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1. Introduction

Over the past several years a considerable amount of studies have been proposed on biped
walking. The choice of type of feet such as a contact points, flat feet and circular arc
feet is important, because walking stability is essentially affected by the contact with the
ground. Control methods of many traditional humanoids with flat foot are based on zero
moment point (ZMP) that remains inside the convex hull of the foot support using the ankle
torque. There are lots of successful results, but the gaits seem not to be so natural. On the
other hand, for a biped with point contact a geometric tracking method for biped walking
using input-output linearization (Aoustin & Formalsky, 1999; Grizzle et al., 2001; Aoustin&
Formalsky, 2003; Chevallereau et al., 2003) produces stable gait that seems quite natural. (The
idea of the geometric tracking can be seen in the previous studies of Furusho (Furusho et
al., 1981) and Kajita (Kajita & Tani, 1991).) Grizzle, et al. (Grizzle et al., 2001) proposed the
method for a three-link model, only two outputs are controlled, the reference are expressed
as a function of the biped state. Zero dynamics with an impact event of the controlled system
were analyzed by Poincaré method. The effectiveness of geometric tracking has been verified
on a platform called ’Rabbit’ (Chevallereau et al., 2003) (Fig.1 left) with point feet. Westervelt,
et al. (Westervelt et al., 2005) gave some additional results to show capability for robustness,
changing average walking rate, and rejecting a perturbation by ’one-step transition control’
and ’event-based control’.
In the field of passive dynamic walking mechanisms (McGeer, 1990), it is shown that a biped
with large radius circular arc feet can take easily a lot of steps. The prototype Emu (Fig.1
right) can be equipped with various arc feet with different radii (Kinugasa et al., 2003; 2007).
In previous walking experiments the biped Emu is excited by gravity or forced oscillation of
the length of legs. If the feet radius is 10% of leg length, the biped could only take few steps
(Kinugasa et al., 2003) excited by the effect of gravity because of the sensitivity to disturbances
produced by the cables, the guide to avoid lateral motion and so on. The biped could not
walk by the forced oscillation. In the case of a radius which is 97% of leg length, the biped
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Fig. 1. Biped bipeds, “Rabbit” (left) and “Emu” (right).

Emu (Fig.1 right) can take easily few dozen of steps (Kinugasa et al., 2007) by the gravity
and the leg oscillations. The step number is limited only by the space of our laboratory. The
effect of the radii of circular feet was significant for our results, but the change of radius is
also accompanied by other difference in physical parameters, thus a direct conclusion on the
experimental study is not obvious and a more rigorous study must be done. In fact, the same
results are well known in the field of passive dynamic walking as it is mentioned in Section 2.
The geometric tracking method that was used for the underactuated biped Rabbit can be
extended to the case of underactuated biped with circular arc feet. If the biped has the circular
arc feet, the analytical stability study given by Chevallereau, et al. (Chevallereau et al., 2003)
can not be applied directly. The contact point between the supporting foot and the ground
moves forward during the step in this case. The same difficulty appears also in a flat feet
model. For this problem, Djoudi and Chevallereau (Chevallereau & Djoudi, 2006) gave a
solution to analyze the stability with a chosen evolution of the ZMP.
The purpose of the paper is to show the effects of the circular arc feet for an underactuated
planar biped controlled by a geometric tracking method. The effect of the feet shape on the
control properties is obviously depending on the walking strategies. Therefore it is significant
to clarify the effect of the feet shape on the geometric tracking even if it is well known in the
passive dynamic walking field.
A model of our biped is composed of five links. Prismatic knee joints are employed to avoid
the foot clearance problem which occurs in association with large foot, not actuated ankle and
rotational knee joint. A geometric evolution of the biped configuration is controlled, instead
of a temporal evolution. The input-output linearization with a PD control law and a feed
forward compensation is used for geometric tracking. The temporal evolution is analyzed
using Poincaré map. The map is given by an analytic expression based on the angular
momentum about the mobile contact point. The effect of the radius of the circular arc feet
on stability and the basin of attraction is revealed by analytic calculation. It is compared to
the effect of radius of the circular arc feet on passive dynamic walking. Section 2 presents an
overview of previous studies on the circular arc feet. Section 3 gives the biped model. It is
composed of a dynamic model and the impact model (instantaneous double support). Section
4 presents the control method. Section 5 gives the stability analysis. Some simulation results
are shown and some discussion on the effects of the feet radius is developed in Section 6.
Section 7 concludes the paper.
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2. Previous studies on biped with circular arc feet

