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1. Introduction

Ionic Liquids (ILs) are a new class of purely ionic, salt-like materials that are liquid at
unusually low temperatures. The official definition of ILs uses the boiling point of water as a
point of reference: “Ionic Liquids are ionic compounds which are liquid below 100 °C”. In
particular, salts that are liquids at room temperature are called room-temperature ionic
liquids (RTILs). RTILs, also known as organic liquid, molten, or fused salts, are a class of
non-molecular ionic solvents with low melting points. The accepted definition of an RTIL is
any salt that has a melting point lower than ambient temperature.

Ionic liquids (ILs) can be composed of a large number of cations and anions. Most common
RTILs are composed of unsymmetrically substituted nitrogen-containing cations (e.g.,
imidazolium, pyridinium, pyrrolidinium) with organic or inorganic anions (e.g., Cl-, PFs-,
BFy), Fig. 1.

First RTIL was reported by Wilkes et al. in 1982 (Wilkes et al., 1982). It was based on the 1-
alkyl-3-methylimidazolium cation. Thereafter, many ILs containing a variety of cations and
anions of different sizes have been synthesized for specific applications.

At the same time as ionic liquids become commercially available more and more (more than
350 ILs are now commercially available (Koel, 2009)), they show the interesting perspectives
in different fields of researches such as catalysis, materials science, sensors, biosensors and
separation technology. Since these techniques are in developing, there is always a need to
design and synthesis many new ILs. An estimation predicts the number of possible ILs on
order of 1018 (Koel, 2009).

A variety of cations and anions can be form ILs. The most common classes of ILs are
imidazolium, pyridinium, pyrrolidinium, quaternary ammonium, and tetraalkylphosphonium
ILs (Fig. 1). Of these, the most popular in experimental laboratory worldwide are
undoubtedly 1,3-dialkylimidazolium salts, primarily due to the attractive and suitable
physical properties.

The structure of IL and its interaction with the environment is extremely important for
evaluating and selecting ILs for special application.
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Fig. 1. The most common cations and anions used in construction of ILs

Electrochemical sensors and biosensors are the most rapidly growing class of chemical
sensors, in analytical chemistry. Since the 1930s, these devices have found the most practical
applicability in different fields due to the low cost, simplicity, portability, and high
selectivity. A chemical sensor is a device that provides continuous information about some
specific chemical properties of its environment. An ideal chemical sensor provides a certain
type of response that is directly related to the quantity of a specific chemical species. Each
chemical sensor composed of a transducer which is a device that provides continuous
information about its environment, and converts the chemical response into a signal that can
be detected by modern instrumentations. The second part which is the most important part
of a chemical sensor is a chemically selective material, or the recognition element, which
recognizes and differentiates between the response of the analyte and that of its
environment. According to the type of signal transduction, chemical sensors can be
classified as electrical, optical, mass or thermal sensors. Due to the considerable
delectability, simplicity and low cost, electrochemical sensors receive more interest in
comparison with optical, mass and thermal sensors which can be applied in a wide range of
clinical, industrial, environmental and agricultural analyses.

An electrochemical biosensor is an analytical device which converts a biological response
into an electrical signal. The term 'biosensor' is often used to cover sensor devices used to
determine the concentration of substances and other parameters of biological process.
Transduction of the biological or chemical signal in to the electrical signal can be done by
amperometry, potentiometry and conductometry.

ILs due to their interesting properties have recently found various applications in
construction of electrochemical sensors and biosensors in order to modify the responses.
This chapter summarizes the properties of ILs and discusses their importance in
electrochemistry. Then, it review ILs advantageous in construction of electrochemical
sensors and biosensors.

2. General properties of ionic liquids

In general, ILs have some unique properties, such as a low vapor pressure, good thermal
stability, high polarity, tunable viscosity and an ability to dissolve many compounds, a wide
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electrochemical window, the ability to dissolve many compounds high conductivity, high
heat capacity and solvents available to control reactions. Although they have wide range of
polarity and hydrogen-bonding ability, they are liquid from 180 K to 600 K.

The physical and chemical properties of ILs depend mostly on the nature and size of both
their cation and anion constituents. The main structural factors of the cation are symmetry,
charge density, number of carbon atoms in the alkane substituent and its flexibility, the
rotational symmetry of the head ring, the cyclic and branched structures, and the functional
tail group. Similar structural factors have an influence on the properties of anions, including
charge delocalization either by a large volume of the central atom, or by the presence of the
perfluoroalkyl chain.

