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1. Introduction 

The study of mechanisms like mechanical members intends not only to build autonomous 
robots, but also to help in the rehabilitation of human being. The study of locomotion to take 
part in this context, and has been intensively studied since the second half of 20th century. 
An ample vision of the state of the technique up to 1990 can be found in works as Raibert 
(1986) and Vukobratovic et al. (1990). 
Year after year, from technological advances, based on theoretical and experimental 
researches, the man tries to copy or to imitate some systems of the human body. It is the 
case, for example, of the central pattern generator (CPG), responsible for the production of 
rhythmic movements. Modelling of this CPG can be made by means of coupled oscillators, 
and this system generates patterns similar to human CPG, becoming possible the human 
gait simulation. There are some significant works about the locomotion of vertebrates 
controlled by central pattern generators: Grillner (1985), and Pearson (1993). 
From a model of two-dimensional locomotor, oscillators with integer relation of frequency 
can be used for simulating the behaviour of the hip angle and of the knees angles. Each 
oscillator has its own parameters and the link to the other oscillators is made through 
coupling terms. We intend to evaluate a system with coupled van der Pol oscillators. Some 
previous works about CPGs using nonlinear oscillators, applied in the human gait 
simulation, can be seen in Bay & Hemami (1987), Zielinska (1996), Dutra et al. (2003), Pina 
Filho (2005), and Pina Filho (2008). 
The objective of this work is to analyze the dynamics of this coupled oscillators system by 
means of bifurcation diagrams and Poincaré maps. From the analysis and graphs generated in 
MATLAB, it was possible to evaluate some characteristics of the system, such as: sensitivity to 
the initial conditions, presence of strange attractors and other phenomena of the chaos. 

2. Central Pattern Generator - CPG 

The first indications that the spinal marrow could contain the basic nervous system 
necessary to generate locomotion date back to the early 20th century. According to Mackay-
Lyons (2002), the existence of nets of nervous cells that produce specific rhythmic 
movements for a great number of vertebrates is something unquestionable. Nervous nets in 
the spinal marrow are capable of producing rhythmic movements, such as: swimming, 
jumping, and walking, when isolated from the brain and sensorial entrances. These 
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specialized nervous systems are known as nervous oscillators or central pattern generators 
(CPGs). The human locomotion is controlled, in part, by a central pattern generator, which 
is evidenced in the works as Calancie et al. (1994), and Dimitrijevic et al. (1998). 
The choice of an appropriate pattern of locomotion depends on the combination of a central 
programming and sensorial data, as well as of the instruction for one determined motor 
condition. This information determines the way of organisation of the muscular synergy, 
which is planned for adequate multiple conditions of posture and gait (Horak & Nashner, 
1986). 
Figure 1 presents a scheme of the control system of the human locomotion, controlled by the 
central nervous system, which the central pattern generator supplies a series of pattern 
curves for each part of the locomotor. This information is passed to the muscles by means of 
a network of motoneurons, and the conjoined muscular activity performs the locomotion. 
Sensorial information about the conditions of the environment or some disturbance are 
supplied as feedback of the system, providing a fast action proceeding from the central 
pattern generator, which adapts the gait to the new situation. 
 

 

Fig. 1. Control system of the human locomotion. 

Despite the people not walk in completely identical way, some characteristics in the gait can 
be considered universal, and these similar points serve as base for description of patterns of 
the kinematics, dynamics and muscular activity in the locomotion. 
In the study to be presented here, the greater interest is related to the patterns of the hip and 
knee angles. From the knowledge of these patterns of behaviour, the simulation of the 
central pattern generator using the system of coupled oscillators becomes possible. 
Considering the anatomical planes of movement, we need to know the behaviour of hip and 
knee in sagittal plane. Figure 2 presents the movements of flexion and extension of the 
articulation of hip and knee in sagittal plane. 
According Pina Filho et al. (2006), figures 3 and 4 present the graphs of angular 
displacement and phase space of the hip in the sagittal plane, related to the movements of 
flexion and extension, while figures 5 and 6 present the graphs of angular displacement and 
phase space of the knee, related to the movements of flexion and extension. 
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Fig. 2. Movements of the hip and knee: flexion and extension. 

 

Fig. 3. Angular displacement of the hip in the sagittal plane (mean ± deviation). 

