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1. Introduction     

Rhythmic output is a common feature of several neuronal networks throughout the brain 

(Arshavsky 2003; Llinas 1988; Buzsaki & Draguhn 2004; Ramirez et al., 2004; Selverston 

1999; Harris-Warrick & Marder 1991). Despite the fact that rhythmogenic networks were 

initially described for simple motor behaviors produced by invertebrates (Selverston 1999; 

Harris-Warrick & Marder 1991), there is increasing evidence suggesting that basic 

mechanisms revealed in these simple networks are conserved in mammalian circuits in 

the neocortex or other subcortical networks involved in more complex behaviors (Ramirez 

et al. 2004; Yuste et al., 2005). Recent findings indicate that network oscillations determine 

synaptic input selection, neuronal assemblies formation as well as synaptic plasticity (for 

a review see Buzsaki & Draguhn 2004). Rhythmic network activity emerges from the 

combination of synaptic network interactions and intrinsic cellular properties (Vergara et 

al., 2005; Peña et al., 2004; Cunningham et al., 2004; Yuste et al. 2005; Peña & Ramirez 

2005; Peña et al., 2006; Mellen & Mishra, 2010). However the relative contribution of those 

mechanisms may be state dependent (Llinas 1988; Yuste et al. 2005; Peña & Ramirez 2005; 

Doi & Ramirez, 2010). Examples of state-dependency in neuronal network activity can be 

observed during sleep/wake states in the cortex or normoxia/hypoxia in the respiratory 

network (Llinas 1988; Yuste et al. 2005; Peña & Ramirez 2005; Peña & Aguileta, 2007). 

Moreover, neuronal network properties may be altered by several intracellular and 

extracellular environmental conditions (i.e. the action of neuromodulatory systems; 

Steriade 2004; Traub et al., 2003; Peña & Ramirez 2002; 2004; Johnson et al., 2003; van den 

Top et al., 2004; Doi & Ramirez, 2008). Regardless of the old dilemma on the relative 

contribution of intrinsic and synaptic properties to circuit activity (Vergara et al. 2003; 

Egorov et al., 2002; Shu et al., 2003; 2006; Cunningham et al. 2004; Cardin et al., 2005), 

there is increasing evidence supporting the participation of intrinsic pacemaker neurons 

in the generation of network rhythmic activity (Llinas & Sugimori 1980; Schwindt & Crill 

1982; Freund & Antal 1988; King et al., 1998; Stewart & Fox 1989; 1990; Leresche et al., 

1991; Tresch & Kiehn 2000; Wang 2002; Sotty et al., 2003; Cunningham et al. 2004; Peña et 

al. 2004; Ramirez et al. 2004; Sipilä et al., 2005). 
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2. Pacemaker neurons 

Pacemaker neurons can be considered as neurons with the intrinsic ability to generate bursts 

of action potentials at regular intervals (in the absence of synaptic interactions; Ramirez & 

Peña, 2005; Peña, 2008). Pacemaker neurons posses a particular combination of ion currents, 

that allows them to amplify synaptic inputs, as well as to promote general network 

excitation and synchrony (Llinas & Sugimori 1980; Llinas 1988; Del Negro et al. 2002; 

Arshavsky 2003; Ramirez et al. 2004; Schwindt & Crill 1982; Tresch & Kiehn 2000; Harris-

Warrick 2002; Shu et al. 2006). The well stablished role of pacemaker neurons commanding 

rhythmic neuronal networks in invertebrates (Selverston 1999; Harris-Warrick & Marder 

1991; Ramirez et al. 2004), is now been suggested for mammalian neuronal networks as well. 

For instance, GABAergic pacemaker neurons from the medial septum seem to be essential 

for theta rhythm generation (Freund & Antal 1988; Stewart & Fox, 1989; 1990; King et al. 

1998; Sotty et al. 2003; Wang 2002); bursting CA3 pyramidal neurons seem to be responsible 

for spontaneous rhythmic activity observed in the newborn hippocampus (Sipilä et al. 2005), 

bursting reticular thalamic neurons might be responsible for generation of several 

thalamocortical rhythms (Leresche et al. 1991) and fast rhythmic bursting neurons seem to 

be essential for gamma rhythm generation in the cortex (Cunningham et al. 2004). 

Pacemaker neurons may also be involved in generation of different breathing patterns. 