ILs are mostly denser than water with values ranging from 1 for typical ILs to 2.3 g cm™3 for
fluorinated ILs. Density strongly depends on the size of the ring in the cation, on the length
of the alkyl chain in the cation, on the symmetry of ions and on the interaction forces
between the cation and the anion. The ILs with aromatic head ring, in general, present
greater densities than pyridinium head ring ILs and than do imidazolium ring ILs. By
increasing the symmetry of the cations, density will increase. ILs with functional group
reveals higher densities than those of alkyl chains.

Transport properties play an important role in chemical reactions, electrochemistry, and
liquid-liquid extraction. This concerns mainly the viscosity of ILs and their solutions with
molecular solvents. Compared with typical organic solvents, ILs are much more viscous.
Viscosity of ILs, typically at the level of 10-500 cP at room temperature, is much higher than
water (n(H20) = 0.89 cP at 298.15 K) and aqueous solutions. The viscosity of ILs is
determined by van der Waals forces and hydrogen bonded structures. Also, electrostatic
forces can affect viscosity. The viscosities of the same class of ILs (with the anion held
constant) increase as the alkyl group is lengthened. Increasing the alkyl chain length from
butyl to octyl of a series of 1-alkyl-3-methylimidazolium cations, increases the
hydrophobicity and the viscosity of the IL, while densities decrease. This is due to the
stronger van der Waals forces between cations, leading to an increase in the energy required
for molecular motion (Endress & Abedin, 2006). It is expected that the replacement of the
alkyl chain by a hydroxyl functional group would increase the viscosity by increasing the H-
bonding. As previously reported by Okoturo and Van der Noot viscosity temperature
dependence in ILs is more complicated than in most molecular solvents. Most of ILs do not
follow the typical Arrhenius behaviour. Most temperature studies fit the viscosity values
into the Vogel-Tammann-Fulcher (VIF) equation, which adds an additional adjustable
parameter (glass transition temperature) to the exponential term. In general, all ILs show a
significant decrease in viscosity as the temperature increases (Okoturo and Van der Noot,
2004).

As a type of substances, ILs have been defined to have melting points (m.p.) below 373 K,
however, most of them are liquid at room temperature. A typical ILs, e.g., 1-ethyl-3-
methylimidazolium ethylsulfate has m.p. of <-20 °C) while a typical inorganic salt e.g. NaCl
has m.p. of about 801°C. In this IL, the charge of the cation as well as the charge of the anion
is distributed over a larger volume of the molecule by resonance. As a consequence, the
solidification of the IL will occurred at lower temperature. However, in some long aliphatic
side chains, a glass transition is observed instead of a melting point. In general, salts with a
halogen anion, reveal to a higher melting temperature which are known as the precursors of
ILs. Both, cations and anions have influence on the lowering melting points of ILs. Typically,
the increase in anion size and its asymmetric substitution leads to a decrease in the melting
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point. Also, the size and symmetry of the cation have an important impact on the melting
points. For the longer alkane chain as Cyo, the melting point increases. The short chain alkyl
substituents in 1,3-dialkylimidazolium salts decreases the melting temperature.

Most of ILs have a glass transition temperature about 200 K (Domanska 2009). It is very
interesting that also for the glass transition temperatures the structure of cations is
important. However, the changes of glass transition temperatures with changing the length
of the alkyl chain are much smaller than the melting temperatures. Common ILs are
thermally stable up to 700 K. Thermal stability is limited by the same factors that contribute
to the melting temperature. Branching the alkyl chain decreases the thermal stability of
imidazolium ILs. Thermal stability increases with increasing anion charge density if the
cationic charge density is also high.

Many synthetic reactions are faster in RTILs, and this saves time and or energy (Anderson et
al., 2006). Compare to traditional organic solvents, a few volatile organic compounds are
produced due to the little vapour pressure of ILs. The potential for explosions is minimized
in RTIL because many RTILs have little or no flammability and no flash point. In many
cases, products can be extracted from the RTIL after reaction, and the RTIL can be recovered
and recycled.

3. The importance of ionic liquids in electrochemistry

Among the most important characteristics of ionic liquids, ionic conductivity, the width of
the electrochemical potential window, viscosity, hydrophobicity and non-volatility cause
the use of these solvents in electrochemical devices. In general, an ideal electrolyte should
has high ionic conductivity (>10-4 S/cm), fast ion mobility during redox reactions (>10-14
m2/V.s), large electrochemical potential windows (>1 V), and low volatility. RTILs exhibit
many of these properties and characteristics.