 

Fig. 4. Phase space of the hip in the sagittal plane. 
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Fig. 5. Angular displacement of the knee in the sagittal plane (mean ± deviation). 

 

 

Fig. 6. Phase space of the knee in the sagittal plane. 

3. Biped locomotor model 

Before a model of CPG can be applied to a physical system, the desired characteristics of the 

system must be completely determined, such as: the movement of the leg or another 

rhythmic behaviour of the locomotor. Some works with description of the rhythmic 

movement of animals include Eberhart (1976), Winter (1983) and McMahon (1984), this last 

one presenting an ample study about the particularities of the human locomotion. To 

specify the model to be studied is important to know some concepts related to the bipedal 

gait, such as the determinants of gait. 

The modelling of natural biped locomotion is made more feasible by reducing the number 

of degrees of freedom, since there are more than 200 degrees of freedom involved in legged 

locomotion. According to Saunders et al. (1953), the most important determinants of gait 

are: 1) the compass gait that is performed with stiff legs like an inverted pendulum. The 

pathway of the centre of gravity is a series of arcs; 2) pelvic rotation about a vertical axis. 

The influence of this determinant flattens the arcs of the pathway of the centre of gravity; 3) 
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pelvic tilt, the effects on the non-weight-bearing side further flatten the arc of translation of 

the centre of gravity; 4) knee flexion of the stance leg. The effects of this determinant 

combined with pelvic rotation and pelvic tilt achieve minimal vertical displacement of the 

centre of gravity; 5) plantar flexion of the stance ankle. The effects of the arcs of foot and 

knee rotation smooth out the abrupt inflexions at the intersection of the arcs of translation of 

the centre of gravity; 6) lateral displacement of the pelvis. 

Figure 7 presents a 3D model with 15 degrees of freedom, and the six determinants of gait. 

The kinematical analysis, using the characteristic pair of joints method is presented in 

Saunders et al. (1953). 

 

 
 

Fig. 7. Three-dimensional model with the six determinants of gait. 

In order to simplify the investigation, a 2D model that performs motions parallel only to the 

sagittal plane will be considered. This model, showed in Fig. 8, characterises the three most 

important determinants of gait, determinants 1 (the compass gait), 4 (knee flexion of the 

stance leg), and 5 (plantar flexion of the stance ankle). The model does not take into account 

the motion of the joints necessary for the lateral displacement of the pelvis, for the pelvic 

rotation, and for the pelvic tilt. 

Figure 8 presents too the angles and lengths of the model, where: `s is the length of foot 

responsible for the support (toes), `p is the length of foot that raises up the ground (sole), `t is 

the length of tibia, and `f is the length of femur. The angle of the hip θ4 and the angles of the 

knees θ3 and θ5 will be determined by a coupled oscillators system, representing the CPG, 

while the other angles are calculated by the kinematical analysis of the mechanism. In this 

work we will not present details of this analysis, which can be seen in Pina Filho (2005). 
This model must be capable to show clearly the phenomena occurred in the course of the 
motion, and works with the hypothesis of the rigid body, where the natural structural 
movements of the skin and muscles, as well as bone deformities, are disregarded. The 
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Fig. 8. Two-dimensional model with the determinants of gait, angles and lengths. 

locomotion cycle can be divided in two intervals: double support phase, with the two feet on 
the ground, and single support phase, with only one foot touching the ground, and one of 
the legs performs a balance movement (the extremity of the support leg is assumed as not 
sliding). 
From this model, we can now to study the CPG, simulated by means of nonlinear 
oscillators, which can be used in control systems of locomotion, providing the approach 
trajectories of the legs. The CPG is composed of a set of oscillators, where each oscillator, 
with own amplitude, frequency and parameters, generates angular signals of reference for 
the movement of the legs, as we will see in the next section. 