A circular arc feet for the biped are often treated in the field of passive dynamic walking
McGeer (1990). It is well known that a passive dynamic walking gives an extremely natural
gait. McGeer showed that an eigenvalue of the “speed mode” came to unit when the radius of
a circular arc foot approaches the length of legs, and the eigenvalue becomes unit for synthetic
wheel which has the foot radius equals to the leg length. The “speed mode” was related to
dissipation of energy at the impact.
Wisse, et al. Wisse & van Frankenhuyzen (2003) showed that the larger feet radius, the larger
amount of disturbances is accepted in experiments. The robustness against disturbances is
connected to the size of a basin of attraction for walking. Wisse explained in the other paper
Wisse et al. (2005) that “The walker will fall backward if it has not enough velocity to overcome
the vertical position. Circular feet smoothen the hip trajectory and thus relax the initial
velocity requirement. As the result, the basin of attraction is enlarged.” However a decisive
study on the effect of circular arc feet on the basin of attraction has yet to be performed.
Recently, Wisse, et al. Wisse et al. (2006) presented a stability analysis of passive dynamic
walking with flat feet and passive ankles. The effect of the flat feet was analogous to the effect
of the circular arc feet for many properties in the sense that ZMP smoothly and monotonically
moves forward from heel to toe. However he pointed out the need of validation for a more
accurate model of the heel strike transition. Asano and Luo Asano & Luo (2007) discussed
similar effect between the circular arc feet and the flat feet with actuated ankles.
Adamczy, Collins and Kuo Adamczyk et al. (2006) studied the centre of mass (CoM)
mechanical work per step with respect to foot radius for various simple models of biped
powered by an instantaneous push-off impulse under the stance foot just before contralateral
heel strike Kuo (2001). They also showed relationships between foot radius and metabolic
costs from measured via respiratory gas exchange. The data are collected through human
walking with feet attached to rigid arc, and they conclude that the most effective walking is
obtained when the foot radius equals to 30% of leg length. Geometrically speaking, feet length
should be at least twice of the product of the coxa angle between two legs and the radius of
feet McGeer (1990). Therefore one might choose the radius as 1/3 of a leg length with an angle
0.3 rad between two legs, in order to make an anthropomorphic biped, as McGeer wrote.
Thus for anthropomorphic models, 1/3 of leg length seems to be desirable in the sense of
geometry between step length and feet lengths McGeer (1990), “foot clearance problem” Wisse
& van Frankenhuyzen (2003) and energy costs Adamczyk et al. (2006).

3. The biped modeling

A biped presented in Fig.2 is composed of a torso and two symmetric legs which consist of the
prismatic frictionless knees and the circular arc feet. The hips are rotational frictionless joints.
We assume that the contact point does not slip and the biped walks in a vertical sagittal plane.
The vector θ = [l1, l2, θ1, θ2, θ3]

′ (“ ′ ” means transpose) of configuration variables (see Fig. 2,
left) describes the shape of the biped during single support, li is the length of leg i, θi, i = 1, 2
is the angle between the torso and the leg i, θ3 is the absolute angle of the supporting leg. The
contact point between the biped and the ground is N1. The lowest point of the swing leg tip is
noted N2. The actuator torques and forces are expressed by a vector Γ = [Γ1, Γ2, Γ3, Γ4]

′. The
absolute orientation of the biped θ3 is not directly actuated. Thus, in a single support (SS),
the biped is an under-actuated system. The walking gait consists of single support phases
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Fig. 2. The biped model: Left: coordinate of the model. Middle: physical parameters. Right:
impact model.

separated by impacts, which are instantaneous double supports where a leg exchange takes
place.

3.1 Dynamic model for single support phase

The dynamic model can be written as follows:

D(θ)θ̈ + H(θ, θ̇) = BΓ, (1)

where D ∈ ℜ5×5 is the inertia matrix, the vector H ∈ ℜ5 contains Coriolis, centrifugal and
gravity terms. B ∈ ℜ5×4 defines how the inputs Γ enter the model. Due to the choice of joint
coordinates, the matrix B is written as: B = [I4, O4×1]

′.

3.2 Impact model

To derive an impact model, an general dynamic model is written:

De(θ)θ̈e + He(θe, θ̇) = BeΓ + DRi
(θ)Ri. (2)

where θe = [θ′, xH , yH ]′, and xH and yH are the Cartesian coordinates of the hip position Hp

shown in Fig.2 (right), De ∈ ℜ7×7 is the inertia matrix, the vector He ∈ ℜ7 contains Coriolis,
centrifugal and gravity terms. Ri = [Rxi

, Ryi
]′ is a ground reaction force vector applied at the

contact point. Be ∈ ℜ7×4 and DRi
∈ ℜ7×2 defines how the inputs Γ and Ri enter the model, i

is the number of the leg in contact with the ground, i = 1, i = 2, or i = 1, 2.
When the leg i rolls on the ground, the contact with the ground occurs in Ni. If leg i touches
the ground and since, we assume that no sliding occurs, the position of Ni is ONi = [−Rθ3, 0]′,
where O is defined such that for the current step, the point contact is in 0 when θ3 is zero. This
position can also be calculated by : ONi = OHp + HpCi + Ci Ni (Fig. 2, middle). Thus, we
have :

[

−Rθ3

0

]

=

[

xH + (li − R) sin θ3

yH − (li − R) cos θ3 − R

]

. (3)

Therefore, the following constraint equation is obtained:

Ψi :=

[

xH + Rθ3 + (li − R) sin θ3

yH − R − (li − R) cos θ3

]

= 0. (4)

58 Biped Robots

www.intechopen.com



Equation (4) is differentiated twice with respect to time, to obtain a constraint on the joint
acceleration:

D′
Ri

θ̈e + CRi
(θe, θ̇e)θ̇e = 0. (5)

where D′
Ri

= ∂Ψi/∂θe and CRi
comes from the derivation.

We assume that the impact is inelastic and instantaneous without sliding. Let θ̇−e and θ̇+e be
the angular velocities just before and just after the impact, respectively. Let Imi

= [Imxi
, Imyi

]′,
for i = 1, 2 be the vector of magnitudes of the impulsive reaction at the contact point of the
stance and the swing leg. During the impact, the previous supporting leg can stay on the
ground or take-off. If the leg takes off, the velocity of N1 after the impact is positive. The
impulsive ground reaction associated to a leg that stays on the ground must be positive and
be in the friction cone. If the supporting leg takes off, the associated impulsive ground reaction
is zero. The impact occurs when the leg tip of the swing leg contacts to the ground. To take
into account the two cases, the following impact equation can be written:

{

De(θ)(θ̇+e − θ̇−e ) = DR(θ)Im

D′
R(θ)θ̇

+
e = 0

, (6)

where,

DR(θ) =

{

DR2
(θ), ẏ+N1

> 0

DR12
(θ), Imy1 > 0, Imy2 > 0

, Im =

{

Im2 , ẏ+N1
> 0

Im12 , Imy1 > 0, Imy2 > 0
,

DR12
(θ) =

[

DR1
(θ) 0

0 DR2
(θ)

]

, Im12 =

[

Im1

Im2

]

.