Non-flammability, high ionic conductivity, electrochemical and thermal stability of ILs are a
unique properties for used as an electrolyte in electrochemical devices like in batteries,
capacitors, fuel cells, photovoltaics, actuators, and electrochemical sensors (Wei & Ivaska,
2008).

Most properties of ILs relevant to electrochemistry are centrally based on the following
three properties: conductivity, viscosity, and electrochemical potential windows.

3.1 Large electrochemical window

One of the very important properties of ILs is their wide electrochemical potential window,
which is a measure for their electrochemical stability against oxidation and reduction
processes. In fact, the electrochemical potential window is a voltage range between which
the electrolyte is not oxidized or reduced. This value, on the one hand, characterizes the
electrochemical stability of ionic liquids, i.e., the limits of the window correspond to the start
and the end of the electrochemical decomposition of the involved ions. On the other hand,
the width of the electrochemical window governs the range of potentials available for the
electrochemical processes not affecting the solvent.

The electrochemical potential window is sensitive to impurities. Halides are oxidized much
easier than organic anions. In organic anions the negative charge is delocalized over larger
volume. Thus, contamination with halides cause to lower electrochemical stabilities.
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3.2 lonic conductivity

The conductivity of an ionic liquid mainly depends on the mobility of its cation because in
general the diffusion coefficients of ILs cations are higher than anions. Ionic liquids based on
imidazolium and pyridinium cations have the highest ionic conductivity (~1 and 10-1 S/m,
respectively) (Every et al., 2000). Typical RTILs have conductivities of >10-2 S/cm which are
often useless as electrolyte. This can be problematic because IL electrolyte ions also migrate
along the potential gradient. However, ILs possessing a zwitterionic structure in which the
cation and anion are not expected to migrate with the potential gradient are useful in
construction of an electrochemical cells. They showed much lower ionic conductivities in the
range of 10-5-10-7 S/cm. (Wilkes et al., 1982; Anderson et al., 2006). The electrochemically most
stable materials having comparable small conductivities like N-butyl-N-methylpyrrolidinium
bis(trifluoromethylsulfonyl)imide, triethylsulphonium bis(trifluoromethylsulfonyl)imide, and
N-methyl-N-trioctylammonium bis(trifluoromethylsulfonyl)imide. These materials are good
electrolytes for use in batteries, fuel cells, metal deposition, and electrochemical synthesis of
nano-particles.

The ILs showing the highest conductivities, e.g. 1-ethyl-3-methylimidazolium thiocyanate
and dicyanamide exhibit the lowest electrochemical stabilities. Nevertheless, these materials
are good candidates for use in any application where a high conductivity combined with
thermal stability and non-volatility is necessary.

When conductivity and electrochemical stability are both required in an application, e.g., in
supercapacitors, sensors and biosensors, imidazolium-based ILs with stable anions e.g.,
tetrafluoroborate or trifluoromethylsulfonate are applied. Table 1 summarized the
electrochemical conductivity of some common ionic liquids which can be suitable for
electrochemical sensors and biosensors.

Electrical
Entry| Name conductivity (S/m)
In25°C*
1 [1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 0.26
1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide
2 : 0.40
[Camim] [NTHf;]
3 |1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide 0.74
4 |1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide 0.22
5 |1-butyl-3-methylimidazolium hexafluorophosphate; [BMIM][PFs] 0.14
6 |1-butyl-3-methylimidazolium tetrafluoroborate ((BMIM][BF4]) 0.35
7 |1-butyl-3-methylimidazolium methylsulfate 0.21
8 |1-butyl-3-methylimidazolium trifluoroacetate 0.31

*Data are according to “Ionic Liquids Database - (ILThermo);
http:/ /ilthermo.boulder.nist.gov/ILThermo/ pureprp.uix.do”.

Table 1. Electrical conductivity of some ILs which can be used in construction of
electrochemical sensors and biosensors

As it can be seen from Table 1, effect of ILs cation on electrical conductivity of the ILs is
more than its anion. Nos. 3 to 5 have the same cations but the difference in the electrical
conductivity are not too much. While, Nos. 1 to 4 the difference is more.
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3.3 Hydrophobicity

Miscibility with water is often understood by hydrophobicity. The hydrophobicity mainly
depends on the composition of ILs. From the point of view of hydrophobicity (solubility in
water), ILs can be divided into two groups. Water-immiscible or hydrophobic IL like 1-
butyl-3-methylimidazolium  hexafluorophosphate  ([BMIM][PF¢]) and  1-decyl-3-
methylimidazolium bis(trifluoro-methylsulfonyl)imide ([DMIM][Tf.N]) and water-miscible
or hydrophilic ILs such as [BMIM][BF;] (Wei & Ivaska, 2008). The first group due to the
immiscibility with water are a good candidate for using in construction of electrochemical
sensors and biosensors because these electrochemical devices contact water for a long period
of operation. The second group are unstable in aqueous solutions and are not suitable for
using in devices which are in contact with water.

