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1. Introduction     

In the theory of the traditional Chinese medicine, it has been found that the acupuncture-

points are distributed in the meridian system of the human body. Moreover, meridian 

system is an independent system which exists in the body parallel with neural systems and 

blood circulation systems (Tsuei 1998, Trentini et. al. 2005). The experimental results have 

shown that the meridian system has significant effect on human health (Tsuei, 1998). Based 

on the recent research results, it was illustrated that the meridian system had an architecture 

with many channels allowing the electrical signals passed through easily (Zhang et. al. 1999, 

Yang 1997). That could be used to explain why the acupuncture-therapy would treat some 

diseases in human body by implementing some stimulating signals on the related 

acupuncture points. The acupuncture points distributed in the meridian system possesses 

some distinctive ways for transferring signals and processing information including 

electrical information (Yang 1997). 

Until today, there have been some research results on human meridian system focusing on 

the analysis of impedance on single acupuncture-point (Yamamoto and Yamamoto 1987, 

Yang 1997, Zhang et. al. 1999). However, the meridian system is, in fact, a network with 

several channels. In each channel, there are several acupuncture-points located along a 

curve. The experimental results demonstrated that there were some relations among those 

points in each channel. Therefore, the analysis just depending on the impedance of one 

single acupuncture-point would not reflect the main characteristic of the signal transmission 

in human meridian system. One of the options is to use an excitation signal to stimulate an 

acupuncture-point in a channel of the meridian. Then the corresponding response of 

another acupuncture-point in the same channel is measured. Thus, the signal transmission 

performance of the measured channel in the meridian can be evaluated. Moreover, the 

experimental results have demonstrated that the human meridian system is a dynamic 

system (Zhang et. al. 1999, Yang 1997, Wang et. al. 2009). In this case, the identification of 

the model to describe the dynamic behavior of the meridian is an efficient way for 

performance evaluation. Wang et. al. (2009) developed an auto-regressive and moving 

average model to describe the human meridian system. It fits the response well when the 

exciting signal with slow frequency and the input amplitude is rather small. However, when 

the frequency of the exciting input is higher or the amplitude of the exciting signal is larger, 
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it will illustrate some nonlinear behavior. Thus, a nonlinear dynamic model should be 

considered to describe this system. 

This chapter is organized as follows: In the 2nd section of this chapter, a brief description on 
the scheme of experiments to obtain the response of acupoints in a channel of the human 
meridian system by stimulating the acupoint in the same channel. Then, in the 3rd section, 
the analysis of the hysteretic characteristic happened in the response between two 
acupuncture-points in the same channel is illustrated. In section 4, an expanded input space 
is constructed to transform the multi-valued mapping of hysteresis to a one-to-one 
mapping. Then the recurrent neural network is employed to model both dynamics and 
nonlinearity of the meridian system. As neural network is a non-convex system, it is often 
stuck in local minima during the training. Therefore, we proposed a dynamic neural 
network based model with extreme learning machine (ELM) (Huang et. al. 2006 and 2007) to 
model the dynamic behavior of the human meridian system in section 5. In the scheme, the 
values of the parameters of the hidden neurons and the weights connecting the hidden 
neurons with the inputs are specified by random values. The feedback factors connecting 
the outputs of the hidden nodes with the inputs of the hidden neurons are constrained 
within the region between zero and one to guarantee the stability of the neural network. 
However, the weights which interconnect the output of the network and the output of the 
hidden neurons are determined by least squares (LS) algorithm. In this case, the training of 
the neural network becomes an optimization for a convex system. Hence, the very good 
modeling results are derived. The corresponding experimental results are presented in 
section 6. In the experiment, both traditional ELM neural network and the proposed 
recurrent version are implemented to model the hysteresis in meridian system. The model 
validation results have shown that the proposed method has led to much better modeling 
performance. 
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Fig. 1. Experimental Configuration of Measurement of Human Meridian Signal 