From Eq. (6), we obtain:

θ̇+e = (I7×7 − D−1
e DR(D

′
RD−1

e DR)
−1D′

R) · θ̇−e . (7)

Before and after the impact, the biped is in contact with the ground on at least one leg,
thus xH , yH can be calculated as function of θ, and ẋH , ẏH can be calculated as function of
θ̇. Equation (7) can be transformed into an equation of θ, θ̇ only.

θ̇+ = ∆(θ)θ̇−, (8)

where ∆(θ) ∈ ℜ5×5 is the impact matrix. This matrix depends on the foot radius R. In the gait
studied, the legs swap their roles from one step to the next, thus since the biped is symmetric,
the dynamic model is derived only for the support on leg 1. And the leg exchange is taken
into account just after the impact. The state of the biped to begin the next step is :

θi = TLSθ f , θ̇i = TLS θ̇+, θ̇+ = ∆(θ f )θ̇ f , (9)

where TLS ∈ ℜ5×5 is the permutation matrix describing the leg exchange, the indexes i, f

denoted the initial and final states of the biped for one step.
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4. Control law

Since the studied biped is underactuated, and since some significant results have been
obtained for the control of underactuated biped with point contact Chevallereau et al. (2003);
Westervelt et al. (2005), our strategy for walking is to control four variables, such that they
track the reference defined with respect to the monotonic variable θ3. The four variables
that are controlled are grouped in vector h = [h1, h2, h3, h4]

′ = [θ2 − θ1, θ3 − θ1 + π, l1, l2]
′,

composed of the angle between two legs, the absolute angle of the torso, and the leg lengths,
(shown in Fig. 2, middle). This vector h, plus θ3 defines the configuration of the biped. The
relation with vector θ is the following:

θ =

⎡

⎢

⎢

⎢

⎢

⎣

h3

h4

−h2 + θ3

h1 − h2 + θ3

θ3

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 −1 0 0
1 −1 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

h +

⎡

⎢

⎢

⎢

⎢

⎣

0
0
1
1
1

⎤

⎥

⎥

⎥

⎥

⎦

θ3 (10)

θ =
∂θ

∂h
h +

∂θ

∂θ3
θ3. (11)

where ∂θ
∂h and ∂θ

∂θ3
are the constant matrices given in (10). Thus we have also:

θ̈ =
∂θ

∂h
ḧ +

∂θ

∂θ3
θ̈3. (12)

The control law is based on a computed torque control law and is such that the behavior of
the controlled variables are:

ḧ = ḧd − Kp(h − hd)− Kd(ḣ − ḣd). (13)

But the reference to follow is a function of the variable θ3 thus the reference is:

hd = hd(θ3) (14)

ḣd =
dhd

dθ3
(θ3)θ̇3 (15)

ḧd =
dhd

dθ3
(θ3)θ̈3 +

d2hd

dθ2
3

(θ3)θ̇
2
3 , (16)

Thus the desired behavior in closed loop is given by:

ḧ =
dhd

dθ3
(θ3)θ̈3 +

d2hd

dθ2
3

(θ3)θ̇
2
3 − Kp(h − hd(θ3))− Kd(ḣ −

dhd

dθ3
(θ3)θ̇3). (17)

This expression is denoted:

ḧ =
dhd

dθ3
(θ3)θ̈3 + v(θ, θ̇). (18)

The dynamic model (1) can be expressed as function of ḧ and θ̈3 using (12)
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D(θ)(
∂θ

∂h
ḧ +

∂θ

∂θ3
θ̈3) + H(θ, θ̇) = BΓ, (19)

The torques will be calculated in order to have in closed loop the behavior given in (18), thus
the torques must satisfy:

D(θ)((
∂θ

∂h

dhd

dθ3
(θ3) +

∂θ

∂θ3
)θ̈3 +

∂θ

∂h
v(θ, θ̇)) + H(θ, θ̇) = BΓ, (20)

Since the biped is underactuated, all the motion are not possible and based on the expression
of matrix B, the admissible acceleration θ̈3 can be deduced. The dynamic model is
decomposed into two sub-models. The first sub-model is composed of the first four lines
and allows to calculate the torque. The second sub-model is composed of the fifth line and
allows to calculate θ̈3. This sub-system gives:

θ̈3 =
−D5(θ)

∂θ
∂h v(θ, θ̇)− H5(θ, θ̇)

D5(θ)(
∂θ
∂h

dhd

dθ3
(θ3) +

∂θ
∂θ3

)
, (21)

where the index 5 refers to the 5th line of matrix D and vector H.
Finally, the control law is obtained:

Γ = D1,4(θ)((
∂θ

∂h

dhd

dθ3
(θ3) +

∂θ

∂θ3
)θ̈3 +

∂θ

∂h
v(θ, θ̇)) + H1,4(θ, θ̇), (22)

where the indexes 1, 4 refer to the first four lines of matrix D and vector H.

5. Stability analysis

With the control, the output vector h converges to the reference path hd(θ3), and if the
reference function is such that the impact condition is satisfied, the output is zero step after
step for convenient choice of the control gains Kp, Kd Morris & Grizzle (2005).

