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1. Introduction    

Room temperature ionic liquids (ILs) have been paid attention as environmentally benign 
media, because they have attractive properties such as thermal stability, nonflammability, 
high ionic conductivity, and wide electrochemical potential windows (Earle & Seddon, 2000; 
Rogers et al., 2000; Wasserscheid & Welton, 2003). In the nuclear industry field, ILs are 
expected to be applied as media for reprocessing of spent nuclear fuels and treatment of 
radioactive wastes contaminated with radioactive nuclides (Bladley et al., 2002; Rogers et al., 
2002; Giridhar et al., 2006; Cocalia et al., 2006; Giridhar et al., 2007; Binnemans, 2007). 
In this chapter, our feasibility studies on applications of ILs as the media of pyro-
reprocessing processes and the treatment method of radioactive wastes contaminated with 
uranium will be introduced. 

2. Investigation on application of ILs as media of the pyro-reprocessing 
processes 

We studied electrochemical properties of uranyl species in 1-butyl-3-methylimidazolium 
(BMI) based ILs (BMICl, BMIBF4, and BMINfO (NfO = nonafluorobutanesulfonate)) to 
examine their feasibility as alternatives to conventional molten salts as media for pyro-
reprocessing processes for spent nuclear fuels.  
BMICl (Kanto Chemical Co., Inc.) was used without further purification and BMIBF4 (Kanto) 
was purified by using activated carbon. BMINfO was synthesized as follows: 1-Butyl-3-
methylimidazole was dissolved into tetrahydrofuran (THF) and stirred vigorously. After 
that, 1-buromo butane was dropped slowly with a dropping funnel, and the resulting 
solution was refluxed. After refluxing, THF phase was separated and stirred with 
ethylacetate (EA). Crude 1-butyl-3-methylimidazolium bromide (BMIBr) was obtained by 
removing THF and EA in vacuo.  The crude BMIBr was dissolved into distilled water and 
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stirred vigorously. To this solution, KNfO was added.  The resulting solution was refluxed 
with stirring at 70 ˚C. The BMINfO phase was separated from aqueous one and mixed with 
activated carbon for removing organic impurities. After filtration, the filtrate was mixed 
with the distilled water for striping inorganic impurities. In order to remove water and 
volatile impurities, all ILs used were kept for more than 3 h under reduced pressure at  
120 ˚C. 
Sample solutions for electrochemical experiments were prepared by dissolving Cs2UO2Cl4 
or UO2Cl2·nH2O (n = 1~3) into ILs. Cs2UO2Cl4 and UO2Cl2·nH2O (n = 1 ~ 3) were 
synthesized according to the reported procedures (Cordfunke, 1969; Denning et al., 1979). 
Cyclic voltammograms (CV) of sample solutions controlled at appropriate temperatures 
were measured by using an electrochemical analyzer (BAS, ALS model 660B) in glove box 
under an Ar atmosphere. A glassy carbon and a Pt wire were used as a working electrode 
and a counter electrode, respectively.  As a reference electrode, an Ag/AgCl electrode was 
used and connected with a cyclic voltammetry cell by a liquid junction filled with BMIBF4 or 
BMINfO. All potentials reported here are vs. Ag/AgCl.  In the CV measurements, potential 
was swept to cathodic direction initially. 

2.1 Electrochemical study on uranyl chloride in BMICl 
Figure 1(a) shows the UV-visible absorption spectrum of the solution prepared by 

dissolving Cs2UO2Cl4 into BMICl at 80˚C. This absorption spectrum is found to exhibit 

remarkable vibrational fine structure, which is similar to that of [UO2Cl4]2– in AlCl3/EMIC 

(EMIC = 1-ethyl-3-methylimidazolium chloride) (Dai et al., 1997), BMITf2N, MeBu3NTf2N, 

and C4minTf2N (Tf2N = bis(trifluoromethanesulfonyl)imide, MeBu3N = tri-n-butylmethyl-

ammonium, C4min = 1-hexyl-3-methylimidazolium) (Sornein et al., 2006; Nockemann et al., 

2007). Nockemann et al. have reported that the fine structure is typical for the [UO2Cl4]2– 

with D4h coordination symmetry (Nockemann et al., 2007). The molar absorption coefficient 

(ε) at 429.8 nm (maximum peak) is 14.5 M–1 cm–1 (M = mol dm–3), and is almost same as 

those reported previously (Sornein et al., 2006; Nockemann et al., 2007). We also measured 

the UV-visible absorption spectrum of the solution obtained by dissolving UO2Cl2·nH2O in 

BMICl at 80 ˚C (see Fig. 1(b)), where the concentration of uranium was determined by ICP-

AES. A similar absorption spectrum to that in Fig. 1(a) was observed. The ε value of 

maximum peak at 428.6 nm was 16.3 M–1 cm–1. These results indicate that the uranyl species 

in solutions prepared by dissolving Cs2UO2Cl4 or UO2Cl2·nH2O into BMICl is [UO2Cl4]2–. 