3. Respiratory rhythms generation 

Ventilation of the lungs as consequence of rhythmic contractions of the respiratory muscles 

constitutes a complex neuromuscular function that involves several brainstem and spinal 

cord circuits, several muscles such as the diaphragm, intercostal, laryngeal and pharyngeal 

muscles, as well as the lungs and the vasculature (Richter, 1982; Bianchi et al., 1995; 

Feldman, 1995) A reduction in such function can cause hypoxia, that evokes a response of 

the respiratory network that leads to the generation of gasping, which is considered to be 

the 'last-resort' respiratory effort to autoresuscitate and sustain life (Poets et al., 1999; Sridhar 

et al., 2003; Peña, 2009). Indeed, failure to respond to severe hypoxia via gasping and 

autoresuscitation can result in death. Thus, dysregulation of the generation of gasping 

rhythm and/or autoresuscitation has been hypothesised to contribute to Sudden Infant 

Death Syndrome (SIDS; Poets et al., 1999; Sridhar et al., 2003; Peña, 2009).  

Breathing is commanded and regulated by the respiratory centres of the brainstem (Richter, 

1982; Bianchi et al., 1995; Feldman, 1995). The central respiratory pattern generator consists 

of two interacting oscillators, one controlling inspiration (the pre-Bötzinger complex; 

PreBötC) and other, located in the parafacial respiratory group (pFRG), possibly controlling 

active expiration (Smith et al., 1991; Onimaru & Homma, 2006; Janczewski & Feldman, 2006; 

Peña, 2009). In contrast with the pFRG, the vital role of the PreBötC in the generation of 

respiratory rhythms is supported by a variety of experimental data. First, during embryonic 

development there is a coincidence between the appearance of the PreBötC and initial 

respiratory rhythmic activity in vitro (Pagliardini et al., 2003; Thoby-Brisson et al., 2005; 

Greer et al., 2006). Second, brain stem rhythmic respiratory output is eliminated when the 

PreBötC is ablated (Smith et al., 1991; Ramirez et al., 1998; Wenninger et al., 2004). Finally, 

perturbations of neuronal function in and around the PreBötC severely disrupt breathing in 

mammals (Ramirez et al., 1998; Gray et al., 2001; Wenninger et al., 2004). 
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We have been characterizing pacemaker activity in the PreBötC in a slice preparation, which 

is able to produce, in normoxic conditions, the neural correlate of two respiratory rhythms 

observed in vivo: fictive eupneic activity and fictive sighs. If this preparation is challenged 

with hypoxia, fictive eupnea and sighs are supplanted by another rhythm called fictive 

gasping (Lieske et al. 2000; Ramirez & Lieske 2003). It has been proposed that the PreBötC is 

a multifunctional neural network, able to produce multiple rhythmic activities by the 

reconfiguration of network interactions (Lieske et al. 2000; Peña et al., 2004).  

4. Respiratory pacemaker neurons 

The PreBötC contains several types of neurons, including expiratory, inspiratory and 

postinspiratory neurons (Peña & Ramirez, 2002; Peña et al., 2004; Ramirez et al., 1997). Based 

just on their intrinsic properties and their ability to burst in synaptic isolation, we can 

distinguish two major types of neurons: pacemaker and non-pacemaker neurons (Thoby-

Brisson & Ramirez 2001; Del Negro et al. 2002; Peña et al. 2004). Regardless of the evidence 

that there is a continuum between the intrinsic properties of pacemaker and non pacemaker 

neurons (Ramirez et al. 2004); most respiratory neurons in the PreBötC have been 

considered non-pacemakers (Ramirez et al. 1997; Peña et al. 2004). On the other hand, 

PreBötC pacemaker neurons reported so far, express a quite variable range of interburst and 

intraburst frequencies; amplitude of the plateau potential underlying bursting firing; as well 

as the voltage trajectory of such plateau (Thoby-Brisson & Ramirez 2001; Del Negro et al. 

2002; 2005; Peña et al. 2004; Viemari & Ramirez 2006; Tryba et al. 2006, Mellen & Mishra, 

2010, Table 1).  

An initial pharmacological characterization has shown that there are at least two types of 

respiratory pacemakers neurons in the PreBötC (Thoby-Brisson & Ramirez 2001; Peña et al. 