The miscibility of ILs in water is strongly dependent on their anions (Wei & Ivaska, 2008).
Cl, Br, I, NO3~, CH3COO- and CF3COQO- are anions that make the ILs miscible with water.
ILs composed of anions such as PFs~ and Tf,N- are in immiscible with water. Miscibility of
water of ILs based on anions such as BF;~ and CF3SOs~ is dependent on the structure of the
cations, even though they in general are miscible with water. The miscibility will decrease
with the increase in the cation chain length which is due to the increased surface activity of
the longer chain cations (Fitchett et al. 2005a,b; Wei & Ivaska, 2008).

3.4 Viscosity

Since ILs have much higher viscosities than normal electrochemical supporting electrolytes,
they have an effect on the diffusion coefficients of species. A previous reported study
compares the diffusion coefficients of a neutral molecule and the radical cation produced
after an electrochemical reaction in an IL and acetonitrile. The diffusion coefficient of the
radical cation was consistently about half that of the neutral molecule. In contrast, in
acetonitrile, the ratio of the diffusion coefficients was nearly 60% higher, an indication that
viscosity and charge have considerable effects on the transport of diffusing species in IL
solutions. Table 2 listed viscosity of some common ILs suitable for the electrochemistry.

Viscosi
Entry Name o5 :ZZ (*P)

1 1,2-dimethyl-3-propylimidazolium tetrafluoroborate 0.377
2 1-butyl-3-methylimidazolium

bis[(trifluoromethyl)sulfonyl]imide 0.069

[C4mim] [NTfQ]
3 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide 0.047
4 1-butyl-1-methylpyrrolidinium 0.074

bis[(trifluoromethyl)sulfonyl]imide ]
6 1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 0.096
5 1-octyl-3-methylimidazolium tetrafluoroborate; [Csmim] [BF,] 0.439
7 1-butyl-3-methylimidazolium methylsulfate 0.21
8 1-butylpyridinium tetrafluoroborate 0.163

*Data are according to “Ionic Liquids Database - (ILThermo);
http:/ /ilthermo.boulder.nist.gov/ILThermo/ pureprp.uix.do”.

Table 2. The viscosity of some ILs suitable for electrochemistry
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4. lonic liquids used in electrochemical sensors

Some studies revealed that ILs can be useful as electrolytes in batteries, electrochemical cells,
and electroplating. However, they have been recently used also in construction of
electrochemical sensors and biosensors. An electrochemical sensor is an analytical device
which converts a chemical response into an electrical signal. Most of the sensors which are
used in electrochemical measurements and have ability to modify with ionic liquids are ion
selective electrodes based on polymeric membrane, carbon paste electrodes, and all solid
state electrodes.

4.1 lon selective liquid membrane sensors

Ion selective electrodes (ISEs) have been developed over four decades as sensitive,
inexpensive and handy electrochemical sensors to selectively determine the concentration
(activity) of ions in aqueous media. Typical ion selective membrane sensors are composed of
a hydrophobic plasticized polymeric membranes or films that are doped with one
ionophore in addition to a lipophilic ion-exchanger that plays an important role to the
sensor response. The membrane matrix should acts as a solvent of low viscosity for all active
sensing materials in the membrane. Therefore, it is required to use a plasticizer that can
reduce the glass transition temperature of the polymer to below room temperature and
increase the elasticity of the polymeric membrane and helps providing mechanical stability.
Plasticizer also can improve the solubility of the sensing materials in the membrane (Peng et
al., 2008).

According to the mentioned above, ILs can be excellent materials to prepare ISEs
membranes because they have polymer plasticizing ability and ionic nature. Hence, they can
be used as an ionic additive and plasticizer at the same time.