Slight differences in the ε values and the wavelength of peak maxima in Fig. 1(a) and (b) 

might be due to the effects of Cs+ ions in BMICl system obtained by dissolving Cs2UO2Cl4 

and residual water in the sample solutions. 

Based on spectrophotometric data, to examine the electrochemical behavior of [UO2Cl4]2– in 
BMICl, CVs of the sample solutions prepared by dissolving Cs2UO2Cl4 or UO2Cl2·nH2O into 
BMICl (abbreviated as Cs2UO2Cl4/BMICl system and UO2Cl2·nH2O/BMICl system) were 
measured at 80 ˚C in the potential range of –1.0 ~ –0.4 V at various scan rates (v = 10 ~ 50 
mV s–1). A typical result for the Cs2UO2Cl4/BMICl system is shown in Fig. 2 (a). As seen 
from this figure, two peaks corresponding to one redox couple were observed around –0.72 
(Epc) and –0.65 V (Epa). The potential differences between two peaks (ΔEp) are 75 and 81 mV 
at 10 and 50 mV s–1, respectively, and close to the theoretical value (67 mV) for the reversible 
one electron transfer reaction at 80 ˚C. Furthermore, the values of (Epc + Epa)/2 is constant, –
0.687 ± 0.005 V, regardless of v (see Table 1). Similar results were also obtained from the CVs 
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for the UO2Cl2·nH2O/BMICl system at 80 ˚C as shown in Fig. 2 (b), that is, one redox couple 
was observed around –0.73 (Epc) and –0.66 V (Epa), the ΔEp values are 69 mV at 10 mV/s and 
77 mV at 50 mV/s, the values of (Epc + Epa)/2 is constant, –0.693 ± 0.001 V (see Table 1). 
From these results, it is suggested that [UO2Cl4]2– in BMICl is reduced to [UO2Cl4]3– quasi-
reversibly and that the formal redox potential (Eo) is –0.690 V in the present system.  
Hence, it should be concluded that BMICl is not applicable as the medium of the pyro-
reprocessing process, because the uranyl species in BMICl are not reduced to UO2. 
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Fig. 1. UV-visible absorption spectra of the solutions prepared by dissolving uranyl chloride 
complexes into BMICl at 80 ˚C.  (a): Complex = Cs2UO2Cl4; [UO22+] = 1.47 x 10–2 M. (b): 
Complex = UO2Cl2·nH2O; [UO22+] = 1.47 x 10–2 M.  

(a) 

(b) 
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Fig. 2. Cyclic voltammograms of the solutions prepared by dissolving uranyl chloride 
complexes into BMICl measured in the potential range from –0.1 to –0.4 V at different scan 
rates (v = 10 ~ 50 mV s–1). (a): Complex = Cs2UO2Cl4; [UO22+] = 1.47 x 10–2 M. (b): Complex = 
UO2Cl2·nH2O; [UO22+] = 1.47 x 10–2 M. Temp. = 80 ˚C. Initial scan direction : cathodic. 
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System ν/(mV･s–1) Epc / V Epa /V ΔE/V ipc /A ipa/A 

(a) 

10 
20 
30 
40 
50 

–0.729 
–0.727 
–0.725 
–0.726 
–0.723 

–0.654 
–0.653 
–0.646 
–0.647 
–0.642 

0.075 
0.074 
0.079 
0.079 
0.081 

–7.21×10–7 
–1.08×10–6 
–1.32×10–6 
–1.52×10–6 
–1.68×10–6 

6.59×10–7 
9.38×10–7 
1.13×10–6 
1.29×10–6 
1.42×10–6 

(b) 