4. Modelling of the oscillators system 

Coupled oscillators systems have been extensively used in studies of physiological and 
biochemical modelling. Since the years of 1960, many researchers have studied the case of 
coupling between two oscillators, because this study is the basis to understand the 
phenomenon in a great number of coupled oscillators. One of the types of oscillators that 
can be used in coupled systems is the auto-excited ones, which have a stable limit cycle 
without external forces. The van der Pol oscillator is an example of this type of oscillator, 
and it will be used in this work. Then, considering a system of n coupled van der Pol 
oscillators, from van der Pol equation: 

 ( )( ) ( )2 2
0 01 0                 , 0x p x x x x x pε ε− − − + Ω − = ≥$$ $   (1) 

where ε, p and Ω correspond to the parameters of the oscillator, and adding coupling terms 
that relate the oscillators velocities, we have: 
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 ( ) ( ) ( )2 2

1

1 0            1, 2, ..., 
n

i i i i io i i i io i, j i j
j

θ ε p θ θ  θ θ θ c θ θ i n
=

⎡ ⎤− − − + Ω − − − = =⎢ ⎥⎣ ⎦ ∑$$ $ $ $  (2) 

which represents coupling between oscillators with the same frequency, where θ 
corresponds to the system degrees of freedom. In the case of coupling between oscillators 
with integer relation of frequency, the equation would be: 

 ( ) ( ) ( ) ( )2 2
, ,

1 1

1  0
m n

h h h h ho h h h ho h i i i io h k h k
i k

p c cθ ε θ θ θ θ θ θ θ θ θ θ
= =

⎡ ⎤ ⎡ ⎤− − − + Ω − − − − − =⎣ ⎦⎢ ⎥⎣ ⎦ ∑ ∑$$ $ $ $ $  (3) 

where ( ), [ ]h i i i ioc θ θ θ−$  is responsible for the coupling between oscillators with different 

frequencies, while ( ),h k h kc θ θ−$ $ , also seen in Eq. (2), effects the coupling between oscillators 

with the same frequency. Both terms were defined by Dutra (1995). 
 

 

Fig. 9. Structure of coupling oscillators. 

Experimental studies of human locomotion (Braune & Fischer, 1987) and Fourier analysis of 

these data (Dutra, 1995) show that the movements of θ3, θ4 and θ5 (see Fig. 8) can be 
described very precisely by their fundamental harmonic, whether the biped in single or 
double support phase. 

To generate the angles θ3, θ4 and θ5 as a periodic attractor of a nonlinear net, three coupled 
van der Pol oscillators were used. These oscillators are mutually coupled by terms that 
determine the influence of one oscillator on the others (Fig. 9). 

Applying Eq. (2) and (3) to the proposed problem, knowing that the frequency of θ3 and θ5 

(knee angles) is double of θ4 (hip angle), we have the following equations: 

 ( ) ( ) ( ) ( )2 2
3 3 3 3 3 3 3 3 3 3,4 4 4 4 3,5 3 5[1 ] 0o o op c cθ ε θ θ θ θ θ θ θ θ θ θ⎡ ⎤− − − + Ω − − − − − =⎣ ⎦

$$ $ $ $ $  (4) 

 ( ) ( ) ( ) ( )2 2
4 4 4 4 4 4 4 4 4 4,3 3 3 3 4,5 5 5 5[1 ] 0o o o op c cθ ε θ θ θ θ θ θ θ θ θ θ θ⎡ ⎤ ⎡ ⎤− − − + Ω − − − − − =⎣ ⎦ ⎣ ⎦

$$ $ $ $  (5) 

 ( ) ( ) ( ) ( )2 2
5 5 5 5 5 5 5 5 5 5,4 4 4 4 5,3 5 3[1 ] 0o o op c cθ ε θ θ θ θ θ θ θ θ θ θ⎡ ⎤− − − + Ω − − − − − =⎣ ⎦

$$ $ $ $ $  (6) 

From Eq. (4)-(6), using the parameters shown in Table 1 together with values supplied by 
Pina Filho (2005), the graphs were generated in MATLAB as shown in Fig. 10 and 11, which 
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present, respectively, the behaviour of θ3, θ4 and θ5 as a function of time and stable limit 
cycles of oscillators. 
 

c3,4 c4,3 c3,5 c5,3 c4,5 c5,4 ε3 ε4 ε5 

0.001 0.001 0.1 0.1 0.001 0.001 0.01 0.1 0.01 

Table 1. Parameters of van der Pol oscillators. 

 

 

Fig. 10. Angles as a function of time. 

 

 

Fig. 11. Trajectories in the phase space. 

Comparing Fig. 10 and 11 with the experimental results presented in Section 2 (Fig. 3, 4, 5, 
6), it is verified that the coupling system supplies similar results, what confirms the 
possibility of use of mutually coupled van der Pol oscillators in the modelling of the CPG. 
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Figure 12 shows, with a stick figure, the gait with a step length of 0.63 m. Figure 13 shows 
the gait with a step length of 0.38 m. Dimensions used in the model can be seen in Table 2. 
 