2004; Del Negro et al. 2005; Table 1). Despite the fact that all of them are sensitive to 

tetrodotoxin (TTX) (Thoby-Brisson & Ramirez 2001), two groups have been identified based 

on their sensitivity to the general calcium channel blocker Cd2+ (Elsen & Ramirez 1998): One 

group of pacemakers stop bursting in the presence of Cd2+, whereas another group 

continued bursting in the same conditions. Such pacemaker neurons were originally 

identified as Type II (or Cd2+-sensitive) and Type I (or Cd2+-insensitive) pacemaker neurons, 

respectively (Thoby-Brisson & Ramirez 2001, Table 1). In the last two decades, some other 

differences have also been identified: In general, type I pacemaker neurons produce bursts 

of shorter duration than type II pacemaker neurons (Thoby-Brisson & Ramirez 2001; Peña & 

Ramirez 2002; 2004; Peña et al. 2004). Whereas type I pacemaker neurons are present during 

all postnatal development, it seems like type II pacemakers are scarce at early postnatal age 

(P0-P5) and increase their presence afterwards (Peña et al. 2004, Table 1).  

The identification of the ion channels involved in bursting properties of these groups of 
respiratory pacemaker neurons, has provided us with some pharmacological tools that have 
helped to test the role of these neurons in the generation of the different respiratory rhythms 
(Del Negro et al. 2002; 2005; Peña et al. 2004; Paton et al., 2006; Tryba et al. 2006). The 
sensitivity of PreBötC pacemaker neurons to either Cd2+ or TTX (Thoby-Brisson & Ramirez 
2001), does not help much for this purpose, since both channel blockers produce a 
generalized disturbance of neuronal firing and neurotransmitter release (Onimaru et al. 
1989; Peña & Tapia 2000; Peña et al., 2002). Further pharmacological characterization 
revealed that most type I (or Cd2+-insensitive) pacemaker neurons rely on the activity of a 
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persistent Na+ current and that bursting activity of most of them might be abolished by 
persistent Na+ current blockers, including riluzole (Del Negro et al. 2002; 2005; Peña et al. 
2004; Tryba et al. 2006). It is important to mention that around 25 % of type I (or Cd2+-
insensitive) pacemaker neurons were not sensitive neither to riluzole nor to Cd2+ (Peña et al. 
2004). 
 

 Type I 
Pacemaker 

Type II 
Pacemaker 

References 

Blocked by tetrodotoxin 
Yes Yes 

Thoby-Brisson & Ramirez, 2001 
Peña et al. 2004 

Blocked by Cd2+ 
No Yes 

Thoby-Brisson & Ramirez, 2001 
Peña et al. 2004 
Tryba et al. 2006 

Presence at: P0-P5 
Scarce Yes 

Peña et al. 2004 
Del Negro et al. 2002; 2005 

Presence at: >P5 
Yes Yes 

Peña et al. 2004 
Del Negro et al. 2002; 2005 

Blocked by riluzole Yes 
(around 75 

% of 
them*) 

No 

Peña et al. 2004 
Del Negro et al. 2002; 2005 
Paton et al. 2006 
Tryba et al. 2006 

Blocked by FFA 

No 

Yes 
(around 90 

% of 
them*) 

Peña et al. 2004 
Del Negro et al. 2005 
Tryba et al. 2006 

5-HT2AR-dependent 
Yes No 

Peña et al. 2004 
Tryba et al. 2006 

Substance P-potentiated 
No Yes 

Peña et al. 2004 
Ben-Mabrouk & Tryba, 2008 

Noradrenaline-
potentiated 

No Yes 
Viemari & Ramirez, 2006 

Necessary for eupnea 
generation Yesª Yesª 

Peña et al. 2004 
Tryba et al., 2006 
Peña and Aguileta, 2007 

Bursting in hypoxia 

Yes No 

Thoby-Brisson & Ramirez, 2000 
Peña et al. 2004 
Paton et al. 2006 
Tryba et al. 2006 

Necessary for gasping 
generation 

Yes No 

Peña et al. 2004 
Paton et al. 2006 
Tryba et al. 2006 
Peña and Aguileta, 2007 

 
Abbreviations: FFA: flufenamic acid; 5-HT2AR: 5-HT2A receptors. *From data reported in Peña et al. 
2004.ªBoth populations have to be blocked to abolish eupnea. 

Table 1. Properties of pacemaker neurons localized in the preBötC. 

www.intechopen.com



Possible Role of Respiratory Pacemaker Neurons in the Generation of Different Breathing Patterns   

 

445 

On the other hand, type II pacemaker neurons, which are both TTX and Cd2+-sensitive, seem 
to rely on a Ca2+-activated unspecific cationic current (ICAN) (Peña et al. 2004; Del Negro et 
al. 2005; Tryba et al. 2006; Ben-Mabrouk & Tryba, 2010), which may arise from TRP channels 
(Ben-Mabrouk & Tryba, 2010). This is supported by the fact that around 90% of these 
pacemakers were blocked by the ICAN blocker flufenamic acid (FFA) (Peña et al. 2004; Ben-
Mabrouk & Tryba, 2010). Remarkably, none of the type I pacemaker neurons are affected by 
FFA and no type II pacemaker neurons are affected by riluzole, which allows using such 
channel blockers to diminish the activity of a specific population of respiratory pacemaker 
neurons, without affecting others (Peña et al. 2004). 