One of the key factors which helps the ions extract to the liquid membrane is a plasticizer. It
is well known that the selectivity and working concentration range of the membrane sensors
are affected by the nature and amount of the plasticizer used. This is due to the influence of
the plasticizer on the dielectric constant of the membrane phase, the mobility of the
ionophore molecules. Dielectric constant of the plasticizer can affect the selectivity manner
of the ion selective membrane electrode. For example, for the extraction of polar ions, a high
polar plasticizer or solvent mediator is required, and in contrast, for extraction of a
lipophilic cation a low polarity plasticizer is better. Sometimes, very polar plasticizers lead
to the extraction of the polar interfering ions which may have negative effects on the
selectivity behaviour of the sensor, thus, a low polarity solvent mediator is more suitable. A
variety of dielectric constant and polarity of the ILs offers a various number of plasticizer
choices. However, it should be noted that hydrophobic (immiscible) ionic liquids are
suitable for use in liquid membrane.

Recently, tetraphenylborate derivatives are used as cationic additives and lipophilic
tetraalkylammonium salts are applied as anion exchangers. The hydrophilic counter ions of
these lipophilic additives are exchanged with the primary ion when the ISE is conditioned in
specific aqueous solution.

The incorporation of lipophilic ILs in the ion-selective membrane electrode as an ion-
exchanger diminishes the ohmic resistance and enhances the response behaviour and
selectivity manner and also, in the case of the poor extraction capability, increases the
sensitivity of the membrane electrodes.

www.intechopen.com



650 lonic Liquids: Applications and Perspectives

In 2005, Coll et al. (Coll et al., 2005) reported using the hydrophobic IL ([BMIM][PFs]) to
prepare the poly(vinyl chloride) (PVC) membrane. A high selective response to sulfate
anion was observed. They showed that ILs can be used as ionic additives in conventional
ISE membranes. The ionophore used in this electrode polyazacycloalkane.

In 2006, Shvedene et al. (Shvedene et al., 2006) have used two ILs in different polymer
membranes both as the plasticizer and the ion-exchange additive. The compounds 1-butyl-
2,3-dimethylimidazolium  bis(trifluoro-methylsulfonyl)imide  ([BDMIM][Tf,N]) and
dodecylethyldiphenylphosphonium bis(trifluoro-methylsulfonyl)imide ([DEDPP] [TfN])
were used to plasticize the PVC and poly(methyl methacrylate) (PMMA) membranes,
respectively. Good and stable response to relatively hydrophobic cations and anions were
obtained with the proposed membrane compositions.

In 2008, Nishi et al. showed that hydrophobic RTILs can be used as a non-volatile ionic
medium for ion-selective liquid membrane sensors. They used a hydrophobic RTIL,
trioctylmethylammonium bis(nonafluorobutylsulfonyl)imide ([TOMA*][C4CsN-]) in a K* ion
selective liquid membrane sensor (Nishi et al., 2008). The phase-boundary potential at the
interface between an aqueous KCl solution and ILs, shows the Nernstian response to K*.
Dicyclohexano-18-crown-6 (DCH13sCs) was used as an ionophore in the membrane. The
complex formation constant of K+ with DCH;13Cs in ([TOMA*][C4CsN-] is estimated to be on
the order of 10° from the upper detection limit using a partition equilibrium model in the
presence of a neutral ionophore.

In 2008, Peng et al. (Peng et al., 2008) also used RTILs as both ion-exchanger and plasticizer
for PVC-based ion-selective membranes. 1-Methyl-3-octylimidazolium chloride (MOImCI)
and trihexyltetradecylphosphonium chloride (THTDPCI) can plasticize PVC to form flexible
ion-sensing membranes. PVC-MOImCI membrane without additional ionophore and ion-
exchanger demonstrated Nernstian response to sulfate ion with slope of 29.1 mV/decade in
the concentration range of 10-5 to 10-1 M. PVC-MOImCl-based electrode have fast response
time within 10 s and wide pH independent range of 3-10. PVC-THTDPC] membrane
exhibited stable and Nernstian response to different anions and the selectivity followed the
Hofmeister series.

4.2 Carbon Paste Electrodes (CPEs)

Most of potentiometric carbon paste electrodes reported are based on incorporation of a
sensing material into the carbon paste. The carbon paste usually consists of graphite powder
dispersed in a non-conductive mineral oil such as paraffin.

Incorporation of mineral oil gives CPEs some disadvantages. Mineral oil is not component-
fixed since it is derived from refining of petroleum and processing of crude oil. As a result,
contaminants or matrix components may unpredictably effect on detection and analysis. In
addition, the mechanical stability of CPEs rests somewhere between that of liquid
membrane electrodes and solid state electrodes.