10 
20 
30 
40 
50 

–0.752 
–0.752 
–0.754 
–0.759 
–0.762 

–0.682 
–0.678 
–0.679 
–0.679 
–0.676 

0.070 
0.074 
0.075 
0.080 
0.086 

–7.36×10–7 
–1.06×10–6 
–1.22×10–6 
–1.43×10–6 
–1.72×10–6 

4.37×10–7 
5.95×10–7 
7.09×10–7 
8.15×10–7 
9.18×10–7 

(a): [UO22+] = 1.47 x 10–2 M.   (b): [UO22+] = 1.47 x 10–2 M 

Table 1. Cyclic valtammetric data for solutions prepared by dissolving Cs2UO2Cl4 (a) and 
UO2Cl2·nH2O (b) into BMICl 

2.2 Electrochemical study on uranyl chloride in BMIBF4 
Adding UO2Cl2·nH2O to BMIBF4, precipitates were formed. Hence, supernatant solutions 
containing UO22+ were used for electrochemical experiments. The UV-visible absorption 
spectrum of supernatant is shown in Fig. 3, and is found to be similar to those of [UO2Cl4]2–

in Fig. 1. This result suggests that the uranyl species in the supernatant exists as [UO2Cl4]2–. 
The CV measurements were continuously repeated five times in the range of –1.0 ~ 1.0 V.  
The results are shown in Fig. 4. An irreversible reduction peak was observed around −0.7 V 
and gradually decreased with the repetition of the potential sweep. By wiping off the 
surface of working electrode, the reduction peak was appeared again. This suggests that the 
surface of the electrode is covered by insoluble film produced by redox reaction. Similar 
phenomenon was reported by Chagnes et al., that is, they observed the formation of a 
blocking film on the graphite electrode in CV measurements in BMIBF4 (Chagnes et al., 
2005).   

 

Fig. 3. UV-visible absorption spectrum of the supernatant solution prepared by adding 
UO2Cl2·nH2O into BMIBF4 at 80 ˚C.  [UO22+] = 5.1x10-3 mol/kg. 
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Fig. 4. Cyclic voltammograms of uranyl species in BMIBF4 (80˚C, [UO22+] = 5.1x10-3 mol/kg, 
sweep rate = 50 mV/s). 

Judging from the above results, BMIBF4 is concluded to be not applicable as the medium of 
the pyro-reprocessing process. 

2.3 Electrochemical study on uranyl chloride in BMINfO 
Figure 5 shows the UV-visible absorption spectrum of the solution prepared by dissolving 
UO2Cl2·nH2O into BMINfO at 80˚C. As seen from this figure, the absorption spectrum is 
different from those of [UO2Cl4]2– shown in Fig. 1. Although we do no have exact data on 
the structure yet, it seems likely that the uranyl species in BMINfO is present as 
[UO2Cl2(NfO)n]n-. 
 

 

Fig. 5. UV-visible absorption spectrum of the solution prepared by dissolving UO2Cl2·nH2O 
into BMINfO at 80˚C.  [UO22+] = 8.7 x 10-3 mol/kg. 

0.5

0.4

0.3

0.2

0.1

0

A
b

so
rb

an
ce

600550500450400350

Wavelength / nm

5th
4th 
3rd 
2nd 
1st 

BMINfO

www.intechopen.com



Electrochemical Studies on Uranyl(VI) Species in 1-Butyl-3-methylimidazolium Based Ionic Liquids  
and Their Application to Pyro-Reprocessing and Treatment of Wastes Contaminated with Uranium   

 

665 

Figure 6 shows CVs of neat BMINfO and uranyl species in BMINfO. As seen from this 

figure, three irreversible reduction peaks (i, ii, iii) and a sharp oxidation one (iv) appear in 

the range of −0.6 ~ −0.2 V and around 0.85 V, respectively. It is known that a sharp 

oxidation peak (iv) is due to the oxidative dissolution of reduction products deposited on 

the electrode (Shirai et al., 1998). Therefore, the sharp oxidation peak at 0.85 V is considered 

to corresponds to oxidative dissolution of U(IV) compounds deposited on the electrode.  

Thus, the reduction peaks should be assigned to multi step reduction of U(VI) to U(IV) as 

follows.    

i. U(VI) + e → U(V)  
ii. U(V) + e → U(IV) 
iii. U(VI) + 2e → U(IV)  
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Fig. 6. Cyclic voltammograms of neat BMINfO and uranyl species in BMINfO (80˚C, [UO22+] 
= 8.7 x 10-3 mol/kg, sweep rate = 50 mV/s). 

