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1. Introduction  

The importance of stability for dynamical systems is well-known. Any real system, including 
biped robots, need to be working under all kinds of disturbances. Whether the biped robot can 
effectively keep the planned motion under these disturbances is a fundamental property, and 
that is the explanation of stability intuitively. Stability of biped walking is the key problem in 
the theoretical framework of biped robots. Roughly speaking, the research of biped robots can 
be classified as the following three aspects: stability criterion, walking pattern planning, and 
walking pattern control. The purpose of stability criterion is to give the condition that the robot 
can realize stable walking under some control strategy. The purpose of walking pattern 
planning is to generate a desired gait offline or online, and it plays the role of feed-forward 
(Huang et al., 2001). The purpose of walking pattern control is to modify the planning walking 
pattern based on sensory information, and it plays the role of feedback (Huang & Nakamura, 
2005). Among the above three aspects, stability criterion is the most fundamental and 
important, and it is the basis of walking pattern planning and real-time control. Although 
some researchers have proposed several walking control methods which are not based on 
stability criterion (Raibert, 1986; Geng et al., 2006); however if these methods can not ensure 
walking stability from the aspect of theory, then it will need many trials on hardware before 
success, and it is difficult to generate them to other platforms. Presently, there are the 
following three stability criteria for biped walking. 
The first criterion is zero moment point (ZMP) criterion. The ZMP was originally defined as 
the point in the ground plane about which the net moments due to ground contacts become 
zero in the plane of ground (Vukobratovic & Juricic, 1969). As long as the ZMP lies strictly 
inside the support polygon of the foot, then the support foot will not rotate about its 
extremities, and the desired trajectories of the robot’s joints are dynamically feasible, just 
like a stationary manipulator. Takanishi et al. (1985) and Hirai et al. (1998) have proposed 
the methods of pattern synthesis based on ZMP offline. Recently, Kajita et al. (2001), Lim et 
al. (2002), and Nishiwaki et al. (2002) discussed the methods of online pattern generation. 
The ZMP criterion is not a necessary condition for stable walking. The ZMP criterion results 
in a flat-footed and short-step walking style which is less dynamic than human beings. 
During normal walking, human do not always obeys the ZMP requirement and the foot 
does not always remain flat on the ground. Humans, even with prosthetic legs, use foot 
rotation to decrease energy loss at impact (Kuo, 2002). Based on the ZMP criterion, the robot 
can only realize static walking or quasi-dynamic walking, as shown in Fig. 1(a) and (b). 
During the dynamic walking of human beings, the under-actuated degree-of-freedom 
(DOF) emerges between the support foot and the ground, as shown in Fig.1 (c). 
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(a)Static Walk

(b)Quasi-dynamic Walk

(c)Dynamic Walk

Underactuated

DOF

(a)

(b) (c)

COM

COMCOM

ZMP

ZMP FZMP  

Fig. 1. Classification of biped locomotion. In case (a), the robot’s nominal trajectory has been 
planned so that the center of mass (COM) and ZMP are both within the interior of the 
footprint. In case (b), COM has moved out of the footprint while ZMP still keeps within the 
interior of the footprint. In both case (a) and (b), the foot will not rotate, and thus the foot is 
acting as a base, just like a normal robotic manipulator. In case (c), however, both COM and 
ZMP has moved out the interior of the footprint, allowing the foot to rotate 

The second stability criterion is Poincare return maps (Guckenheimer & Holmes, 1985), 
which is a technique for determining the existence of periodic orbits and their stability 
properties. With this method, the system is assumed to have a periodic limit cycle. Small 
deviations from the cycle follow the linear relation 

 1n nX KX+ =  (1) 

where nX  is the vector of deviations from the fixed point, K is a linear return map, and 

1nX +  is the vector of deviations in the following cycle. If the eigenvalues of K have moduli 

less than one, then the limit cycle is stable. Hurmuzlu and Moskowitz (1993) first applied 

the Poincare map to the locomotion systems, McGeer (1990) and Goswami et al. (1996) used 

this technique to analyze stability issues of passive walking robots. Grizzle et al. (2001) 

developed an extension of Poincare method that reduces the stability calculation to a one-

dimensional map, and Westervelt et al. (2003a) used this method to design automated 

control for an under-actuated planar biped robot (Chevallereau et al., 2003). However, Using 

Poincare return maps as a stability criterion of biped walking has two serious limitations. 

Firstly, they are only applicable for periodic bipedal walking. There is nothing periodic 

about walking across unevenly spaces obstacles, or changing walking speed. Secondly, 

using eigenvalues of Poincare return maps is valid only for small deviations from a limit 

cycle. Large disruptions from a limit cycle, such as when being pushed, cannot be analyzed 

using this technique. Therefore, Poincare return maps are not necessary for analysing 

bipedal walking in general. 
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The third stability criterion is motivated by observation that human beings keep the relative 

small size of angular momentum about the center of mass (CoM) during walking. In the 

book Legged Robots that Balance, Raibert (1986) speculated that a control system that keeps 

angular momentum during stance could achieve higher efficiency and better performance. 

Popovic and Englehart (2004) have suggested that humanoid control systems should 

explicitly minimize global spin angular momentum during steady state forward walking. 

However, minimizing angular momentum is not a necessary condition for stable walking. 

Human can walk can walk while swinging his or her upper body which makes the global 

spin angular momentum larger than zero. Minimizing angular momentum is not a sufficient 

condition for stable walking, as a biped robot can fall down the ground while maintaining 

an angular zero momentum (Pratt & Tedrake, 2005). Therefore, angular momentum about 

the Center of Mass is not a good stability criterion for biped walking. 

In fact, the desirable characteristics of an ideal stability criterion for biped walking may 
include: 
1. Universal. The ideal stability criterion should be applicable not only to static walking, 

but also to dynamic walking. The ideal stability criterion should be applicable not only 
to periodic walking, but also to non-periodic walking. 