2. Brief description of the experimental configuration 

In this section, a method based on three detecting electrodes is used to measure both 
stimulation and the corresponding response of the acupuncture-points in meridian systems.  
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The architecture of the measurement for meridian response is shown in Fig. 1. Based on the 
theory of Chinese medicine, there are 11 acupoints in the so-called Hand-Taiyin Lung 
Channel. In this experiment, the stimulating acupoint was Shaoshang (LU 11), the acupoint 
Tianfu (LU 3) was connected to ground, and the detecting acupoints were Chize (LU 5), 
Kongzui (LU 6) and Lieque (LU 7), respectively. The stimulation current signals were 
generated by a signal generator.  Then, the signal was amplified by the amplifier A. In this 
experiment, Acupoint Shaoshang(LU11) was excited by the stimulation signals through a 
stimulating electrode. Then, the detecting electrode was used to measure the corresponding 
response of acupoint Chize(LU5) or the other acupoints in the same channel. The measured 
output was transferred through a current/ voltage conversion circuit then sampled by an 
analog /digital (A/D) convertor. The sampled signals were sent to the computer for further 
processing. 
There were 6 healthy volunteers accepted the test. Before the test, the volunteers were 
relaxed to avoid the strenuous disturbance. 

3. The Response of the acupoint of the human meridian 

What the behavior of human meridian system to excitations would be? In this section, the 
experimental results will be presented to show the responses of the acupoint of the human 
meridian system to the excitation signals. 
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Fig. 2. The plot of the output of acupoint LU5 against the sawtooth input 

In the experiments, we use a sawtooth waveform sequence to excite the meridian. A very 
interesting thing is that hysteresis phenomenon occurs in the human meridian systems. Fig. 
2 shows the plot of the output of acupoint LU5 against the sawtooth waveform input. 
Obviously, the hysteresis presents asymmetric dynamic behavior in the response of the 
acupoint to the sawtooth waveform signal. During the upward segment, the output of the 
acupoint LU5 is almost a straight line. However, we can see the slower dynamics in the 
downward segment of the response. The asymmetric dynamic behavior implies the 
meridian is a nonlinear dynamic system. 
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Moreover, From Fig. 2, we note that the hysteretic phenomenon happened in human 
meridian systems involved with the following characteristics：  

1. non-smoothness; 
2. multi-valued mapping; 
3. asymmetry; and 
4. slow time-varying. 
Therefore, it is a dynamic system with rather complex characteristics. It is a real challenge to 
build a model to describe the meridian system with such comprehensive phenomena based 
on the conventional identification technique because the conventional identification 
methods can only be useful for the systems with smooth and one-to-one mapping. Hence, it 
is a challenge to construct a model of hysteresis. 

4. Modelling of hysteresis via Neural Networks 

Until today, there have been some modeling methods for hysteresis, e.g. Preisach model (Hu 

2003) and Prandtl-Ishlinskii (PI) model (Macki et. al. 1993). Those methods used simple 

backlash operators as the basis functions for modeling. Therefore, lots of operators should 

be employed in order to obtain accurate models. Although there have been some modified 

Preisach model (Hu 2003, Ge and Jouaneh 1995 Ang et. al. 2003) and modified PI model 

(Dong and Tan 2010) proposed to describe the hysteresis systems, the structures of those 

modified schemes are still very complex. In order to simplify the architecture of the model 

to describe the behavior of hysteresis, Li and Tan (2004) as well as Zhao and Tan (2006) 

developed the so-called expanded input space based hysteretic models. In the expanded 

input space, a hysteretic operator which extracted the main movement feature of the 

hysteresis was introduced as one of the coordinates. Thus, the multi-valued mapping of 

hysteresis could be transformed to a one-to-one mapping between the inputs and output. 

Then, the feedforward neural networks were implemented to model the hysteresis based on 

the constructed expanded input space. However, due to the non-convex characteristics of 

the feedforward neural networks, one often met the problem that the training was easily 

stuck in local minima. It would have significant effect on the performance of the obtained 

neural models.  