2.4 Bulk electrolysis of uranyl species in BMINfO 
Judging from the results of the CV measurements described above, it might be possible to 

recover UO2 by electrochemical reduction of UO22+ in BMINfO. Thus, bulk electrolysis of 

UO22+ (0.3 mol·kg-1) in BMINfO was carried out at −1.0 V by using cell for bulk electrolysis 

shown in Fig. 7. As a result, the deposits were produced on a carbon electrode as cathode 

and a part of such deposits was fallen to the bottom of the electrolysis cell.  The photograph 

of recovered deposits is shown in Fig. 8. After the electrolysis, the IL on the carbon electrode 

was washed away with acetone and dichloromethane, and then the surface of the carbon 

electrode was analyzed by the scanning electron microscope (SEM) and the energy 

dispersive X-ray spectrometer (EDX).  The micrograph and distribution of elements on the 

electrode surface are shown in Fig. 9.  The distribution of carbon is attributable to the carbon 

electrode.  Consequently, it was found that the deposits are uranium compounds including 

chlorine components such as uranium oxides and uranium oxychlorides.   
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Fig. 7. Cell for bulk electrolysis. 

 

 

Fig. 8. A photograph of the deposits recovered by electrochemical reduction of uranyl 
species in BMINfO. 

2.5 Summary of electrochemical properties of uranyl species in BMI based ionic 
liquids 
Electrochemical properties of uranyl species in BMICl, BMIBF4, and BMINfO were 
examined by using cyclic voltammetry. And based on such investigations, the applicability 
of ILs as the media of pyro-reprocessing processes was also examined. The results are 
summarized as follows. 

• In BMICl, the reversible redox couple was observed in CV.  This suggests that the redox 
couple corresponds to the redox couple of UO22+/UO2+ with one electron transfer. 

• In BMIBF4, an irreversible reduction peak was observed around −0.7 V and gradually 
decreased by the repetition of the potential sweep.  This phenomenon is caused by the 
formation of insoluble reduction products on the surface of the electrode.   
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(a) Micrograph of SEM 

 
Fig. 9. Micrograph of SEM and distribution of elements analyzed by EDX for the electrode 
surface after the bulk electrolysis of uranyl species in BMINfO. 
 

• In BMINfO, three irreversible reduction peaks and a sharp oxidation one were observed 
in the range of −0.6 ~ −0.2 V and around 0.85 V, respectively.  This suggests that the 
redox reactions consist of the multi step reduction of U(VI) to U(IV) and the oxidative 
dissolution of U(IV) as reduction products. 

• Electrochemical reduction of uranyl species in BMINfO was performed by bulk 
electrolysis.  As a result, deposits were observed on the cathodic electrode.  From the 
SEM-EDX analyses, it was confirmed that the deposits are uranium compounds 
including chlorine components such as uranium oxides and uranium oxychlorides.   

• These results indicate that the uranyl species in IL can be recovered electrolytically as 
uranium compounds. Hence, from the electrochemical viewpoint it is expected that ILs 
can be used as media of pyro-reprocessing processes.  

 

(c) Uranium 
 

(b) Carbon 

 

(d) Oxygen 
 

(e) Chlorine 
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• A new pyro-reprocessing method shown in Fig. 10 should be proposed. This method 
consists of three processes, i.e., first one is the dissolution of spent nuclear fuels using 
oxidant such as Cl2, second one is the recovery of UO2 by electrochemical reduction, 
and third one is the electrochemical deposition of UO2/PuO2 mixed oxide. 
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Fig. 10. Schematic diagram of proposed processes of the pyro-reprocessing by using IL as 
media 