2. Sufficient and Necessary. If the stability margin is outside an acceptable threshold of 
values, the robot will fall down. If the stability margin is inside an acceptable threshold 
of values, the robot will walk stably. 

3. Comparable and Measurable. Two walking patterns should be comparable for stability 
based on their relative stability margins. One should be able to measure the relevant 
state variables and estimate the stability margin on-line in order to use it for control 
purposes  (Pratt & Tedrake, 2005). 

4. Simple and Convenient. The ideal stability criterion should be easy to compute, and 
convenient to be used in analyzing and controlling robots. 

This chapter explores such a coherent stability criterion based on the description of biped 

walking from a global point of view. The organization of this chapter is organized as follows. 

Section II proposed an overall mathematical modeling method for biped walking is based on 

dimensional-variant hybrid automata. Section III presented a rigorous definition of biped 

walking stability by combining the character of biped locomotion with the notion of classical 

stability, and pointed out that the model in the task space is a length-varying and inertia-

varying inverted pendulum. Section IV presented a stability criterion in task space of biped 

walking. Section V introduced application methods of the proposed criterion. Section VI 

provided the experimental results of a planar biped robot. Section VII concluded the chapter. 

2. Overall mathematical model for dynamic biped walking 
2.1 Assumption of dynamic walking 
During biped locomotion, two legs alternately contact the ground. When only one leg 

contacts the ground, the robot is called in single support phase. When both legs contact the 

ground, the robot is called in double support phase. The overall biped walking consists of 

single support phase and double support phase. 

In the field of biped locomotion, there’s still no accurate and rigorous definition for dynamic 

walking (Goswami & Kallem, 2004). For the purposes of this chapter, to eliminate 

complications, we assume that dynamic walking should satisfy the following two 

requirements: 
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1. The under-actuated DOF emerges between the support foot and the ground during 
dynamic walking. 

2. The double support phase is instantaneous and can be modeled as a rigid contact. 
The robot is said to be in under-actuated phase when the robot is in the mode of toe or heel 
contact, and in fully-actuated phase when the robot is in the mode of full sole contact. A 
typical dynamic walking for biped robots with feet is shown in Fig.2. 
 

(b) Toe contact(a) Foot contact (c) Heel contact

Walking direction

(d) Foot contact 

Fig. 2. A typical dynamic walking for biped robots with feet 

Since the assumption of instantaneous double support phase, each discrete phase can be 
modeled as an N-link rigid body open-chain robot with one-DOF revolute joints. The 
equations of motion are given by the following general form: 

 ( ) ( , ) ( )D q q C q q q G q Bu+ + =�� � �  (2) 

where 1: ( ; ; )Nq q q Q= ∈"  are the joint angles, Q  is a simply-connected, open subset of 

[0,2 )Nπ corresponding to physically reasonable configuration of the robot. The matrix ( )D q  

is the inertia matrix, the matrix ( )C q  contains Coriolis and centrifugal terms, ( )G q  is the 

gravity vector, and B  is an input matrix. 

Defining : ( ; )x q q= � , the model in each phase can be written in state space form 

 
1 1

0
: ( ) ( )

[ ]

q
x u f x g x u

D Cq G D B− −

⎡ ⎤ ⎡ ⎤
= + = +⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�
�

�
 (3) 

with state space : {( ; )| , }NTQ q q q Q q R= ∈ ∈� � . 

2.2 Overall biped model based on dimension-variant hybrid automata 
The overall biped model is hybrid and dimension-variant in nature, consisting of some 

continuous dynamics and re-initialization rules at the contact event. We propose an overall 

mathematical modeling method for biped walking based on dimension-variant hybrid 

automata. This method expresses the overall biped walking model as an 8-tuple 

 ( , , , , , , , )=H V X N F D E S Δ  (4) 

where  

= { , , , }"V f t hoot oe eel is the collection of discrete states; 

{ }= ∈:i iX x V  is the collection of continuous states; 
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{ }dim( ) :i i= ∈N x V  is the dimension of X ; 

{ ( , ) : }i= × →F F x V X XT  is the vector fields; 

{ : }i i= ∈D TQ V  is the collection of domains; 

⊆ ×E V V  is the collection of edges; 

{ : }= ∈S S Ee e  is the collection of transition sections; 

{ : }e e= ∈EΔ Δ  is the collection of transition rules; 

Let ( )−⋅  and ( )+⋅  donate quantities immediately just before and after transition. Given H , 
the basic idea is that starting from a point in some domain iTQ , we flow according to iF  
until (and if) we reach some transition section j

iS , then switch via the transition rule j
iΔ , 

continue flowing in jTQ , according to jF  and so on, as shown in Fig. 3. 
 

( )i i i=�x F x ( )j j j=�x F x

i i
∈x TQ j j∈x TQ

j

i i

− ∈x S ( )+ j

j i i

−=x xΔ( , )i j

 

Fig. 3. Diagram of dimension-variant hybrid automata 

A typical dynamic walking with feet shown in Fig.2 can be modeled as a dimension-variant 
hybrid automaton, as shown in Fig. 4. This modelling method can reflect all kinds of 
continuous and discrete properties of biped walking, which makes it possible to study 
stability and design control strategy for biped locomotion from a global point of view. 
It should be noted that the solution 0( )t xϕ  of dimension-variant hybrid automata is 
piecewise continuous and hybrid, as shown in Fig.5. 

3. Stability definition and task space 

3.1 Stability definition of biped walking 
The manuscript has to be submitted in MS Word (*.doc) and PDF format. If you use other 
word editors and can not transfer it in Word and PDF please contact us. The most intuitive 
definition of biped stability is likely that “the biped does not fall”. This section will give a 
sequence of preliminary definitions leading to a rigorous mathematical definition of biped 
walking stability by combining the character of biped locomotion with the notion of classical 
stability from the view of hybrid automata. 
Since the main destination of biped walking is to avoid fall, following (Pratt & Tedrake, 
2005), we define a fall in this chapter as follows. 