5.1 Reference path

Since the initial and final configurations for a single support are double support
configurations, when hd is given, θ3 can be deduced from geometrical relations. Thus the
initial and final values of θ3 on one step are known and denoted θ3i and θ3 f . Since the
condition of the impact is a geometrical condition, if the control law has converged and if
θ3 has a monotonic evolution, the configuration at the impact is the desired one. The reference
function is designed such that the impact condition is satisfied. According to equations (8),
(9), and (11), the reference path must be such that:

θ(θ3i) = TLSθ(θ3 f ). (23)

(
∂θ

∂h

∂hd

∂θ3
(θ3i) +

∂θ

∂θ3
)θ̇3i = TLS∆(θ3 f )(

∂θ

∂h

∂hd

∂θ3
(θ3 f ) +

∂θ

∂θ3
)θ̇3 f , (24)

Equality (24) is composed of five scalar equations, thus ∂hd

∂θ3
(θ3i) and θ̇3i

θ̇3 f
can be calculated as

function of ∂hd

∂θ3
(θ3 f ). The ration of velocities is denoted δθ̇3

:

δθ̇3
=

θ̇3i

θ̇3 f

. (25)

61Effect of Circular Arc Feet on a Control Law for a Biped

www.intechopen.com



5.2 Principle of the stability analysis

With the control law, the output vector h converges to the reference path hd(θ3). In the
following section we assume that h = hd(θ3), that is, the system tracks the reference path. The
five degrees of freedom (DoF) of the biped can be reduced to one DoF of a virtual equivalent
pendulum under the condition, and we will hence analyze stability of the pendulum instead
of the original biped.
This condition does not mean that the biped motion is cyclic with respect to time since the
temporal evolution of θ3 is the result of integration of Eq. (21), and thus depends on the
reference path hd(θ3). For a SS phase θ3 must evolve monotonically from θ3i to θ3 f . The

temporal evolution of the biped during a SS phase is completely defined by the velocity θ̇3

for one particular value θ3. The stability analysis is based on the Poincaré return map, and
this return map will be built just before the impact, when the biped is in the configuration
hd(θ3 f ), θ3 f . The variable that is effective to study the convergence to a cyclic motion is θ̇3 f .

Since the angular momentum is proportional to θ̇3 f , the angular momentum (or its square
value) can also be used in the stability analysis

5.3 SS phase

According the Newton-Euler second law, as the gravity is the only external force that produces
a torque around N1, the equilibrium of the biped in rotation around the mobile contact point
N1 gives:

σ̇N1
+ MVN1

× VG = rN1 G × M�g, (26)

where VN1
and VG are the velocities at the points N1 = [−Rθ3, 0]′ and the center of mass,

G = [xG, yG]
′, M is the total mass of the biped, the gravity vector is �g = [0,−g]′, and σN1

is
the angular momentum about N1. The general expression of σN1

is:

σN1
= ∑

i

mirN1 Gi
× VGi +∑

i

Iiwi (27)

where Gi is the center of mass for the link i, mi and Ii are the mass and the inertia of link i, wi

is the angular velocity of link i, and VGi is the linear velocity of Gi. This quantity is linear with
respect to the joint velocity component and can be written:

σN1
= S(θ)θ̇ (28)

We assume that the biped follows reference path thus we have:

θ =
∂θ

∂h
hd(θ3) +

∂θ

∂θ3
θ3. (29)

θ̇ =
∂θ

∂h

∂hd

∂θ3
(θ3)θ̇3 +

∂θ

∂θ3
θ̇3. (30)

Thus the angular momentum σN1
(28) is rewritten:

σN1
= S(θ)(

∂θ

∂h

∂hd

∂θ3
(θ3) +

∂θ

∂θ3
)θ̇3 = Iθ3

(θ3)θ̇3. (31)

Equation (26) can be developed using the expression of rN1 G, VG, VN1
as:

σ̇N1
= −Mg(xG(θ3) + Rθ3) + MR

dyG(θ3)

dθ3
θ̇2

3 . (32)
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Equation (31) is combined to Eq. (32) to express the derivative of σN1
with respect to θ3, under

the assumption that θ3 is monotonic:

dσN1

dθ3
= −Mg(xG + Rθ3)

Iθ3

σN1

+ MR
dyG

dθ3

σN1

Iθ3

. (33)

A new variable ξ = σ2
N1

/2 is introduced, to transform Eq. (33) into an equation that can be
integrated analytically:

dξ

dθ3
= κ1(θ3) + 2κ2(θ3)ξ, (34)

κ1(θ3) = −Mg(xG + Rθ3)Iθ3
,

κ2(θ3) =
MR

Iθ3

(

∂yG(θ)

∂θ

)′ dθd

dθ3
.