3. Investigation on application of ILs as electrolytic media for treating wastes 
contaminated with uranium 

Most of metal and bed materials generated from uranium enrichment facilities or uranium 
refining and conversion plants are contaminated by uranium fluorides such as UF4. These 
wastes are mainly classified as the medium-level wastes. Hence, it is desired to recover 
uranium as much as possible from such wastes. Moreover, if these wastes are 
decontaminated up to the clearance level, the resulting decontaminated materials should be 
reused. As one of effective decontamination methods of metal wastes, wet chemical 
decontamination processes using inorganic or organic acids have been developed (Ikeda et 
al., 2002; Enda et al., 2006). However, from such wet processes, a relatively large amount of 
secondary wastes should be generated with treating spent acid solutions, because base 
metal part of wastes is dissolved by acid with the dissolution of contaminated part. And also 
it is reported that uranium of spent adsorbents can be recovered by electrolysis in sodium 
chloride molten salt (Amamoto et al., 2005). However, this method must be performed 
under high temperature (672ºC). Decontamination methods carried out under milder 
conditions must be preferable. Ionic liquids are expected to meet such demands. Hence, we 
investigated the solubility of UF4 in ILs and the electrochemical properties of uranium 
species dissolved into ILs 
Uranium tetrafluoride (UF4) was synthesized from yellow cake according to the reported 
method (Higgins et al., 1958). Synthesis of UF4 was confirmed using a X-Ray diffractometer 
(Rigaku, RAD-rPC). Impurities in UF4 were detected using an ICP-MS (Thermo electron Co., 
ELEMENT). Purity of UF4 was 97 %. BMICl was used as an IL. Water containing BMICl was 
removed by heating in vacuo. Water content in BMICl after drying was determined to be 0.1 
wt % using a Karl Fischer moisture content meter (Metrohm, 737 KF Coulometer). 
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3.1 Dissolution behavior of UF4 powders 
Dissolution experiments were carried out at 100ºC under the atmosphere with stirring at 100 

rpm. The UF4 powders (0.1 g, 3.2×10-4 mol) were weighed accurately and dissolved in BMICl 

solution (1.0 ml) in a beaker. After dissolution, the residual solid phases were filtered off 

and the uranium concentrations in the filtrates were measured ICP-MS. Figure 11 shows a 

plot of dissolution ratios vs. time. As seen from this figure, the UF4 powders do not dissolve 

in BMICl easily.  
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Fig. 11. A plot of dissolution ratios vs. time for the dissolution of UF4 powders (0.1 g) in 
BMICl (1.0 ml) at 100 ºC. 

The color of the dissolution solution was green after about 1 h and the powders were 

completely dissolved after around 6 h. The color of BMICl solution after complete 

dissolution of UF4 was yellowish green. However, its absorption spectrum did not show 

characteristic bands assigned to the U4+ species (Rodden, 1964). The yellowish green solution 

was further heated for 10 h under the atmosphere. As a result, the color of the solution 

changed from yellowish green to yellow. Figure 12 shows the absorption spectrum of the 

resulting solution and is similar to that of UO2Cl42- shown in Fig. 1. The ε value at maximum 

peak of 422 nm is 13.1 M-1 cm-1 and almost the same as that (about 14 M-1 cm-1) at maximum 

peak of 429 nm reported (Sornein et al., 2006). This result indicates that the species generated 

with the dissolution of UF4 powders are oxidized to uranyl(VI) by O2 under the present 

conditions. The relative slow dissolution of UF4 in BMICl should be due to that the 

oxidation process of U(IV) with O2 is slow. 

Wipff et al. have reported that in BMICl dissolving uranyl triflate (TfO-) or uranyl 

perchlorate, Cl- ions interact with uranyl(VI) more strongly than ClO4- and TfO-, and that the 

uranyl(VI) species mainly exist as UO2Cl42- (Gaillard et al., 2007). And also they have 

proposed from the results of molecular dynamics (MD) and quantum mechanical (QM) 

calculations that F- ions coordinate to uranyl(VI) more strongly than Cl-(Gaillard et al., 2007; 

Chaumont & Wipff, 2005). Based on these reports, it is suggested that the uranyl(VI)  

species with the mixed ligands of F- and Cl- should be formed in the BMICl solution 

dissolving UF4. 
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Fig. 12. UV-visible absorption spectrum of the solution prepared by dissolving UF4 into 
BMICl ([UO22+] = 8.0 x 10-2 M) 

3.2 Elecrochemistry of sample solutions prepared by dissolving UF4 into BMICl 
The cyclic voltammograms of the sample solutions prepared by dissolving UF4 (0.52 g) into 

BMICl (30 ml) were measured at 80 ºC in the potential range -2.0 – 0.95 V at 50 mV/s. In 

these experiments, a glassy carbon wire, a Pt wire, a Ag/AgCl electrode (BAS, RE-1B) with a 

liquid junction filled with BMICl were used as working, counter, and reference electrode, 

respectively. The result is shown in Fig. 13. As seen from this figure, one uncoupled 

reduction peak and one uncoupled oxidation peak are observed around -0.93 and 0.18 V, 

respectively, and the current value of the oxidation peak is smaller than that of the reduction 

peak. This result is different from that of Cs2UO2Cl4 system mentioned in 2.1. In the BMICl 

system dissolving Cs2UO2Cl4, the uranyl(VI) species were confirmed to be present as 