Definition 4.1 (Fall) Let FallQ  be a set of the robot’s configuration in which a point on the 

biped, other than a point on the feet, touches the ground.  
There are three modes of fall for biped robots considering in this chapter as shown in Fig. 6. 
Let q  and �q  denote the vector of generalized position and velocity respectively. FallQ  can 
be expressed as 

 Fall torso hip knee{ | ( ) 0} { | ( ) 0} { ( ) 0}y y y= = = =∪ ∪Q q q q q q  (5) 
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Fig. 4. Dimension-variant hybrid automata for dynamic walking wirh feet 

 

 

Fig. 5. Solution of dimension-variant hybrid automata 

 

(a) Torso mode (b) Hip mode (c) Knee mode  

Fig. 6. Three modes of fall configuration 

Introducing the state vector ( ; )= �x q q , the solution starting from 0x  can be donated as 

0( )t xϕ , and it is hybrid and piecewise continuous. Let 0 0( ) { ( )|0 }t t= ≤ < ∞x xOrb ϕ  donate 

the hybrid orbit of biped walking. It should be noted that 0( )xOrb  can be not only periodic 

walking (Gizzle et al., 2001), but also non-periodic walking. 

Definition 4.2 (Feasible Orbit) Let 0( )xOrb  be a hybrid orbit starting from 0x . If  

0( ; ) ( )∀ ∈�q q xOrb , satisfying 

 Fall∉q Q  (6) 

then 0( )xOrb is a feasible orbit. 
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Definition 4.3 (Distance between a Point and an Orbit) Given a norm || ||⋅ , the distance 

between a point i i∈x TQ  and an orbit 0( )xOrb  can be defined as 

 
0

0
( )

dist ( )) : inf || ||
i

i i
∈

= −
∩y x TQ

x x x y
Orb

( ,Orb  (7) 

Definition 4.4 (Open Neighborhood of an Orbit) Let 0( )xOrb  be an orbit starting from 0x . 

Given a norm || ||⋅ , the open neighborhood of an orbit 0( )xOrb  can be defined as 

 0 0( )) { |dist ( )) }δ δ= <x x x x(Orb ( ,OrbΩ  (8) 

Definition 4.5 (Stable Walking) Let 0( )xOrb  be a feasible orbit of biped walking. If 0ε∀ > , 
( ) 0δ ε∃ >  which determines an open neighbourhood 0( ))δ x(OrbΩ  such that for 

every 0( ))δ∈x x(OrbΩ , satisfying 0( ) ( ))t
ε∈x x(OrbΩϕ  for all 0t ≥ , then the biped walking 

is stable. 
Definition 4.6 (Attractive Walking) Let 0( )xOrb  be a feasible orbit of biped walking. If  

0δ∃ >  which determines an open neighbourhood 0( ))δ x(OrbΩ  such that for 
every 0( ))δ∈x x(OrbΩ , satisfying 0lim ( ) ( )t

t→∞
∈x xOrbϕ , then the biped walking is attractive. 

Definition 4.7 (Asymptotically Stable Walking) If a biped walking is both stable and 

attractive, then it is asymptotically stable. 

Definition 4.8 (Exponentially Stable Walking) If there exists 0δ > , 0γ > , and 0β >  such 

that, 0t∀ > ,  

 0 0dist( ( ), ( )) e dist( , ( ))t tβγ −≤x x x xOrb Orbϕ  (9) 

whenever 0( ))δ∈x x(OrbΩ . 

3.2 Biped model in the task space 
The definition of biped stability is established in high-DOF space; however it is difficult to 
study the stability in this high-DOF space directly. Although biped robots are typically high 
DOF mechanisms, the task of biped walking is inherent a low DOF task. Considering planar 
biped walking, the task space is only 1-DOF problem, as shown in Fig. 7. 
In fact, stability of biped walking can be studied in the low-DOF task space under virtual 
constraint control strategy  (Gizzle et al., 2001; Canudas-de-Wit, 2004), as shown in Fig. 8. 
Inspired by the work of Westervelt et al. (2003a), let θ and σ donate the position and 
angular momentum around the pivot point of the stance leg respectively. Let 

2( ; )i i i iθ σ= ∈ ⊂z Z R  donate the state variable of the task space. According to the angular 
momentum balance theorem, the model of the task space has the following special form 
 

 

Fig. 7. Task Space of biped locomotion in sagittal plane 
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Fig. 8. Example of virtually constrainted system 

 ( )

( )

i
i

i i

i
i i

I

J

σ
θ

θ
σ θ

⎛ ⎞
⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎝ ⎠

�

�
 (10) 

where iI  plays the role of an inertia, and iJ  plays the role of a net moment around the 

pivot. 

3.3 Basic definitions for the biped model in the task space 

Let ( )( , ) :

( )

i

i ii i i

i i

I

J

σ
θθ σ
θ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

F  donate the vector field in task space. We assume the following 

conditions are satisfied: 

H1) 2
i ⊂Z R  is open and connected; 

H2) 2:i i →F Z R is 1C ; 

H3) A solution ( )t
izϕ  is right continuous on t, and depends continuously on the initial 

condition iz ; 

H4) Transition section is designed as 1i
i
+ =S  {( , )| }i i i iθ σ θ θ −=  

H5) v is 
1C , and 1 1 1( )i i i

i i i
+ + + ∅∩S SΔ = ; 

H6) 
0iσ >

 during normal forward walking. 

Definition 4.9 (Time Function) T : i →Z R  is defined as 

 1T( ) : { 0| ( ) }t i
i i it += ≥ ∈z z Sϕ  (11) 

The meaning of time function is the time to the transition section at the first time. 

Definition 4.10 (Distance Function) d : i →Z R  is defined as 

 *
0

0 T( )

d( ): sup dist( ( ), ( ))
i

t
i i

t≤ <
= Orb

z

z z zϕ  (12) 

The meaning of distance function is the maximum distance between *
0( )zOrb  and solution 

( )t
izϕ  before the first time to impact section. 