Equation (34) is a first order ordinary differential equation linear in ξ. Therefore, a general
solution can be obtained, for a step that begins with θ3i as a initial value:

ξ(θ3) = δ2
SS(θ3)ξ(θ3i) + V(θ3), (35)

δSS(θ3) = exp

(

∫ θ3

θ3i

κ2(τ2)dτ2

)

, (36)

V(θ3) =
∫ θ3

θ3i

exp

(

∫ θ3

τ1

2κ2(τ2)dτ2

)

κ1(τ1)dτ1. (37)

ξ and V are a pseudo-kinetic and a pseudo-potential energies of the virtual equivalent
pendulum, respectively.
As a consequence if θ̇3i is known θ̇3 can be deduced for the current step as a function of V and
δSS without integration of (26). To be able to deduce from this equation the evolution of ξ (and
in consequence of σN1

and θ̇3) step after step, the evolution of ξ at the impact must be taken
into account. In the following section, the index k will be added to denote the number of the
current step

5.4 Impact phase

Let us consider the impact between steps k and k + 1. Using (31), ξ at the end of step k is:

ξk(θ3 f ) =
1

2
(Iθ3 f

(θ3 f )θ̇3 f ,k)
2 (38)

and ξ at the beginning of the step k + 1 is:

ξk+1(θ3i) =
1

2
(Iθ3i

(θ3i)θ̇3i,k+1)
2 (39)

Using (25), and defining δI by,
δI = Iθ3

(θ3i)/Iθ3
(θ3 f ), (40)

we obtain:

ξk+1(θ3i) = δ2
I δ2

θ̇3
ξk(θ3 f ). (41)
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5.5 Poincaré map

Combining (35) and (41), the final value of ξ from the kth step to the (k + 1)th step is as
follows:

ξk+1(θ3 f ) = δ2(θ3 f )ξk(θ3 f ) + V(θ3 f ), (42)

δ(θ3 f ) = δSS(θ3 f )δI δθ̇3
, (43)

where θ3 f is the value of θ3 just before the impact. This equation describes the Poincaré map.
If a cyclic motion exists, then ξk+1(θ3 f ) corresponds to ξk(θ3 f ). Thus, a fixed point ξc(θ3 f ) is
given using (42) as follows:

ξc(θ3 f ) =
V(θ3 f )

1 − δ2(θ3 f )
. (44)

Since ξc(θ3 f ) is positive, V(θ3 f ) and 1 − δ2(θ3 f ) must have the same sign. The following cases
can occur:

Case 1: From (42), the fixed point is stable, if δ2(θ3 f ) < 1. Therefore, if δ2(θ3 f ) < 1 and
V(θ3 f ) > 0, then an asymptotically stable cyclic motion exists.

Case 2: If δ2(θ3 f ) = 1 and V(θ3 f ) = 0, from (42), ξk+1(θ3 f ) = ξk(θ3 f ), namely, all motions are
cyclic.

Case 3: From (42), the fixed point is unstable, if δ2(θ3 f ) > 1. Therefore, if δ2(θ3 f ) > 1 and
V(θ3 f ) < 0, then an unstable cyclic motion exists.

Case 4: V(θ3 f )(1 − δ2(θ3 f )) < 0, no cyclic motion exists.

Since by definition ξ ≥ 0, from Eq. (35) for the complete step, ξc must satisfy the following
inequality:

ξc(θ3 f ) ≥ ξmin = max
θ3

−V(θ3)

δ2(θ3)
. (45)

to have ξ(θ3) > 0 for θ3 between θ3i and θ3 f .
Since a product of the two variables (δI · δθ̇3

) is the ratio of momentum σN1
at the contact point

N1 before and after the impact, the speed of convergence is mainly associated with this ratio
(This point will be detailed in the following sections), and connected to the distance between
the contact points and velocity of the mass center before the impact Chevallereau et al. (2004).
The contact point before the impact, at the end of the single support phase, is denoted N1, the
contact point after the impact, at the beginning of the next single support phase, is denoted
N2. Using equilibrium relation it is possible to compute the change of angular momentum
around the contact point at impact as function of the value of the radii.
The distance d between the N1 and N2 is (see Fig.2)

N1N2 = d = 2(l − R) sin(h1/2). (46)

The angular momentum before the impact denoted σ−
N1

is calculated around N1 and can also

be calculated around N2, it is then denoted σ−
N2

, the angular momentum transfer gives:

σ−
N2

= σ−
N1

− M · d · ẏ−G . (47)
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ms 1 [kg] Is 0.05[kgm2 ] sh 0.4 [m] l1 0.8∼0.85 [m]
m f 1 [kg] I f 0.05[kgm2 ] fm 0.2 [m] l2 0.75∼0.8 [m]

mb 15 [kg] Ib 3[kgm2] sb 0.1 [m] R 0∼1.0 [m]

Table 1. Physical parameters for the dynamic model

At the impact, considering the vertical component Imy1 of the impulsive ground reaction Im1

in the point N1, the equilibrium in rotation around N2 gives:

σ+
N2

= σ−
N2

− d · Imy1 , (48)

where Imy1 is the vertical component of the impulsive ground reaction Im1 applied by the
ground in N1. The vertical equilibrium of the biped at the impact is :

Imy1 + Imy2 = M(ẏ+G − ẏ−G ), (49)

where Imy1 and Imy2 are the vertical components of the impulsive ground reactions Im1 and
Im2 respectively in the points N1 and N2. The impact are such that the two legs stay on the
ground, thus Imy1 > 0 and Imy2 > 0 and we have:

0 < Imy1 < M(ẏ+G − ẏ−G ). (50)

As a consequence, combining (47), (48), and (50), we have:

σ−
N1

− M · d · ẏ+G < σ+
N2

< σ−
N1

− M · d · ẏ−G , if d > 0, (51)

σ+
N2

= σ−
N1

, if d = 0, (52)

σ−
N1

− M · d · ẏ−G < σ+
N2

< σ−
N1

− M · d · ẏ+G , if d < 0. (53)

When Iθ3
> 0 (see Fig.7) and θ̇3 < 0 (see Fig.4), σ−

N1
< 0. Considering (25), (31) and (40), the

ratio δI δθ̇3
is bounded:

1 − M · d ·
ẏ−G
σ−

N1

< δI δθ̇3
< 1 − M · d ·

ẏ+G
σ−

N1

, (d > 0), (54)

δI δθ̇3
= 1, (d = 0), (55)

1 − M · d ·
ẏ+G
σ−

N1

< δI δθ̇3
< 1 − M · d ·

ẏ−G
σ−

N1

, (d < 0) (56)

6. Simulation

In simulations, the physical parameters of the biped shown in Fig.2 are used (see Table 1).
The gains of the control law are chosen so that tracking errors can be smaller than 10−4 for all
walking gaits.