5. Role of pacemaker neurons in respiratory rhythm generation is state 
dependent 

Although both riluzole and FFA may have several unspecific effects, mainly when used at 
high concentrations (Peña & Tapia 2000; Del Negro et al. 2005; Wang et al., 2006), both drugs 
have been used to test the role of specific pacemaker neurons on the activity of the preBötC. 
The evidence has shown that riluzole, at the concentration that blocks most of type I 
pacemaker neurons, affects but does not abolishes the generation of fictive eupnea (Del 
Negro et al. 2002; Peña et al. 2004). Certainly riluzole abolishes generation of fictive sighs 
(Peña et al. 2004; Table 1). A similar effect was observed when FFA was applied, at the 
concentration that blocks most of type II pacemaker neurons (elimination of sighs but 
maintenance of fictive eupnea generation, Peña et al. 2004, Table 1). However when both 
drugs are applied, no rhythm activity is recorded in the PreBötC (Peña et al. 2004; Del Negro 
et al. 2005). Even though a report showed that rhythmic activity can be restored upon 
application of substance P (Del Negro et al. 2005), we failed to consistently reproduce this 
finding (Tryba et al. 2006; Ben-Mabrouk & Tryba, 2008). In fact, we have been able to 
reproduce all our findings in vivo, where we found that neither riluzole nor FFA were able 
to block eupnea by themselves but abolished respiration when applied simultaneously 
(Peña & Aguileta, 2007). Furthermore we found that substance P was not able to recorver 
eupnea generation in vivo (Peña & Aguileta, 2007). Taken together, the evidence suggests 
that eupnea produced by the PreBötC in vitro can be maintained if one population of 
pacemaker neurons is blocked either with riluzole or with FFA, but when most type I and 
type II pacemaker neurons are blocked with both drugs, the PreBötC is not longer able to 
produce any physiologically meaningful rhythmic activity (Peña et al. 2004; Tryba et al. 
2006). 
Another seems to be the scenery during gasping generation. As previously mentioned, the 
PreBötC undergoes a reconfiguration process during hypoxia to generate gasping (Lieske et 
al. 2000; Peña, 2009). Three major changes occur during hypoxic conditions in this network: 
The first involves a generalized reduction of inhibitory synaptic transmission (Richter et al., 
1991; Lieske et al. 2000), the second involves the shutdown of most of the non-pacemaker 
neurons (Ballanyi et al., 1994; Thoby-Brisson & Ramirez 2000), and the third involves a 
differential effect of hypoxia on pacemaker neurons. Type II (or Cd2+-sensitive) pacemaker 
neurons cease to produce rhythmic bursting activity in hypoxic conditions, whereas a major 
subset of type I (or Cd2+-insensitive) pacemaker neurons maintain their bursting activity in 
hypoxia (Thoby-Brisson & Ramirez 2000; Peña et al. 2004; Tryba et al. 2006; Table 1). This 
evidence suggests that type I (or Cd2+-insensitive) pacemaker neurons may play a major role 
in the generation of gasping in hypoxia (Thoby-Brisson & Ramirez 2000; Peña et al. 2004; 
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Tryba et al. 2006). Consistent with this idea we showed that riluzole, but not FFA, 
specifically blocks gasping generation both in vitro (Peña et al. 2004) and in vivo (Peña & 
Aguileta, 2007). Our conclusion that riluzole-sensitive pacemaker activity is necessary for 
gasping generation, but not eupnea, has been corroborated in the in situ preparation as well 
as in vivo by other authors (Paton et al. 2006; St. John et al., 2006). This leads to some 
important conclusions: First, type I (or Cd2+-insensitive) pacemaker neurons cannot be 
considered as the principal drivers of the more complex respiratory network operating 
during normoxia, but they become the sole drivers of gasping. Second, hypoxia renders the 
respiratory network more vulnerable to the blockade of a single ionic mechanism: namely, 
the persistent Na+ current (Peña & Ramirez 2002; Tryba et al. 2006). Gasping is an important 
autoresuscitation mechanism that seems to fail in victims of sudden infant death syndrome 
(SIDS, Poets et al., 1999; Sridhar et al., 2003). Consistent with a change in configuration of the 
respiratory network, SIDS victims breathe normally during normoxia, but do not gasp 
effectively when exposed to hypoxic conditions (Poets et al., 1999; Sridhar et al. 2003). 