Definition 4.11 (Total Distance Function) D : i →Z R is defined as 
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 *
0

0

D( ): sup dist( ( ), ( ))t
i i

t≤ <∞
=z z zOrbϕ  () 

The meaning of distance function is the maximum distance between *
0( )zOrb  and solution 

( )t
izϕ  while (0, ]t∈ ∞ . 

Lemma 1: [(Grizzle, 2001), Lemma3 and 4] Suppose that H1-H4 hold, then T( )iz  and d( )iz  

is continuous. 

Lemma 2: Suppose that H1-H5 hold, then D( )iz  is continuous. 

Proof: According to the definition of total distance function, D( )iz  can be written as 

 1 2D( ) sup{d( ), d( ), d( ), }i i i i
+ +
+ += "z z z z  (14) 

where 1
1

T( )
d( ) d lim ( )

i

i t
i i i

t

+ +
+

→
= D D

z
z zΔ ϕ . By H3), H5), and Lemma 2, 1d( )i

+
+z  is continuous. In 

the same way, any item in the right side of the equation (14) is continuous. Therefore, D( )iz  

is continuous.              ♠ 

4. Stability criterion in the task space 

4.1 Section Sequence and its Stability Equivalence to Orbit 

Definition 5.1 (Section Sequence) *
0{ }i i

∞
=z  is defined as a set of intersection point between 

*
0( )zOrb  and transition sections as shown in Fig. 9, and *

iz  can be written as 

 * * 1
0: ( ) i

i i
+= ∩z z SOrb  (15) 

where *
0( )zOrb  is the set closure of *

0( )zOrb . 
 

*

0z

0Z 1Z

*

0z

2Z

*

1z *

2z

3

2S1

0S
2

1Sσ

θ

0θ
−

0θ
+

1θ
−

1θ
+

2θ
−

2θ
+

1

0P
2

1P

 

Fig. 9. Section sequence and section map 

Theorem 1 Under H1)–H5), if section sequence *
0{ }i i

∞
=z  is stable (resp., asymptotically stable, 

or exponentially stable), orbit *
0( )zOrb  is stable (resp., asymptotically stable, or 

exponentially stable). 
Proof: The process can be summed up into the following three parts: 
1.  Proving stable 

Since section sequence *
0{ }i i

∞
=z  is stable, then 0ε∀ > , ( ) 0δ ε∃ >  such that for every 

*
0 0( )( )δ ε∈z B z , satisfying *( )i iε∈z B z  for all 0i ≥ . This implies that *

0 0( )( )δ ε∀ ∈z B z , there 

exists  a solution 0( )t zϕ  defined on [0, )∞  with the initial value 0z . Moreover, following 

[(Grizzle, 2001), Equation (55)], an upper bound on how far the solution 0( )t zϕ  wanders 

from the orbit is given by 
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*
0

*
0 0 0 ( ( ))

sup dist( ( ), ( )) sup D( )t
t ε≥ ∈≤ ∩z z S

z z z
Orb

Orb Ωϕ  (16) 

According to Lemma 2, D( )iz  is continuous; moreover, for *
0( )∈ ∩z z SOrb , D( ) 0=z . This 

implies that 0ε∀ > , 0ε∃ > , satisfying 

 D*
0( ( ))

sup ( )z
ε

ε∈ <∩z z SOrbΩ  (17) 

 

Take (17) into (16), and yield 

 *
0 0 0sup dist( ( ), ( ))t

t ε≥ <z zOrbϕ  (18) 

According to definition 4.4, (18) can be written as 

 *
0 0( ) ( ( ))t

ε∈z zOrbΩϕ  (19) 

By H3) and H4), It is easy to construct a small enough open neighborhood *
0( ( ))δ zOrbΩ   

satisfying that when *
0 0( ( ))δ∈ ∩z z ZOrbΩ , *

0 0( )δ∈z B z , which proves that the orbit is stable  
2.  Proving asymptotic stable 

Since section sequence *
0{ }i i

∞
=z  is asymptotically stable, then there exists 0δ >  such that for 

every *
0 0( )( )δ ε∈z B z , satisfying *

0lim ( )i
i→∞

∈z zOrb . According to definition 4.3, we have 

D(lim ) 0i
i→∞

=z . This implies that there exists a solution 0( )t zϕ  satisfying 
*

0 0limdist( ( ), ( )) 0t

t→∞
=z zOrbϕ , which proves that the orbit is asymptotically stable.                       

3.  Proving exponentially stable 

Since section sequence *
0{ }i i

∞
=z  is exponentially stable, then there exists 0δ > , 0γ >  and 

0β >  such that, for all 0i ≥ , 

 * *
0 0|| || e || ||i

i i
βγ −− ≤ −z z z z  (20) 

 

whenever * 1
0 0 0( ( ))δ∈ ∩z z SOrbΩ  

According to Lemma 1 and H5), for any 0i ≥ , T( )iz
T( )iz

 and 1( )i
i i
+ zΔ  are all continuous; 

therefore, there exists an open ball *( )r iB z ,  minT 0> , maxT 0> , such that for 
* 1( ) i

i r i i
+∈ ∩z B z S , 

 1
min max0 T T ( ) T <i

i i
+< ≤ ≤ ∞D zΔ  (21) 

Since exponential stability of *
0{ }i i

∞
=z  implies stability of *

0{ }i i
∞
=z , *

0( )zOrb  is also stable. 

Thereby, there exists 0δ > , such that for *
0 0( ( ))δ∈z zOrbΩ , satisfying *

0 0( ) ( ( ))t
r∈z zOrbΩϕ  

for all 0t ≥ . According to H3), H4) and standard bounds for the Lipschitz dependence of 

the solution w.r.t. its initial condition, it follows that for * 1( ) i
i i iδ

+∈ ∩z B z S , 

1
max

1 * 1 1 * *
0 0 T0 T ( )

sup dist( ( ), ( )) sup || ( ) ( )|| || ||i
i i

t i t i t i
i i t i i i i i i it

L+
+ + +

≤ ≤≤ ≤ ≤ − ≤ −D D D D
z

z z z z z zOrbΔ Δ Δ Δϕ ϕ ϕ (22) 

where iL  is the Lipschitz constant of continuous function 1( )t i
i
+ ⋅DΔϕ . 