In this chapter, a modified scheme of the hysteretic operator given by Zhao and Tan (2006) 

is proposed. The modified hysteretic operator will handle the case of extreme-missing. Thus, 

a corresponding expanded input space is constructed.  Then, the multi-valued mapping 

between the input and output of the hysteresis is transformed to a one-to-one mapping on 

this expanded input space. After that, the extreme learning machine (ELM) (Huang et. al. 

2006 and 2007) is applied to the modeling of the hysteresis in human meridian systems.  

In order to transform the multi-valued mapping of hysteresis to a one-to-one mapping, 

based on the expanded input space ( Li and Tan 2004, Zhao and Tan 2006), which is a two-

dimensional plane consisting of the input of hysteresis as well as the output of the hysteretic 

operator, is constructed. As the hysteretic operator can extract the movement tendency, such 

as increase, decrease and turning of the hysteresis, on this plane, the output of the hysteresis 

corresponding to the point in the input plane can be uniquely determined. One of the 

advantages of the expanded input space is that the one-to-one mapping between the input 

space and the output of the hysteresis can be constructed. Thus, the techniques for nonlinear 

modeling can be implemented to model the behavior of hysteresis on the constructed input 
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space. Moreover, another advantage of this modeling method is that the computation of 

gradients at non-smooth points can be avoided. 

Assumption: The considered hysteresis is continuous and forms a closed loop in the input–
output diagram when the input cycles between two extrema.  

Then, we define the hysteresis operator ( )f x as: 

 ( ) (1 )( ) ( )px x

p pf x e x x f x
−

= − − +  (1) 

where x is the current input, ( )f x is the current output, px is the dominant extremum 

adjacent to the current input x. ( )pf x is the output of the operator when the input is px . 
The properties of the hysteretic operator are as follows:  

1. Let ( ) ( )x t C R+∈ , where { | 0}R t t+ = ≥ and ( )C R+ is the sets of continuous functions 

on R+ . For the different time instance t1 and t2, it results in 1 2t t≠ but 1 2( ) ( )x t x t= , 

where 1( )x t  and 2( )x t are not the extrema. Then it leads to 1 2[ ( )] [ ( )]f x t f x t≠ . 

2. If there exist two time instance t1 and t2, also 1 2t t≠ , such that 1 2[ ( )] [ ( )] 0f x t f x t− → , 

then 1 2( ) ( ) 0x t x t− → . 
Note that the hysteretic operator used by Zhao and Tan (2006) might encounter the problem 
that the output extreme of the hysteretic operator might be missed when the input just 
passes through the extreme. Therefore, in this section, a modified scheme of the hysteresis 
operator will be proposed. 

Note that some extrema might be missed when the input just passed through its extrma. For 

example, suppose 1t  and 2t ( 1 2t t< ) to be two time instances, in this case, if the 

corresponding values of the input at those two time instances are equal to each other, but 

the output of the hysteretic operator corresponding to one of the input value is in the 

increase zone while the output of the operator with respect to another input value is in the 

decrease zone. The extrema between those two output values of the hysteresis is obviously 

missed. To handle this problem, we have 

Lemma 1: For the formula to describe the hysteresis operator shown in Eq. (1), 

if 1 2( ) ( )x t x t= , 1 2[ ( )] [ ( )]f x t f x t≠ , where 1t  and 2t  are the adjacent time instances and 1 2t t< , 

the extrema located in the segment between points 1 1( ( ), ( ( )))x t f x t  and 2 2( ( ), ( ( )))x t f x t can 

not be obtained within the time period 1 2[ , ]t t . However, it can be estimated by 

2 1( , ( , ))mx lm t t , where 
 

2 2 1( ) 0.5( ( ) ( ))mx x t x t x t= + − , 

and 

2 1

2 1

2 1

(1 )( ) ( ), ( ) ( )
( , )

(1 )( ) ( ), ( ) ( )

m p

m p

x x
m p p

x x
m p p

e x x f x x t x t
lm t t

e x x f x x t x t

− +

−

⎧ − − + >⎪= ⎨
− − + <⎪⎩

. 