{

Kp = diag([105, 104, 105, 5 × 104])
Kd = diag([5 × 102, 5 × 102, 103, 5 × 102])

(57)
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Fig. 3. The stick diagrams of walking. The foot radii R = 0 [m] (above left), 0.2 [m] (above
right), 0.5 [m] (bellow left) and 0.7 [m] (bellow right).

Foot radius [m] 0 0.1 0.2 0.3
Angle of torso [rad] -0.060 -0.051 -0.043 -0.034

Foot radius [m] 0.4 0.5 0.6 0.7 0.8
Angle of torso [rad] -0.026 -0.018 -0.011 -0.004 0.002

Table 2. Torso angles. The angles are chosen such that cyclic motions have the same value
ξc(θ3 f ) = ξ(−0.12) = 16.27.

6.1 Design of reference path

The reference path hd is defined by a fourth order polynomial function such that:

hd(θ3) = a[1, θ1
3 , θ2

3 , θ3
3 , θ4

3 ]
′, (58)

where a ∈ ℜ4×5 is a coefficient matrix for the reference hd. An intermediate position of SS
phase, positions and derivative with respect to θ just before the impact are given in order to
calculate the coefficients of the reference paths (see Fig.3). Position and derivative with respect
to θ after the impact are calculated by equations (23) and (24) .
Walking is depending on not only the radii of feet but also of the reference path of the length
of the legs. The foot radius reduces the velocity of the CoM before the impact. The reference
paths of the legs are chosen to smoothen the vertical variation of the CoM. However the
references of the legs are affected by the impact, and the choice of the reference paths is limited
accordingly. The radius mainly smoothens the vertical CoM motion.
The initial and the final length for the both legs are chosen as the same value. The final velocity
for the biped are arbitrary fixed. The intermediate configuration for the legs is chosen such
that the swing leg length decreases 0.02 m and the stance leg length increases 0.01 m during
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Fig. 4. Time responses at the cyclic motion with R = 0.5 [m] of the angle of the both legs, the
torso, the length of legs and the leg tip. The reference paths are very well tracked.
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Fig. 5. CoM positions with respect to R. Left: the case of our biped shown in Fig.2. Tangent
vectors of right ends of lines are expressing a post-impact velocity of CoM. Right: the case of
a simple model with rigid legs and circular arc feet. CoM is located at hip position. When R
> 0.8 [m], CoM velocities are upward. It gives a contradiction at the impact or there would
be a flight phase.

the step to avoid that the swing leg tip touches the ground and the length of the legs is 0.8 [m]
at the impact. Therefore the top position of the CoM is almost the same for each foot radius as
shown in Fig.5. For one value R, we choose the angle of the torso at the impact arbitrary. The
angle of the torso at the intermediate configuration is equal to 110% of the value of the torso
angle at the impact. The corresponding value ξc(θ3 f ) is deduced. For example, the coefficient
matrix in Eq.(58) for R = 0.5 is obtained as follows:

a|R=0.5 =

⎡

⎢

⎢

⎣

0 −3.02 −0.158 70.8 10.9
−0.0201 0.0002 0.255 −0.0106 −8.89

0.810 −0.122 −1.58 8.50 61.2
0.780 −0.0037 1.91 0.254 −36.5

⎤

⎥

⎥

⎦

(59)

Then from this reference motion we deduced the reference motion for the other value of the
radius R. The angle of the torso at the impact h2(θ3 f ) is adjusted such that the cyclic motions
for all foot radii R have the same value ξc(θ3 f ) as shown in Table 2.
Fig.3 shows examples of stick diagrams of walking for one step with the foot radii R =0 [m],
0.2 [m], 0.5 [m] and 0.7 [m] and the step angle =0.24 [rad]. A cyclic motion for R = 0.5 [m] is
given in Fig.4. CoM positions with respect to R are shown in Fig.5. Tangent vectors of right
ends of lines are expressing a post-impact velocity of CoM. The variation of CoM velocities at
the impact are presented in Fig.6.
Energy excitation for continuous walking with smaller feet radius is mainly done by the
asymmetric mass distribution due to the torso forward inclination. Leg swing also provides a
way of putting energy. For small feet radii, the energy for walking is produced by the weight
of the torso that is inclined forward. For larger feet radii, the energy for walking is produced
by the motion of the swing leg.
Since the impact equation changes, the initial configuration and velocity are changed
accordingly. During the impact, for the chosen reference path, the two legs stay on the ground.
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Fig. 6. CoM velocities at the impact with respect to R. The point corresponds to different
value of R from 0 to 1, the abscissa of the point gives the horizontal velocity ẋG respectively
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and after the impact. The vertical velocities before the impact are always directed downward.