According to (20) and (22), for 0i ≥ , 

 1
1 * *

0 0 00 T ( )
sup dist( ( ), ( )) e || ||i

i i

t i i
i i it

L βγ+
+ −

≤ ≤ ≤ −D D
z

z z z zOrbΔ Δϕ  (23) 
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Define supi iL L= , and considering  (21) and (23), for all 0t ≥ , 

 maxT* *
0 0 0 0dist( ( ), ( )) e e || ||

t
t L

β
βγ

−
≤ ⋅ −z z z zOrbϕ  (24) 

By H3) and H4), there exists 0c >  such that 

 * *
0 0 0 0|| || dist( , ( ))c− ≤ ⋅z z z zOrb  (25) 

The proof of asymptotical stability can be finished by taking (25) into (24).                                

4.2 Section map and its analytical form 

Definition 5.2 (Section Map) 1 1 2
1 1:i i i

i i i i i
+ + +

+ +→∩ ∩P S Z S Z  is defined as  

 
*T( ( ))1 * *( ) : ( ( ))ii

i i iϕ+ = z
P z z

Δ Δ  (26) 

The meaning of section map is the map between two contiguous section sequences, as 

shown in Fig. 9. 

Remark 1: It should be noted that section map does not need the system is periodic. 

Since iZ  is two-dimensional, |1 {( ; ) }i
i i i i iθ σ θ θ+ −= =S  is a one-dimensional restriction; 

therefore, section map and section sequence are both one-dimensional essentially. By H6), 
1 2 2

1: ( ) ( )i
i i iρ σ σ+ − −

+→  is homeomorphous with 1i
i
+P , and section map 0{ }i iσ − ∞

=  is 

homeomorphous to 2
0{( ) }i iσ − ∞

= , which can be written as 

 2 1 2
0 1 0 0 0{( ) } { (( ) )}i

i i i iσ ρ ρ σ− ∞ − ∞
= − == D"D  (27) 

Thereby, the stability of section sequence is determined by the form of 
1i

iρ
+

. 

By (10), section map 2 2
1 1: ( ) ( )i

i i iρ σ σ− −
− − →  can be written as 

 2 2
1 1( ) ( ) 2 ( ) ( )

i

i

i
i i i i i i i iI J d

θ

θ
σ δ σ θ θ θ

−

+
− −

− −= ⋅ + ∫  (28) 

where 1 1: /i
i i iδ σ σ+ −
− −=  is called section-map factor. 

It should be noted that (28) is a one-dimensional linear time-invariant map. 

4.3 Section-map stability criterion 

Theorem 2 (Section-map Stability Criterion) Under H1)–H6), if 0 10 sup 1i
i iδ> −< < , *

0( )zOrb  

is exponentially stable; moreover, the smaller 0 1sup i
i iδ> −  is, the faster *

0( )zOrb  converges. 

Proof: According to Theorem 1, the exponential stability of *
0( )zOrb  lies on the exponential 

stability of *
0{ }k k

∞
=z . Since *

0{ }k k
∞
=z  and 2

0{( ) }i iσ − ∞
=  is homeomorphous, the following will 

prove the exponential stability of 2
0{( ) }i iσ − ∞

= . 

Define 2( )i iξ σ −= , and *
0{ }i iξ ∞

=  can be written as 

 * * 1 * 2 1 * 1 *
0 0 0 0 1 0 0 1 0 0{ } { , ( ), ( ), , ( ), }i

i i iξ ξ ρ ξ ρ ρ ξ ρ ρ ξ∞
= −= D " D"D "  (29) 

When there exists an initial perturbation *
0 0|| ||ξ ξ δ− < , according to (28), for all 0i ≥ , 
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* * 2 * 2 1 2 *
1 1 1 1 1 1 1 1 0 0 0|| |||| ( ) ( )|| ( ) || || ( ) ( ) || ||i i i i

i i i i i i i i i iξ ξ ρ ξ ρ ξ δ ξ ξ δ δ ξ ξ− − − − − − − −− = − = − = ⋅ −" (30) 

Moreover, 

 max maxln 2(ln )2 1 2 2 2
1 0 max( ) ( ) ( ) ( )i i i i

i e eδ δδ δ δ ⋅
− ≤ = ="  (31) 

Take (31) into (30), and yield 

 max2(ln )* *
0 0|| || || ||i

i i e δξ ξ ξ ξ⋅− ≤ −  (32) 

Since 0 10 sup 1i
i iδ> −< < , then 0 1ln(sup ) 0i

i iδ> − < , which proves that *
0{ }i iξ ∞

=  is exponential 

stable. ♠ 
Remark 2: Theorem 2 can be intuitively explained as: If the error arising from an initial 
perturbation can be shrinked at each impact, then the stability of the orbit can be achieved, 
vice versa, as shown in Fig. 10. 
 

 

  

Fig. 10. Intuitive explaination of section-map stability criterion 

Remark 3:  Section-map Stability Criterion is an extension of Poincare return maps, and it is 
applicable to non-periodic walking which Poincare return map criterion can not solve. 
In Section I, we have asserted that a desirable stability criterion for biped walking should 
satisfy four characteristics. In followings, we will give an explanation for section-map 
stability criterion about the above four characteristics. 
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1. Universal. Section-map stability criterion is established on a rigorous definition of biped 
walking; therefore it can not only be applicable to static walking, but also to dynamic 
walking, and can not only be used to study periodic walking, but also to non-periodic 
walking. 