Proof: Suppose mx is the local maximum of the input, whilst 1( )x t and 2( )x t are located in the 

increase and decrease zones, respectively. 

Hence, the derivatives of ( ( ))f x t with respect to ( )x t at 2t  and 1t  are  

 2( )
2( ( )) px t x

f x t e
− +=$   (2) 
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and 

 1( )
1( ( )) px t x

f x t e
− +=$ , (3) 

respectively. 

Based on the assumption given by Zhao and Tan (2006), ( , ( ))p px f x is a local minimum, and 

1 1( ( ), ( ( )))x t f x t is a point adjacent to the local maximum point 2 1( , ( , ))mx lm t t . Hence, 

2 1( ( )) ( ( ))f x t f x t≈$ $ due to the properties of exponential function. That is to say, the three 

points，i.e. 1 1( ( ), ( ( )))x t f x t , 2 2( ( ), ( ( )))x t f x t  and 2 1( , ( , ))mx lm t t can be considered to be 

approximately located in a straight line. Moreover, 2 1( , ( , ))mx lm t t is the point between 

1 1( ( ), ( ( )))x t f x t and 2 2( ( ), ( ( )))x t f x t , where 1t  and 2t are the adjacent time instances. Define 

2 1( , )L t t  represents the line connecting 1 1( ( ), ( ( )))x t f x t  with 2 2( ( ), ( ( )))x t f x t . So the 

extremum point in the space can be approximated to be the mean values of the projections 

of 2 1( , )L t t  on each coordinates in the plane. In other words, the mean value of the 

projection on the input coordinate is estimated by  

 2 2 1( ) 0.5( ( ) ( ))mx x t x t x t= + − ,  (4) 

and the mean value of the projection on the coordinate of the output of the hysteretic 
operator is estimated by 

 2 1( , ) (1 )( ) ( )m px x
m p plm t t e x x f x

− += − − + . (5) 

Similarly, if 2 1( , ( , ))mx lm t t is a local minimum, 2 1( , )lm t t can be described by 

 2 1( , ) (1 )( ) ( )m px x
m p plm t t e x x f x

−= − − + .  (6) 

Hence, combining Eqs.(4), (5) and (6) leads to 

 
2 1

2 1

2 1

(1 )( ) ( ), ( ) ( )
( , )

(1 )( ) ( ), ( ) ( )

m p

m p

x x
m p p

x x
m p p

e x x f x x t x t
lm t t

e x x f x x t x t

− +

−

⎧ − − + >⎪= ⎨
− − + <⎪⎩

.  (7) 

Therefore, based on the above mentioned Lemma and the following Lemmas given by Zhao 
and Tan (2006), i.e. 

Lemma 2: Let ( ) ( )x t C R+∈ , where { }| 0R t t+ = ≥ and ( )C R+  are the sets of continuous 

functions on R+ . If there exist two time instants 1t , 2t  and 1 2t t≠ , such that 1 2( ) ( )x t x t= , 

1( )x t  and 2( )x t  are not the extrema, then ( ) ( )1 2f x t f x t⎡ ⎤ ⎡ ⎤≠⎣ ⎦ ⎣ ⎦ . 

The details of the proofs can be referred to Appendix A. 

Lemma 3: If there exist two time instants 1t , 2t  and 1 2t t≠ , such that 1 2[ ( )] [ ( )] 0f x t f x t− → , 

then 1 2( ) ( ) 0x t x t− → . 
The corresponding proof of lemma 3 can be referred to Appendix B. 
Then, we have the following theorem, i.e. 

Theorem: For any hysteresis satisfying Assumption, there exists a continuous one-to-one 

mapping Γ: R2→R, such that [ ( )] [ ( ), ( ( ))]F x t x t f x t= Γ . 
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The detail of the proof can be referred to Appendix C. 
It can also been proved that the obtained expanded input space is a compact set ( Zhao and 
Tan 2006) Hence, the mapping between the output and the input of the hysteresis on this 
expanded input space is a one-to-one mapping. Thus, the neural networks such as 
multilayer feedforward neural network can be implemented to model the performance of 
hysteresis on this input space. 