Thumb Foot Leg (below the knee) Thigh 

0.03 m 0.11 m 0.37 m 0.37 m 

Table 2. Model dimensions. 
 

 

Fig. 12. Stick figure showing the gait with a step length of 0.63 m. 

 

 
Fig. 13. Stick figure showing the gait with a step length of 0.38 m. 

5. Dynamical analysis of the oscillators system 

The nonlinear dynamical analysis of the system presented here requires the definition of 
some usual concepts. Usually, for some values of parameters, the system behaviour is 
periodic, and for other values the behaviour is chaotic. A periodic system returns to its state 
after a finite time t. The trajectory in the phase space is represented by a closed curve. The 
chaotic system presents trajectories of non-closed orbits that are generated by the solution of 
a deterministic set of ordinary differential equations. 
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Two conditions must be satisfied to make possible that a system presents chaotic behaviour: 
the equations of motion must include a nonlinear term; and the system must have at least 
three independent dynamic variables. The main consequence associated with the chaos is 
the sensitivity to the initial conditions. In chaotic systems, a small change in the initial 
conditions results in a drastic change in the system behaviour. More details about the Chaos 
theory and its characteristics can be found in many works, such as: Strogatz (1994) and 
Baker & Gollub (1996). 
The existence of bifurcation in a system is related with the existence of chaos. In all chaotic 
system, it is possible to observe the bifurcation phenomenon, however, not all system that 
presents bifurcation necessarily presents a chaotic response. The influence of some 
parameter in the system response can be identified by means of bifurcation diagrams, which 
present the stroboscopic distribution of the system response from slow variation of a 
parameter (Thompsom & Stewart, 1986). This method was applied here, which implies to 
simulate different parameter values that we want to analyze, evaluating the response in 
Poincaré maps. 
The Poincaré map consists in the reduction of continuous systems in time (flows) in discrete 
systems in time (maps). Then, a Poincaré map allows that system dynamics to be 
represented in a space with lesser dimension than original system, reducing a n-dimensional 

space for n−1 dimensions. The Poincaré map is obtained from the phase space diagram by 
observing this “stroboscopically”, i.e., sample points in the phase space in regular intervals. 

Then, considering different values for the parameters ε3, ε4 and ε5, the tests have been 
performed using MATLAB to generate the bifurcation diagrams and Poincaré maps. In 

principle, keeping values of ε4 = 0.1 and ε5 = 0.01, the value of ε3 was varied from 0 to 2. 
Other values of the system have been kept. Figure 14 presents the bifurcation diagram 

showing the behaviour of knee oscillator θ3 with variation of parameter ε3, which represents 
the damping term related with this oscillator. 
 

 

Fig. 14. Bifurcation diagram for θ3 with variation of ε3. 
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The diagram of Fig. 14 does not represent the bifurcation as simple curves, which normally 
happens in dynamical analysis of a system, but with a cloud of points. Considering the 
complexity of coupled oscillators system, this fact can be explained by relation between 
coupling terms or by quasiperiodic response of the system. 
According to Santos et al. (2004), a great variation between coupling terms, with one of them 
approaching to zero, makes the system presents practically a unidirectional coupling, and 
consequently the response in bifurcation diagram is represented by a cloud of points, 
characterizing not only the presence of periodic and chaotic orbits, as also pseudo-
trajectories. More details about this subject can be seen in Grebogi et al. (2002). 
In relation to system behaviour, with small values of damping term, below 0.1, the system 
presents a periodic response (Fig. 15). With the increase of damping term, the system starts 
to present a quasiperiodic response and later chaotic response, as presented in Fig. 16 and 
17, respectively. 
 

 

Fig. 15. Periodic response: ε3 = 0.01. 

 

 
Fig. 16. Quasiperiodic response: ε3 = 1. 
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Fig. 17. Chaotic response: ε3 = 2. 

 

 

Fig. 18. Sensitivity to the initial conditions in chaotic response. 

From Fig. 14 and 17, we observed the configuration of chaotic regime when ε3 = 2. More 

details about transition between quasiperiodic and chaotic response are presented by 

Yoshinaga & Kawakami (1994), Yang (2000) and Pazó et al. (2001). 