2. Necessary and Sufficient. Section-map stability criterion is a sufficient condition for 
biped walking, is a necessary condition for periodic walking, and is a quasi-necessary 
condition for non-periodic walking. The quasi-necessary condition means that the 
condition that all section-map factors are less than one is not necessary for non-periodic 
walking, but the number of section-map factors which is less than one should be larger 
than the number of section-map factors which is more than one. 

3. Comparable and Measurable. By comparing the section-map factors of two walking 

patterns, one can determine which pattern is more stable. The lower δ , the faster the 

convergence toward the reference trajectory after perturbation. One can measure the 
relevant state variables and calculate or estimate the stability margin on-line in order to 
use it for control purposes. 

4. Simple and Convenient. Comparing with ZMP criterion, it is not necessary to calculate 
all points of trajectories, and only transition points need to be calculated. Comparing 
with Poincare methods, the proposed criterion study biped walking in low-dimension 
task space and has a concise form; therefore section-map stability criterion is easy to 
compute, and convenient to be used in analyzing and controlling biped walking. 

5. Applications of section-map stability criterion to planar biped walking 

5.1 Planar biped robot THR-I 
To test the validation of the proposed criterion, a planar biped robot called THR-I has been 
developed, and this robot has five links which are connected by revolute joints. To constrain 
motions in the frontal plane, THR-I was constructed with a boom attached at the hip joint, as 
shown in Fig. 11. The boom constrains the sagittal plane to be tangent to a sphere centered 
at the universal joint, and still allows the robot to freely trip or fall forward or backward. 
The material of the boom is made of carbon fiber which is rather light, and the length of the 
boom is more than 5 times leg length of THR-I; therefore, the influence of the boom on THR-
I’ dynamics  in the sagittal plane is very small. 
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Fig. 11. Mechanical structure of THR-I. 
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Encoders are located between the boom and hip joint, and binary contact switches are 
located at the tip of the leg to detect whether or not a leg is in contact with the walking 
surface. There is no actuation at the stance leg tip. Hence, the robot is underactuated. It is 
assumed that walking consists of two successive phase: a single support phase and an 
instantaneous impact phase. Although this robot is simple, it captures the main difficulties: 
hybrid, static instability, and under-actuation. This model was also adopted in (Geng et al., 
2006; Chevallereau et al., 2003). 

To describe the shape of the biped, let 1 2 3 4( , , , )cq q q q q ′=  denote the configuration 

coordinates, and 5q  denote the absolute coordinate of the torso with respect to the 

coordinate frame as shown in Fig.12. The vector of the generalized coordinates of the biped 

robot is defined as 1 2 3 4 5( , , , , )q q q q q q ′= . Let ( , )com comx y  denote the Cartesian coordinates of 

the center of mass. Torques iu , 1i =  to 4, are applied between each connection of two links. 

Let σ  denote the biped angular momentum around the pivot point of the stance leg. For the 

above choice of the coordinates in the support phase, σ  has the following form 

(Chevallereau, 2004): 

 5( )cD q qσ = − �
 (33) 

where 5( )cD q  is the fifth line of matrix ( )cD q . 
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Fig. 12. Model of  a 5-link THR-I biped robot 

Since only the gravity affects the angular momentum around the pivot point, the angular 
momentum dynamics can therefore be written as 

 ( )commg x qσ = ⋅�  (34) 

Let q− , q+ , q−� , and q+�  denote the pre- and post-impact generalized positions and 

generalized velocities, respectively. The superscript “–” and “+” will denote quantities 

immediately before and after impact thereinafter. 
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We assumed that the impact is instantaneous and inelastic. After impact the former stance 
leg is lifted off immediately, and the legs swap roles, which can be written as the following 
transformation equation: 

 q Rq+ −=  (35) 

where 

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 is a circular matrix describing the exchange of the support leg. 

According to the conservation of momentum about impact point and no rebound nor slip at 

impact of swing leg tip, the map from q−�  and q+�  can be obtained respectively by 

 ( )qq q q+ − −= Δ �� �  (36) 

where ( )q q−Δ �  can be found in (Westervelt et al., 2003a). 

5.2 Synthesizing periodic walking patterns based on section-map factor 
Consider the following output function (Westervelt et al., 2003a): 

 0( ) : ( ) ( )dy h q h q h qθ= = − D  (37) 

where 0( )h q specifies the four actuated joints that are to be controlled and ( )dh qθD  specifies 

the desired evolution of these joints as a function of the monotonic quantity θ(q), as shown 

in Fig. 13. Driving y to zero will force 0( )h q  to track ( )dh qθD ; thus the configuration of the 

robot is being controlled as a holonomic constraint parameterized by ( )qθ . 
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Fig. 13. Parameters of the walking pattern 

www.intechopen.com



 Biped Robots 

 

144 

Choosing 

 0 0( ) :h q H qa=  (38) 

 ( ) :q cqθ =  (39) 

where [ ]0 4 4 4 10H I × ×= , c = [-1  0 -1/2  0 -1]. 
To obtain a stable walking pattern, we propose a synthesizing method consisting of the 
following four steps: 

1.  parameterize position constraints ( )dh θ at all breakpoints; 

Since one of the basic aspects of biped locomotion is to maintain a constant erect torso, we 

specify q5 = 0 in the whole walking cycle, as shown in Fig. 13. 

To shape the impact posture, we define two normalized non-dimensional parameters: 

 1 2: ( ) /sk l l L= +  (40) 
 

 1 1 2: /( )hk l l l= +  (41) 

where sk  describes the magnitude of the stride relative to leg length, and hk  describes the 

ratio of the hip abscissa to the stride. sk  and hk  could take values from 0 to 1 during normal 

gaits. 