5. Recurrent ELM NN based model of hysteresis in human meridian systems 

Note the non-convex characteristic is one of the main drawbacks of the feedforward neural 
networks. It is often stuck in some local minima during the training procedure. Moreover, 
the slow convergence in training is kept it from the application in real-time cases. Huang et. 
al. (2006 and 2007) have proposed an efficient algorithm called as extreme learning machine 
(ELM)  with the randomly specified input weights of the single hidden layered and the 
output weights of the network to be determined by using the least squares algorithm. ELM 
has achieved very good performance in generalization and much faster learning speed. The 
brief description of this neural network is presented as follows： 

For N samples 1{( , )}N
k k kx t = , where 1 2[ , , , ]k k k knx x x=x A  is the kth input vector and 

1 2[ , , , ]k k k knt t t=t A  is the kth target vector, a single layer feedforward network ( SLFN) 

with N#  hidden neurons and activation function ( )g x , i.e. 

 
1

( ) , 1, ,
N

i i k i k
i

g b k N
=

⋅ + = =∑β w x o

#

A ,   (8) 

where 1 2[ , , , ]Ti i i inw w w=w A is the weight vector connecting the ith hidden neuron and the 

input neurons, 1 2[ , , , ]Ti i i imβ β β=β A is the weight vector connecting the ith hidden neuron 

and the output neurons, 1 2[ , , , ]Tk k k kmo o o=o A is the output vector of the SLFN, and ib is the 

threshold of the ith hidden neuron. Moreover, i k⋅w x  denotes the inner product of 

iw and kx . Hence, these N equations can be written compactly as: 

 =Hβ O ,  (9) 

where H is called the hidden layer output matrix, i.e. 

 
1 1 1 1

1 1

( ) ( )

( ) ( )

N N

N NN N N N

g b g b

g b g b
×

⎡ ⎤⋅ + ⋅ +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⋅ + ⋅ +⎣ ⎦

w x w x

H

w x w x

# #

# # #

A
B A B

A
, (10) 

 
1
T

T
N N m×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β
β

β # #

B   (11) 

and 
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1
T

T
N N m×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

o

O

o

B .  (12) 

By randomly assigning and fixing the input weights iw and biases ib , only leaving output 

weights iβ  to be adjusted according to the objective function: 

 
2

min −
β

Hβ T .   (13)  

Based on theorem shown in section 4, the behavior of the hysteresis inherent in meridian 
system can be modeled by the ELM method on the obtained expanded input space. 
Therefore, the corresponding ELM based model for hysteresis is shown as follows: 

 1 1 1 1 1 1 1

1 1

[ , ( )] [ , ( )]

( [ , ( )] ) ( [ , ( )] )

( [ , ( )] ) ( [ , ( )] )

T
N N

T
N N N NN N N

x f x x f x

g f b g f b

g f b g f b

= +

⎡ ⎤⎡ ⎤⋅ + ⋅ +
⎢ ⎥⎢ ⎥

= +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⋅ + ⋅ +⎣ ⎦ ⎢ ⎥⎣ ⎦

Γ H β ε

w x x w x x β
ε

w x x w x x β

# #

# # #

A
B A B B

A

,  (14) 

where ε is the modeling error vector, for any given 0Nε > , Nε≤ε . 
By observing the response of the acupoints of human meridian systems, we can see that the 
dynamics in involved in the hysteresis. In order to describe the dynamic phenomenon of the 
hysteresis in meridian system, an internal feedback connection is introduced for each 
hidden neuron in the ELM neural network. Thus, we obtain a so-called recurrent ELM 
neural network on the constructed expanded input space for hysteresis inherent in human 
meridian. For a single input-single output network, the corresponding architecture is shown 
in Fig. 3. Obviously, we have 