6. Respiratory pacemaker neurons as targets of neuromodulation 

Respiratory function, as most of brain functions are regulated by neuromodulatory systems, 
which change the functionality of the respiratory rhythm generator and more specifically 
the activity of respiratory pacemaker neurons (Peña et al. 2002; 2004; Ramirez et al., 2004; 
Doi & Ramirez, 2008; 2010). It has been shown that pacemaker neurons are differentially 
regulated by several neuromodulators, including serotonin (5-HT) (Peña et al. 2002; Peña & 
Ramirez, 2004; Viemari & Ramirez, 2006; Tryba et al., 2008). As reported for motoneurons in 
the spinal cord (Harvey et al., 2006a, b), activity of the persistent sodium current, in the 
preBötC, is regulated by tonic activation of 5-HT2A receptors (Peña & Ramirez 2002). We 
reported that type I (or Cd2+-insensitive) pacemaker neurons require endogenous activation 
of 5-HT2A receptors to maintain bursting activity; whereas type II (or Cd2+-sensitive) 
pacemaker neurons do not (Peña & Ramirez 2002; Tryba et al. 2006, Table 1). Interestingly, 
pharmacological blockade of 5-HT2A receptors resemble the actions of riluzole (Peña & 
Ramirez 2002; Peña et al. 2004; Tryba et al. 2006). Namely, bath application of 5HT2A 
antagonists specifically inhibits type I (or Cd2+-insensitive) pacemaker neurons, eliminates 
sigh activity and affects eupneic activity without producing apnea (Peña & Ramirez 2002; 
Tryba et al. 2006). As reported for riluzole, 5HT2A antagonists abolished gasping generation 
in hypoxia and produce apnea in normoxia when they were applied in conjunction with 
FFA (Tryba et al. 2006). Data suggest that endogenous 5HT2A receptor activation is essential 
for type I pacemaker activity and gasping generation in vitro (Peña & Ramirez 2002; Tryba et 
al. 2006). This finding may have important implications for understanding the failure of 
autoresuscitation in SIDS since serotonergic abnormalities have been reported in the 
brainstem of SIDS victims (Ozawa & Takashima 2002; Sridhar et al. 2003; Weese-Mayer et 
al., 2003; Weese-Mayer et al, 2003; Kinney et al., 2003).  
Other neuromodulator that differentially affects pacemaker activity in the PreBötC is 
substance P (Peña & Ramirez 2004; Ben-Mabrouk & Tryba, 2008). We have shown that 
substance P produce a generalized PreBötC excitation by activating a TTX-insensitive 
sodium current, possibly a TRP channel (Crowder et al., 2007; Mironov, 2008; Ben-Mabrouk 
& Tryba, 2008), in all recorded respiratory neurons. In particular we observed that whereas 
substance P increased burst frequency of type I (or Cd2+-insensitive) pacemaker neurons, it 
potently enhanced bursting activity in type II (or Cd2+-sensitive) pacemakers (Peña & 
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Ramirez 2004), which seems to contribute to the increase in the regularity of the rhythm 
induced by this neuromodulator (Ben-Mabrouk & Tryba, 2008). A similar effect is observed 
with noradrenaline. Viemari & Ramirez (2006) have shown that noradrenaline depolarizes 
most respiratory neurons and increases burst frequency of type I (or Cd2+-insensitive) 
pacemaker neurons but, as reported for SP, noradrenaline potently enhances bursting 
activity in type II (or Cd2+-sensitive) pacemaker activity (Viemari & Ramirez 2006). This 
differential modulation of pacemaker properties might be important to differentially 
modulate shape and stability of respiratory activity (Peña & Ramirez 2002; 2004; Viemari & 
Ramirez 2006; Doi & Ramirez, 2008; 2010). 
In conclusion we can affirm that the journey to understand the basic mechanisms involved 
in respiratory rhythm generation is at the beginning. This challenge is complicated by the 
fact that pacemaker neurons in the PreBötC constitute a highly heterogeneous population 
regarding its intrinsic properties, sensitivity to oxygen concentration and response to 
neuromodulators. All these factors must be taken into account if we really want to 
understand this circuit. It is important never to forget that such diversity is there and that 
might contribute to respiratory rhythm generation in a state-dependent manner. 
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