Let H  denote the height of hip joint at impact, and. H  can be determined by the following 

equation: 

 2 2cos ( / 2) / 4sH L kα= −  (42) 

where α  is the angle of the knee joint when 0.5hk = . 
To be compatible with the ground condition, it is necessary to specify several middle 
postures to describe the swing foot over rough terrain or in environments with obstacles. 
For simplicity, we select one middle posture mq  where ( ) / 2mθ θ θ+ −= + . The height of the 
hip in the middle posture can be determined by ( ) / 2mH A B= + . We utilize the Cartesian 
coordinates of swing foot ( , )m m

f fx y , to parameterize mq . The robot can negotiate different 
obstacles on the ground by varying ( , )m m

f fx y . 
Since both impact postures and middle postures are determined, the configuration at all 

breakpoints can be written as 

 

0

0

0

( , ),

( ) ( , ),

( , ),

s h

m m m m
d f f

s h

H q k k

h H q x y

H q k k

θ θ

θ θ θ

θ θ

+ +

− −

⎧ =
⎪⎪= =⎨
⎪

=⎪⎩

 (43) 

2. determine the derivative constraints ( ) /ddh dθ θ  at impact postures; 

Since we assume that the robot maintain a constant erect posture during the whole walking 
cycle, the following two conditions must be satisfied: 

 5 0q− =�  (44) 
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 5 1 4[0 1] 0qq q+ −
×= Δ =�� �  (45) 

Observing from human walking, we find that human beings appear to hold his support 
knee joint and relative angle between two thighs intendedly just before impact, so we get 
the following equation: 

 3 0q− =�  (46) 

 
2 1 0q q− −− =� �  (47) 

Let σ −  denote the angular momentum just before impact. According to (33), one can obtain 

 5( )D q qσ − −
− = − �  (48) 

According to equation (44) to (48), the generalized velocities q−�  can be expressed as 

 ( )q q σ− − −= Π�  (49) 

where 

1

1 4

5

0 0 0 0 1 0

[0 1] 0

0 0 1 0 0 0( )

1( )

01 1 0 0 0

q

q

D q

−

×
−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Π = ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥− ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

�

. 

Considering the equation (36), the generalized velocities q+�  can also be uniquely 

determined. Considering (38), (39), and (49), the derivative constraints at impact postures 

can be written as 

 
0

0

( ) /( ( )),

( ) /( ( )),
d

q q

H q c qdh

d H q c q

θ θ

θ θ θ

− − +

− − −

⎧ Π Π =⎪= ⎨
Δ Π Δ Π =⎪⎩ � �

 (50) 

3. obtain the continuous trajectory ( )dh θ  by interpolation; 

To satisfy constraint (43), (50), and the continuity conditions of the first derivative and the 
second derivative at all breakpoints, ( )dh θ  are characterized by two third-order polynomial 
expressions: 

 

3

0

3

0

( ) , [ , ]

( )

( ) , [ , ]

i m
i

i
d

m i m
i

i

M

h

N

θ θ θ θ θ
θ

θ θ θ θ θ

+ +

=

−

=

⎧
⋅ − ∈⎪

⎪= ⎨
⎪ ⋅ − ∈⎪⎩

∑

∑
 (51) 

Thereby, we can obtain iM  and iN  by third-order spline interpolation. In this way, ( )dh θ  is 

twice differentiable during the whole single support phase. When ( , )m m
f fx y  and α  are 

specified, the walking pattern can be determined by the two non-dimensional parameters 

sk  and hk  uniquely. 
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4.  determine the parameters with a small section-map factor. 

Considering (33), (36), (48), and (49), the section-map factor can be calculated as 

 

5

5
5

( )

( )
( ) ( ) ( )

q

q

D q q

D q q
D q q q

σδ
σ σ

σ

+ ++

− −

+ −
+ − −

−

−
= =

− Δ
= = − Δ Π

�
�

�

�
 (52) 

According to (52), the section-map factor only depends on q  at impact. Since there are only 

two parameters sk  and hk , we can easily obtain a small section-map factor by exhaustive 

search computation (Fu et al., 2006). 

5.3 Stable walking transition and its stability analysis 
According to section-map stability criterion, the robot can achieve stable walking provided 
that all section-map factors is less than one. Fig. 14 shows the property of angular 
momentum during one-step transition. 
 

 

Fig. 14. Property of angular momentum during one-step transition 

Moreover, each walking pattern has a domain of stable attraction, and we assume the 
domains before and after transition are respectively 

 min maxa aσ −< <a  (53) 

 min maxb bσ −< <b  (54) 

Define one-step transition map :P σ σ− −
→ →a b a b  

 2( ) ( ) 2 ( ) ( )P I J d
θ

θ
σ δ σ θ θ θ

−

+
− −

→ = ⋅ + ∫ b

a
a b a a a  (55) 

To realize a stable one-step transition, the following two conditions must be satisfied: 
The domain of attraction of walking pattern a can be steered into the domain of attraction of 
walking pattern b under transition map (Westervelt, 2003b), that is, 

 min max min max{ ( )| } { | }P a a b bσ σ σ σ− − − −
→ < < < < ≠ ∅∩a b a a b b  (56) 

The walking with perturbation should be in the intersection set of domains: 
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 1
min max min max{ | } { ( )| }a a P b bσ σ σ σ σ− − − − − −

→∈ < < < <∩a a a a b b b  (57) 

Since one-step transition map (55) is a monotonic increasing function, as shown in Fig. 15, 
the two stable transition conditions can be written as 

 max min

min max

( )

( )

P a b

P a b

→

→

>⎧
⎨ <⎩

a b

a b

 (58) 

 1 1
min min max maxmin{ , ( )} max{ , ( )}a P b a P bσ− − −

→ →< <a b a a b  (59) 

Fig. 16 shows the property of angular momentum during multi-step transition, and we 
assume the domains before and after transition are respectively 
 

σ −
b

max( )P a→a b

a
min

0

a
max

min( )P a→a b

0

σ −
a
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min b

max
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b
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a
min

0

a
max
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0
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a

( )P → ia b

b
min b

max  

Fig. 15. Phase portraits during one-step transition 

 min maxa aσ −< <a  (60) 

 min maxd dσ −< <d  (61) 

Define multi-step transition map :P σ σ− −
→ →a d a d , to realize a stable multi-step transition, 

the following two conditions must be satisfied: 

 min max min max{ ( )| } { | }P a a d dσ σ σ σ− − − −
→ < < < < ≠ ∅∩a d a a d d  (62) 

 1
min max min max{ | } { ( )| }a a P d dσ σ σ σ σ− − − − − −

→∈ < < < <∩a a a a d d d  (63) 

 

 

Fig. 16. Property of angular momentum during multi-step transition 
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6. Walking eperiments 

6.1 Stable walking experiment 
This section provides several experimental results toward checking the section-map stability 
criterion. 