  [ ( ), ( ( ))] [ ( ), ( ( )), ( 1)]x t f x t t f t t= − +Γ H x x z β ε    (15) 

where 

1
T

T
N

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β
β

β #

B  

and       

1 1 1 1 1 1 1

1 1 1

[ ( ), ( ( )), ( 1)]

( [ ( ), ( ( ))] ( 1)) ( [ ( ), ( ( ))] ( 1))

( [ ( ), ( ( ))] ( 1)) ( [ ( ), ( ( ))] ( 1))

N N N

N N N NN N N

t f t t

g t f t z t g t f t z t

g t f t z t g t f t z t

α α

α α

− =

⎡ ⎤⋅ + − ⋅ + −
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ + + − ⋅ + −⎣ ⎦

H x x z

w x x w x x

w x x w x x

# # #

# # #

A
B A B

A

 

where iα is the feedback factor with the value randomly assigned within (0,1) to guarantee 

the stability of the model and  
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( ) ( [ ( ), ( ( ))] ( 1)),  1,..., ;  1,...,i i j j i iz t g t f t z t i N j Nα= ⋅ + − = =w x x # . 

For the assigned matrix [.]H , its QR decomposition is a matrix of the form 

 =H QR    (16) 

where R is an upper triangular matrix and Q is an orthogonal matrix, i.e., one satisfying  

           =TQ Q I  (17)  

where I is the identity matrix. This matrix decomposition can be used to simplify the 

computation to determine the solutionβ , i.e. 

       1ˆ = −T T Tβ (R R) R Q Γ .    (18) 

 

+

f(x)

x

g(x1)

g(x2)

g(xN)

Γ

 
 

Fig. 3. The structure of recurrent ELM neural network 

6. Experimental results 

Based on the experimental setup shown in section 2, the experiment to measure the 

responses of acupoints was implemented. The semi-exponential signal was used to excite 

the meridian system. Both ELM neural network and recurrent ELM neural network were 

applied to modelling of the hysteresis happened in the meridian. 

Firstly, we applied the ELM neural network with 30 hidden neurons to the modelling 

procedure of hysteresis. The QR decomposed least square algorithm was utilized to 

determine the weights of the neural model. 

Fig. 4 shows the model validation result of the ELM neural network based model. It can be 

seen that the model failed to describe the hysteresis occurred in the meridian. On the other 

hand, we also applied the proposed recurrent ELM neural network on the constructed 

www.intechopen.com



 Recurrent Neural Networks for Temporal Data Processing 

 

60 

expanded input space. In the experiment, only 20 hidden neurons were involved in the 

network. The training algorithm to specify the weights of the model was the same as that in 

the training of ELM neural model. Fig. 5 illustrates the corresponding performance of model 

validation. Obviously, the proposed modelling method has achieved satisfactory result. 

Moreover, the proposed method has used less number of hidden neurons than that of the 

conventional ELM neural model. Thus, a much simpler model structure has been obtained. 

7. Conclusion 

 A modeling method for hysteresis in human meridian systems is presented. In this 

modeling scheme, a modified hysteretic operator is proposed to construct an expanded 

input space to transform the multi-valued mapping of hysteresis into a one-to-one mapping. 

On the constructed expanded input space, the ELM neural network is employed to model 

the hysteresis inherent in human meridian systems. As the hysteresis in meridian system is 

an asymmetric and dynamic system, a recurrent ELM neural network is developed. In the 

proposed recurrent ELM neural network, the output state of each hidden neuron is fed back 

to its own input to describe the dynamic behavior of the hysteresis. The training of the 

recurrent ELM neural network is rather simple. A least square algorithm based on QR 

decomposition is implemented. The experimental results have shown that the proposed 

recurrent ELM neural model based model obtained much better modeling performance and 

simpler model structure. 
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Fig. 4. Model validation of ELM neural network 
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Fig. 5. Model validation of recurrent ELM neural network 