6.2 Stability analysis

The variables in the analytic solution (35) are shown in Fig.7 with respect to the monotonic
variable θ3 for various values of the foot radius R. It should be noted that the monotonic
variable is evolving from a positive value to a negative value, θ3 : 0.12 [rad] → −0.12 [rad].
In Fig.7, ξc(θ) is given for all the cyclic motions. It can be observed that ξc(θ3 f ) = ξ(−0.12) =

16.27. The figure of δ2
SS(θ3) is given by Eq. (36). The convergence of Poincaré map, as shown

in Eq. (43), is function of δ2
SS(θ3 f ) = δ2

SS(−0.12). However the values of δ2
SS(−0.12) are very

close to unit thus the convergence of Poincaré map is essentially defined by the impact map :
δ(θ3 f ) ≈ δI δθ̇3

. The second figure from the left of Fig.7 represents the evolution of V defined
by Eq. (37). These functions are essentially affected by the evolution ξ. The third figure of
Fig.7 shows the term Iθ3

given by Eq. (31), Iθ3
is always positive and has not large variation.

This first study concerns reference path with an interlink angle at the impact equals to 0.24
[rad]. For this value, the evolution of δ2

SS(θ3 f ),δI , δθ̇3
and δ(θ3 f ) are given in solid line in Fig.8,

as function of the R. The cyclic motion is stable for R < 0.8.
In order to determine if the radius R = 0.8 is a limit of stability only for one specific reference
path or if this limit is more physical, different kinds of reference motion are considered in the
following. Only the interlink angle h1(θ3 f ) at the impact is changed. For different values of h1

and radii R, the coefficient involves in the convergence condition are drawn in Fig.8.
δθ̇3

and δI increase when R increases and h1(θ3 f ) decreases from Fig.8. δ2 also increases at the

same time. The term δ2 comes to unit when R = 0.8 [m] which means that R has the same
values as the length of legs at the impact.
Remark: We confirmed in another simulations that variations of the torso angle had small
influences on δI and δθ̇3

although it essentially affects ξ. The variables V, δSS, Iθ3
and ξ in

the analytic solution for SS phase change for the torso angle. However the variation of δSS is
smaller than the variations of δI and δθ̇3

with respect to the foot radii. △
Fig.9 presents the stability property with respect to the foot radii. Two black rigid lines show
V and δ2 − 1. V and δ2 − 1 have opposite sign thus a cyclic motion may exist such that (45) is
satisfied for any value of radii R. For R < 0.8 [m], the motion is stable. For R > 0.8 [m], the
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evolves from positive (0.12) to negative (−0.12).

motion is unstable. For R = 0.8 [m], the motion is neutral, in this case any value ξc produces
cyclic motions.
Case corresponding to a radius superior to the length of each leg, (R > 0.8 [m]) can be studied
if we consider that the motions of feet are not in the same sagittal plane to avoid collisions. In
the leg exchange, at the impact, the contact point moves back but the contact point has a large
forward progression during the single support phase, the biped goes forward.
The gradient δ2 (Eq. (43)) of Poincaré map (Eq. (42)) depends on the SS phase (δSS) and the
impact phase (δI · δθ̇3

). δSS was close to unit at the impact. Since ẏ−G < ẏ+G < 0 (see Fig.6),
we obtain that the foot radius R and the sign of d defined the position of the ratio δI δθ̇3

with
respect to 1 from Eq. (54) to Eq. (56).

• if R < l, d > 0, and δI δθ̇3
< 1

• if R = l, d = 0, and δI δθ̇3
= 1

• if R > l, d < 0, and δI δθ̇3
> 1

The property of the gradient δ2 agrees with “speed mode” of passive dynamic walking
obtained by McGeer McGeer (1990). Wisse Wisse et al. (2006) finds results that are different
from our results. For passive walking he finds that for stability point of view the best radius is
14% of leg length, this value corresponds to a case where two monotonic lines of eigenvalues
are crossing. The increasing one is represented ’Speed mode’, and the decreasing one is
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the impact varies from 0.04 [rad] to 0.40 [rad]. The figures show δ2

SS (above left), δ2
θ̇3

(above
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R = 0.8 [m] means that the radius is the same as the leg length at the impact for the analytic
solution. For R = 0.8 [m], the cyclic motion is not stable.

’Totter mode’. However the crossing point changes with respect to slope angle and physical
parameters of bipeds. The 14% of leg length is not the best radius, generally speaking. In our
controlled system, it is predictable that the ’Totter mode’ is close to zero or much smaller than
the ’Speed mode’, since the ’Speed mode’ is expressed by the zero dynamics of the controlled
system and the ’Totter mode’ is depending on the controller gains. Term δ2 has the same
property of the ’Speed mode’, and thus is increasing with respect to R. In our case we are
not interested in the best solution but in the limit where stability exists, thus there are no
contradiction with the results of Wisse Wisse et al. (2006).

6.3 Basin of attraction

Basins of attraction determined by numerical computations are shown in Fig.10. The larger
the foot radii are in the stable domain, the wider the basin of attraction is but the slower the
speed of convergence is. If the foot radius is the same as the leg length, the motion is neutral,
that is, all motions are cyclic.
In Fig.10, the area between the line of ξ−min and ξ−max is the basin of attraction. The variable
ξ just before the impact is used for expressing the basin of attraction. The line ξc represents
the cyclic motions. Fig.11 presents time evolutions of θ3, θ̇3 for 100 steps. The following foot
radii are considered: R = 0 [m], 0.5 [m] , 0.8 [m] and 1.3 [m]. The first two cases are clearly
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and δ2 − 1. V and δ2 − 1 have opposite sign thus a cyclic motion may exist such that (45) is
satisfied. For R < 0.8 [m] the motion is stable. For R > 0.8 [m] the motion is unstable. For
R = 0.8 [m] the motion is neutral, that is all of ξc are cyclic motions.