In the first experiment, THR-I was controlled to walk on a flat floor with a section-map 

factor 0.89δ = . The experiment lasted more than 120s and THR-I took approximately 600 

steps, which indicates the walking period is 0.2s per step. Fig. 17 gives video frames of THR-

I taking four steps for a typical walking motion.  Fig. 18 is the  real  joint  angles  versus  time 

during walking. Fig. 19 are the section-map factors calculated from encoders during 

walking. 
 

 

 

 

Fig. 17. Video frames of THR-I taking four consecutive steps with 0.89δ = . The robot is 

walking at 0.20 s per step 

6.2 Unstable walking experiment 

The second experiment demonstrated the walking result with a section-map factor 1.20δ = , 

which indicates the corresponding biped walking is unstable stable. Fig. 20 shows the 

desired and real values of holonomic constraints, from which we can observe that the 

walking pattern can not be imposed on the robot. Fig. 21 is the corresponding snapshot of 

the walking experiment, from which one can see the robot falls forward finally. 

For periodic forward walking, the minimum of the angular momentum around the pivot 

point during a walking cycle should be positive; otherwise the robot has no enough energy 

to achieve a step and will fall backward.  Fig. 22 is the desired and real values of holonomic 

constraints during walking on level ground with the section factor min 0σ < , which indicates 

that the robot will fall backward finally. Fig. 23 is the snapshot of walking experiment. 

6.3 Stable walking transition experiment 
The fourth experiment demonstrated the walking transition. Fig. 24 is simulation results of 
phase portraits during one-step transition with a 5% error from limit cycles before 

t=1.12s t=1.20s t=1.28s t=1.36s 

t=1.44s t=1.52s t=1.60s t=1.68s 

t=1.76s t=1.84s t=1.92s t=2.00s 
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transition. The section-map factor before transition is 0.86, and after transition is 0.89; 
therefore, the walking is stable. Fig. 25 gives video frames of THR-I walking from 0.2s/step 
to 0.3s/step.  
 

 

Fig. 18. Real joint angles of THR-I with 0.89δ =  
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Fig. 19. Section-map factor estimated by rotary encoders during walking. All section-map 
factors are.less than one 
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Fig. 20. Desired and real values of holonomic constraints with 1.2δ =  

 

 

 

 

 
 

Fig. 21. Video frames of biped walking experiment  with 1.2δ =  

t=2.45s t=2.59s t=2.87s 

t=3.02s t=3.16s t=3.30s t=3.44s 

t=3.58s t=3.73s t=3.87s t=4.01s 

t=2.73s 

www.intechopen.com



Section-Map Stability Criterion for Biped Robots 

 

151 

 

 

Fig. 22. Desired and real values of holonomic constraints with min 0σ <  

 
 

 

 

 
 

Fig. 23. Video frames of biped walking experiment with min 0σ <  

t=3.83s t=4.22s 

t=7.73s t=7.34s t=6.95s 
t=6.56s 
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Fig. 24. Simulation results of phase portraits during one-step transition 

 
 

 

 
 

Fig. 25. Video frames of biped walking transition experiment 

t=0.96s t=1.12s t=1.28s t=1.44s 
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7. Conclusion 

When publications are referred in the text, enclose the author’s name and the date of 

publication within the brackets. For one author, use author’s surname and the date (Arkin, 

2004). For two authors, give both names & the year (Mataric & Brooks, 1999). For three or 

more authors, use the first author, plus „et al.“, and the date (Siegwart et al., 2006). If giving 

a list of reference, separate them using semicolons. 

In this study, we focused on a coherent stability criterion and its application methods for 
biped walking. The main results of this chapter are summarized as follows: 
1. An overall mathematical modelling method for biped walking is proposed based on 

dimension-variant hybrid automata. This method expresses the overall biped walking 

model as an 8-tuple and can reflect all kinds of continuous and discrete properties of 

biped walking, which makes it possible to study stability and design control strategy 

for biped locomotion from a global point of view. 

2. A rigorous mathematical definition of biped walking stability is presented by 

combining the character of biped locomotion with the notion of classical stability from 

the view of hybrid trajectory. It is pointed out that the model in the task space is a 

length-varying and inertia-varying inverted pendulum, and the analytic form of the 

inverted pendulum model is derived. This makes it possible to study stability of biped 

walking in a low-dimension task space. 

3. It is pointed out that, under some assumption, stability of the hybrid trajectory is 
equivalent to that of the section sequence at switch section in the task space of biped 
walking. Based on this result, section-map stability criterion is presented. This criterion 
is applicable not only to dynamic walking which ZMP criterion can not solve, but also 
to non-periodic walking which Poincare return map criterion can not solve. 

4. By the proposed criterion, a synthesizing method for walking patterns based on section-
map factor is presented. The effectiveness of this method is confirmed by a biped robot 
THR-I, which can walk with a relative speed of 2 leg lengths per second. This robot is 
one of the few biped machines which can walk so fast and stable (Geng et al., 2006). 

Since the sagittal plane dynamics of biped walking are almost decoupled from those in the 
frontal plane (Furusho & Sano, 1990; Kuo, 1999), this chapter is only concentrated on 
stability issue in sagittal plane. The future work is to extend this method to the frontal plane 
to produce stable, dynamic three-dimensional walking. 
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