UO2Cl42-, and one quasi-reversible redox couple assigned as UO2Cl42- + e- = UO2Cl43- was 

observed around -0.72 and -0.65 V. These support the above suggestion that the uranyl(VI) 

species with the mixed ligands of F- and Cl- are formed in the BMICl solution dissolving 

UF4, and suggest that the reduction product of the uranyl(VI) complexes with the mixed 

ligands of F- and Cl- are less stable than that of UO2Cl42-, i.e., UO2Cl43-. Sornein et al. have 

reported that the uncoupled reduction peak should correspond to the following reduction 

processes (Sornein et al., 2006). 

Uranyl(VI) + e- → Uranyl(V) 

Uranyl(V) + e- → UO2 

From these results, it is expected that the uranium component can be recovered 
electrolytically from the solutions generated in the decontamination treatments of the 
wastes contaminated with UF4 in BMICl. 
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Fig. 13. Cyclic voltammograms of the solution prepared by dissolving UF4 in BMICl ([UO22+] 
= 8.0 x 10-2 M) and neat BMICl at 80 ºC. Initial scan direction: cathodic. 

3.3 Application to decontamination of the steel wastes contaminated with uranium 
Samples of steel waste were prepared from the dismantled carbon steel cylinders which had 
been used for storing UF6 (see Fig. 14). The chemical forms of uranium species adhered on 
the steel wastes were confirmed to be UF4 by measuring XRD. Chemical forms of iron 
species on surfaces of contaminated steel wastes were confirmed to be FeF3 and Fe2O3 by X-
ray Photoelectron Spectroscopy (JEOL, JPS-9000MC) using Mg Kα radiation of 1253.6 eV.  
 

 

Fig. 14. A photograph of sample of steel waste 
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The contaminated steel wastes were cut into the quarter sector (28mm Φ × 6 mm thick, 
central angle 90°), and soaked in BMICl (2.0 ml) at 100 ºC under the atmosphere. After 
decontamination, the ILs remained on surfaces of steel wastes were washed off with 
ethanol. Uranium concentrations (Bq/g) of decontaminated steels were evaluated as the 
ratio of radioactivity due to U of samples to total weight of samples.  
Figure 15 shows a plot of U concentrations (Bq/g) against time in the dissolution of adhered 
uranium by soaking the contaminated steel waste into BMICl. The U concentrations are 
found to drop below the temporary proposed clearance level (1.0 Bq/g) within 3 h under the 
present conditions (IAEA, 2004).  
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Fig. 15. A plot of uranium concentrations of steel waste vs. soaking time for the dissolution 
in BMICl at 100 ºC under the atmosphere 

Furthermore, the XPS spectra for the top surface of the steel waste were measured after 

decontamination treatment. As a result, the peaks due to UF4 and FeF3 were found to 

disappear. This indicates that the FeF3 component is also dissolved with the dissolution of 

UF4 in BMICl. 

As mentioned in 3.2, it is suggested that the uranium component can be recovered 

electrolytically from the BMICl solution dissolving UF4. Hence, it should be possible to 

recover only uranium component from the solutions after decontamination of the steel 

wastes in BMICl by controlling electrolytic potential. 

3.4 Summary for application of ILs to the treatment of wastes contaminated with 
uranium 
Dissolution behaviour of UF4 in BMICl and the electrochemical properties of dissolved 
uranium species were investigated. Based on such basic studies, the feasibility of 
decontamination of steel wastes contaminated uranium using BMICl as medium was also 
examined. The results are summarized as follows. 

• UF4 can be dissolved completely in BMICl by heating under the atmosphere. 
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• From the UV-visible absorption spectra of dissolution solutions, it was found that the 
dissolved uranium species are oxidized to uranyl(VI) by O2 and that the resulting 
uranyl(VI) species are the complex with the mixed ligands of F- and Cl-. 

• The CV measurements suggest that the resulting uranyl(VI) species with the mixed 
ligands of F- and Cl- are reduced to UO2 electrochemically. 

• The steel wastes contaminated with UF4 can be decontaminated below the temporarily 
proposed clearance level (1.0 Bq/g) within 3 h by soaking in BMICl at 100 ºC. 

• It should be possible to recover only uranium component from the solutions after 
decontamination of the steel wastes in BMICl by controlling electrolytic potential. 
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