stable, the case, R = 0.8, is neutral, and the case, R = 1.3, is unstable. Simulations confirm the
existence of the neutral condition.
The property of the basin of attraction with respect to the radius is also analogous to the results
of passive dynamic walking by Wisse Wisse & van Frankenhuyzen (2003). As depicted in
Fig.10, the bottom line shows minimal ξ corresponding to ξmin. It means a required minimal
angular momentum to overcome a gap from a minimum of a vertical position of CoM to a
maximum. If the momentum is smaller than the minimum, the complete step is not achieved,
the step begins and then the robot goes backward to return to its initial configuration for the
step. After that, the robot stops, but it does not fall down contrarily to a passive dynamic
walker Wisse et al. (2005) that falls down backward.
From Fig.5, the smaller the radius is, the larger the gaps of the vertical positions of CoM and
the minimal ξ−min are. Thus the circular arc feet broaden the minimal bounds. The variation of
the maximal bounds is caused by limits on the vertical reaction forces to avoid taking-off. The
reaction force vector R1 at the point N1 is given by the following equation:

R1 =

[

Rx1

Ry1

]

=

[

MẍG

M(ÿG + g)

]

. (60)

The vertical acceleration ÿG is decided by the the centrifugal force caused by the angular
velocity of the stance leg θ̇3 and an acceleration of the leg variation l̈i(t). The radius smoothens
the variation of CoM, and consequently the centrifugal force is reduced. We observe that the
acceleration of the leg is smaller when the radii increase. Thus, the maximal ξ−max is extended
when the radius increases. Namely, the basin of attraction is broaden by physical properties
such as the feet radii. Globally, our controlled system has similar properties for stability and
basin of attraction to the passive dynamic walking.

6.4 Consumed energy

Consumed energies and specific resistance for one cyclic step with respect to the foot radii R
are described in Fig.12. The following formula is used for computing the consumed energy
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Fig. 11. Time evolutions of phases for the first leg at the foot radii R = 0 [m] (stable, above
left), 0.5 [m] (stable, above right), 0.8 [m] (neutral, bellow left) and 1.3 [m] (unstable, bellow
right).
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Ec:

Ec =
∫ T

0
|θ̇′ · B · Γ|dt. (61)

The specific resistance SR is computed by the following fomula:

SR =
Ec

MgdxG

(62)

dxG indicates distance of total CoG for one step in horizontal direction. The larger the foot
radius is, the smaller the consumed energy as well as the specific resistance is for the cyclic
motion, even if the motion becomes unstable. Thus, the circular arc feet are effective in
reducing the consumed energy.
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Fig. 12. Consumed energy (left) and specific resistance (right) for one cyclic step w.r.t. the
foot radii R by the numerical simulation. The torso angle is chosen so that ξ = 16.27 by the
analytic solution for all R.

6.5 Optimal radius

There is a trade-off property between the convergence speed, the basin of attraction and
the energy consumption. What we can say is that the nearer the radius is to the leg
length, the slower the speed of convergence is and the larger the basin is. ’Foot clearance
problem’ does not appear because of the variable length legs in our case. In the cases
of ’Anthropomorphic Model’ and ’Simplest Model’ of Adamczyk’s result Adamczyk et al.
(2006), the CoM mechanical work property with respect to feet radii is similar to our result of
consumed energy. However, in their cases of ’Forward-foot Model’ and ’Kneed Model’, the
work had a minimum.
The suggestion of McGeer’s to choose a foot radius of 1/3 of leg lengths can also be considered
in our discussion. It might be better to choose a larger radius (e.g. between a half and three
quarters) to have a large basin of attraction even if the speed of convergence is worth.

6.6 Unstable walking with radii greater than the leg length

Kuo’s analysis Kuo (2001) of the CoM velocity contradicts our study because he considers
a simple model with rigid legs and circular arc feet and the CoM is located at hip position,
and we consider prismatic knees. The right of Fig.5 presents the evolution of the CoM
relative to the simple model Kuo (2001). Tangent vectors of right ends of lines are expressing
the pre-impact velocity of CoM, and tangent vectors of left ends of lines are expressing the
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post-impact velocity of CoM. When R > 0.8 [m], the change of CoM velocities are upward,
which means the impulsive force at the impact is negative. It actually would be a flight phase.
Left part of Fig.5 gives the CoM evolution in the case of our biped shown in Fig.2. Since all of
the ranges of velocities of CoM at the impact are downward, it never fails to flight phase for
any radius. In fact, our biped has prismatic knees and CoM is mainly distributed on the torso
which is swinging a little. A lot of paths can be chosen for the CoM position differently from
the simple model.

7. Conclusion

In the paper, some effects of circular arc feet for a planar biped via a geometric tracking were
taken into account. An analytic solution of Poincaré map was given for the controlled system.
Stability of walking was analyzed by the Poincaré map and the following results are obtained:

• Radii of the circular arc feet affect the stability of walking, and the speed of convergence
decreases when the radii approaches to a leg length.

• A basin of attraction is broadened by choosing larger radii and the controller can stabilize
the biped walking in the largest basin of attraction for the radii less than the leg length.

The leg length and the radius smoothen the variation and reduce the impact velocity. From
the properties of the reference paths, The radius of the foot has a significant effect for the
stability and the basin of attraction. The results are analogous to those McGeer (1990); Wisse
& van Frankenhuyzen (2003) and the prospect Wisse et al. (2005) on passive dynamic walking.
The geometric tracking method does not change the general effect of the circular arc feet.
A reduction of the vertical CoM variation by the foot radius is functional not only for the
geometric tracking method but for general biped walking. However the motion of CoM and
the consumed energy are different from some very simple models because our model has
variable length of legs and a torso.
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