Sensitivity to the initial conditions can be verified considering two simulations with 

different conditions, for example, with ε3 = 3 (chaotic regime), choosing initial values for the 

angles: θ3 = 3º, θ4 = 50º, θ5 = −3º, and changing θ3 = 3.001º, we observed the influence of 

initial conditions in the system response (Fig. 18). 

Another interesting point of the chaos analysis is the presence of strange attractors, which 

can be observed in Poincaré map. In dissipative systems the Poincaré map presents a set of 

points disposed in an organized form, with a preferential region in phase space that attracts 

the states of dynamical system. Figure 19 showing the strange attractor generated in the 

analysis of knee oscillator θ3. 
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Fig. 19. Strange attractor for θ3. 

Considering the coupling oscillators, the degree of influence between them is defined by the 
coupling term. Then, a change of oscillator parameters must influence the behaviour of 
other oscillators. Figure 20 presents the bifurcation diagram showing the behaviour of knee 

oscillator θ5 with variation of parameter ε3. 
 

 

Fig. 20. Bifurcation diagram for θ5 with variation of ε3. 

In relation to the hip angle, the influence of knee oscillator θ3 on the hip is small, therefore 

the behaviour of θ4 does not show many alterations. This occurs due to small value adopted 
for the coupling term between the oscillators (c34 = c43 = 0.001). In relation to the knees, the 
coupling term is greater (c35 = c53 = 0.1), configuring a more significant influence. 

Similarly to analysis of ε3, the system response can be analyzed by varying the values of ε4 
(from 0 to 2) and keeping the other values fixed. Figure 21 presents the bifurcation diagram 

showing the behaviour of hip oscillator θ4 with variation of parameter ε4, which represents 
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the damping term related with this oscillator. Figure 22 showing the strange attractor 
generated in the analysis of this oscillator. 
 

 

Fig. 21. Bifurcation diagram for θ4 with variation of ε4. 

 

 

Fig. 22. Strange attractor for θ4. 

As seen previously in the analysis of ε3, the influence of hip on the knees is small, then a 

variation of ε4 does not cause great changes in θ3 and θ5. 

Finally, the system response can be analyzed by varying the values of ε5 (from 0 to 2) and 
keeping the other system values fixed. Figure 23 presents the bifurcation diagram showing 

the behaviour of knee oscillator θ5 with variation of the parameter ε5, which represents the 
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damping term related with this oscillator. Figure 24 showing the strange attractor generated 
in the analysis of this oscillator. 

Figure 25 presents the bifurcation diagram showing the behaviour of knee oscillator θ3 with 

variation of the parameter ε5. In relation to the hip, the knee oscillator θ5 presents small 

influence on the hip angle θ4. 

 
 

 
 

Fig. 23. Bifurcation diagram for θ5 with variation of ε5. 
 
 

 
 

Fig. 24. Strange attractor for θ5. 
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Fig. 25. Bifurcation diagram for θ3 with variation of ε5. 

6. Conclusion 

In this chapter, we present the study of a biped locomotor with a CPG formed by a system 

of coupled van der Pol oscillators. A biped locomotor model with three of the six most 

important determinants of human gait was used in the analyses. After the modelling of the 

oscillators system, a dynamical analysis was performed to verify the performance of the 

system, in particular, aspects related to the chaos. From presented results and discussion, we 

come to the following conclusions: the use of mutually coupled nonlinear oscillators of van 

der Pol can represent an excellent way to generate locomotion pattern signals, allowing its 

application for the control of a biped by the synchronization and coordination of the legs, 

once the choice of parameters is correct, which must be made from the data supplied by the 

analysis of bifurcation and chaos. Through the dynamical analysis it was possible to 

evidence a weak point of coupling systems. The influence of the knee oscillators on the hip, 

and vice versa, is very small, what can harm the functionality of the system. The solution for 

this problem seems immediate: to increase the value of the coupling term between the hip 

and knees. However, this can make the system unstable. Then, it is necessary a more refined 

study of the problem, which will be made in future works, as well as a study of the 

behaviour of the ankles, and simulation of the hip and knees in the other anatomical planes, 

increasing the network of coupled oscillators, and consequently simulating with more 

details the human locomotion CPG. This study has great application in the project of 

autonomous robots and in the rehabilitation technology, not only in the project of prosthesis 

and orthesis, but also in the searching of procedures that help to recuperate motor functions 

of human beings. 
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