1979) 
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   (45) 

From (45) it’s seen that the value sets of N(s) and D(s) are the members of the set of complex 

rectangular intervals (is denoted here by R(C)).  

They have the form 
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 ]n,n[j]n,n[jNNN)j(N 221121 +=+==ω , (46) 

and 

 ]d,d[j]d,d[jDDD)j(D 221121 +=+==ω  (47) 

To calculate value set of interval transfer function we need to divide those two complex 
intervals. Complex interval operations should deliver the closest inclusion of the set of all 
possible values, i.e. 

 { } D:NDb,Nab:a ⊆∈∈  (48) 

For rectangular complex arithmetic addition, subtraction and multiplication are optimal, 
whereas division is not. We apply here an improved version of division (in the sense of 
inclusion), namely (Rokne & Lancaster, 1971; Petkovic & Petkovic, 1998) 

 
D

1
ND:N ⋅=  (49) 

where 
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1
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Relation (50) is illustrated in Fig. 5. for the interval D from the first quadrant.  
 

E F

G H

Im
Re

 

Fig. 5. Optimal rectangular enclosure 

Optimal enclosure has the form of rectangle EFGH. Curvilinear hatched region which was 

generated by conformal mapping corresponds to the exact range of 1D− . The shape of the 

exact region and adequate enclosure depend on the position of interval D on the complex 

plane. 

3.3 Numerical studies 

To compare properties of presented approaches two examples are considered. The first 
example refers to the transfer function of the form (32), the second one to the case 
represented in the relation (50). 
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EXAMPLE 3. Let us consider T-bridged circuit depicted in Fig. 3. The frequency response is 
represented by the transmittance (Chen, 2009) 
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Fig. 6. Bridget–T circuit 

Let assume R1C1 = R2C2 = RC = [1-ε, 1+ε], ε = 0.05. 
Then the interval transmittance is done as 
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Fig. 7. Regions of uncertainty against  a background of Nyquist plot 
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The ranges of values of { })j(GRe ω  and { })j(GIm ω  are computed with use of Taylor and 

Bernstein representations. 

{ } ( ) ]05.1,95.0[xfor,
x1

x2
1)j(GRe

22
ωω=

+
+∈ω  

{ } ( )
( ) ]05.1,95.0[xfor,

x1

xx1
)j(GIm

22

2

ωω=
+

−
∈ω  

In Fig. 7 are presented the Nyquist plot for nominal value RC = 1 and the regions ABCD 

(tetragon) and EFGH (rectangle) for two frequencies ω =0.2 and ω = 2.0. It gives us the 

possibility to evaluate the envelope of Nyquist plot for these frequencies. It’s seen that 

Kharitonov polynomials approach (rectangle) gives some overestimation compared  with 

linear interval equations method. 

EXAMPLE 4. Consider a second-order low-pass Sallen - Key section of Fig.1 
Let denote R1 = 1/G1 and R2 = 1/G2. 
We have now a transmittance of the form 
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Assuming R1C1 = R2C2/2= RC = [1-ε, 1+ε], ε = 0.1, we have 
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2
1
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++
==  

{ } ]42.2,62.1[xfor,x1)j(GRe 22 ωω=−∈ω  

{ } ]3.3,7.2[xfor,x)j(GIm ωω==ω  

 

In Fig. 8a and 8b are drawn fragments of Nyquist plot for nominal value RC = 1.0 and 
appropriate regions for ω = 0.2 and ω = 1.0. 
Although uncertainties in the Example 4 are greater then in previous one both methods 

produce smaller regions. There are two reasons of such results: Firstly, the different 

coefficients of the transfer function are sometimes dependent; secondly, improved division 

defined by (49) is not optimal whereas relation (50) leads to the optimal enclosure. 

4. Conclusions 

An efficient and well motivated approach to the problem linear analog circuit tolerance was 

described. One-parameter tolerance problem was solved for bilinear and biquadratic 

transfer function. This unified method was based on the range evaluation of a quotient of 

two polynomials of second or fourth order. It was done by computing coefficients of 

Bernstein polynomials generated for some Taylor expansion (form) of a rational function. 

The Taylor forms together with Bernstein expansions constitute a significant enhancement 

of the toolkit of interval analysis, see also (Neumaier, 2002). 
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Fig. 8. Regions of uncertainty and Nyquist plot 
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The results presented in this chapter make it possible, by simple algorithms, to obtain the 
Nyquist envelope (consequently the amplitude envelope and the phase envelope) of an 
interval rational transfer function of a continuous-time system. It gives possibility to readily 
check whether system with such uncertainty comply with frequency response specifications. 
The results of the numerical calculations are quite satisfactory. It indicates that the interval 
analysis seems to be a promising tool for robust analysis of linear systems. Numerical 
studies show that it’s necessary next step to “more” optimal complex interval division 
(Lohner & Wolff von Gudenberg, 1985; Moore et al., 2009). 
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