8. Appendix A 

The proof of lemma 2 is as follows (Zhao and Tan 2006): 
Considering the segment x(t) decreases monotonically, (1) becomes 

( ) (1 )( ) ( )px x
de p pf x e x x f x

−= − − +        ( ) 0x t <$  

where fde(x) is decreasing segment of the function, xp is the maximum extremum of the 
input. Whilst 

( )
( ) [1 ]( ) ( )px x

in p pf x e x x f x
− −= − − +      ( ) 0x t >$  

denotes the increasing segment of the function. In this case, xp is the minimum extremum of 
the input. Since 

( ) ( )( )
( ) [1 ]p px x x xin

p

df x
e x x e

dx

− − − −= ⋅ − + −  

       
1 ( )

1
p

p

x x

x x

e
−

− −
= −

1
1 0

px x
e

−> − > . 

Therefore, fin(x) is monotonic. Similarly one can obtain that fde(x) is also monotonic. 
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9. Appendix B 

The following is the proof of lemma 3 (Zhao and Tan 2006). 

Consider the case of ( ) 0x t >$ that means in increase segment of the hysteresis. Assume that 

the segment x(t) increases monotonically. From the proof of Lemma 1, it follows that 

          
( )

( ) [1 ]( ) ( )px x
in p pf x e x x f x

− −= − − +  

 is monotonic as 1 2( ) ( ) 0x t x t− → . Thus, it yields 

( ) ( )1 2 0in inf x t f x t⎡ ⎤ ⎡ ⎤− →⎣ ⎦ ⎣ ⎦ . 

In terms of the property of continuity of the inverse function, it yields  

( ) ( )1 2 0in inf x t f x t⎡ ⎤ ⎡ ⎤− →⎣ ⎦ ⎣ ⎦ ,  

thus 1 2( ) ( ) 0x t x t− → . Similarily, when 

( ) ( )1 2 0de def x t f x t⎡ ⎤ ⎡ ⎤− →⎣ ⎦ ⎣ ⎦ , it results in 

1 2( ) ( ) 0x t x t− → . 

10. Appendix C 

Firstly, it is proved that Γ is a one-to-one mapping.  
Case 1: Assume that x(t) is not the extremum. In terms of lemma1, if there exist two different 
time instances t1 and t2, then 

( ) ( ) ( ) ( )1 1 2 2( , ) ( , )x t f x t x t f x t⎡ ⎤ ⎡ ⎤≠⎣ ⎦ ⎣ ⎦ . 

Therefore, the coordinate (x(t), f[x(t)]) is uniquely corresponding to hysteresis H[x(t)]. 
Case 2: Suppose that x(t) is the extremum. In this case, for two different time instances t1 and 
t2, there will be 

( ) ( ) ( ) ( )1 1 2 2( , ) ( , )x t f x t x t f x t⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ . 

According to the property of the Preisach-type hysteresis, 1 2[ ( )] [ ( )]H x t H x t= . Then the 

coordinate (x(t), f[x(t)]) will be uniquely corresponding to hysteresis H[x(t)]. 
Combining the above-mentioned two situations, it is obtained that Γ is a one-to-one 
mapping. Next, it will be verified that Γ is a continuous mapping. 
According to [11], 

1 2( ) ( ) 0x t x t− → ⇒ 1 2[ ( )] [ ( )] 0H x t H x t− → . 

Then, considering lemma 3, 

( ) ( )1 2 0f x t f x t⎡ ⎤ ⎡ ⎤− →⎣ ⎦ ⎣ ⎦ ⇒ 1 2( ) ( ) 0x t x t− → ⇒ 1 2[ ( )] [ ( )] 0H x t H x t− → . 

www.intechopen.com



Modeling of Hysteresis in Human Meridian System with Recurrent Neural Networks   

 

63 

Therefore, it can be concluded that there exists a continuous one-to-one mapping Γ : R2→R 
such that H[x(t)] = Γ (x(t), f[x(t)]). 
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