Carbon paste electrodes (CPEs) have attracted attention as ion selective electrodes mainly
due to their improved renewability, stable response, and low ohmic resistance when
compared to membrane electrodes (Javanbakht et al. 2007; Norouzi et al., 2010; Ganjali et al.,
2009a, 2010).

Recently, RTILs have been widely used in construction of carbon paste electrodes (CPEs).
These sensors are, in turn, called carbon ionic liquid electrodes (CILEs) (Safavi et al., 2007;
Ganjali et al. 2009b,c; Faridbod et al. 2010). RTILs are a good choice as binders in carbon
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paste electrodes due to their chemical stability, low vapor pressure, low toxicity, low
melting temperature, high ionic conductivity and good electrochemical and thermal stability
(Maleki et al., 2006). Using room temperature ionic liquids instead of paraffin oil in the
carbon paste yields more efficient extraction of ions with high charge density into the carbon
paste surface. This is due to the much higher dielectric constant of the ionic liquids as binder
compared to paraffin oil (Ganjali et al. 2009b,c; Faridbod et al. 2010).

Due to its mechanical strength, the IL CPE could be applied as an effective flow-through
detector in flowing streams, and since a mixture of IL and graphite is easily moldable, the
fabrication of different electrode geometries is completely feasible. The favorable
electrochemical response, high reversibility, sensitivity, and selectivity observed for these
electrodes toward molecules together with its resistance to electrode fouling make it an
excellent candidate for the construction of a new generation of sensors.

Recently, carbon nanotubes (CNTs) have also been added to the carbon paste (Ganjali et al.
2009b,c; Faridbod et al. 2010). CNTs have very interesting physicochemical properties, such
as an ordered structure with a high aspect ratio, ultra-light weight, high mechanical
strength, high electrical conductivity, high thermal conductivity, metallic or semi-metallic
behavior and high surface area (Ajayan 1999). The combination of these characteristics
makes CNTs unique materials with the potential for diverse applications.

Our research group, recently used [bmim]BF; in order to modify the response of an erbium
carbon paste potentiometric electrode (Faridbod et al., 2010). The general procedure to
prepare the carbon paste electrode was as follows: Different amounts of the ionophore [5-
(dimethylamino) naphthalene-1-sulfonyl-4-phenylsemicarbazide] (NSP), along with an
appropriate amount of graphite powder, ionic liquid and MWCNTs were thoroughly
mixed. The resulting mixture was transferred into a glass tube with 5mm i.d. and a height of
3 cm. After homogenization of the mixture, the paste was carefully packed into the tube tip
to avoid possible air gaps, which often enhance the electrode resistance. A copper wire was
inserted into the opposite end of the CPE to establish electrical contact. The external surface
of the carbon paste was smoothed with soft paper. A new surface was produced by scraping
out the old surface and replacing the new carbon paste. The electrode was finally
conditioned for 48 h by soaking it in a 1.0x10-3 mol L-1 Er(NOs;)s solution. Using RTILs
instead of paraffin oil in the carbon paste yield smore efficient extraction of Er(Ill) (which is
a cation with high charge density) into the CPE. This is due to the much higher dielectric
constant of the RTIL binder when compared to paraffin oil. Using MWCNTs in the carbon
paste improves the conductivity and, therefore, conversion of the chemical signal to an
electrical signal. Carbon nanotubes have many properties that make them ideal as
components in electrical circuits, including their unique dimensions and their unusual
current conduction mechanism. The performance of the Er(Ill) carbon paste sensor can be
greatly improved by using RTIL instead of mineral oil (paraffin), and also by using
MWCNTs as enhanced signal transducers. The modified CPEs show better potentiometric
response than unmodified CPEs in terms of sensitivity, Nernstian slope, linear range, and
response stability. These are important characteristics of ion selective electrodes. The
proposed sensor exhibits a long lifetime (about three months). The best performance for the
modified sensor was obtained with an electrode composition of 20% [bmim]BF4, 20% NSP,
45% graphite powder and 15% MWCNT. This particular sensor formulation exhibits a
Nernstian response (19.8+0.3mVdecade—1) toward Er(IIl) ions in the range of 1.0x10-7 to
1.0x10-1 mol L-1 with a detection limit of 5.0x10—8 mol L—1. The proposed modified Er(III)
sensor can be used over the pH range from 3.5 to 9.0.
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In addition to potentiometric measurements, carbon paste modified with ILs have more
been used in other electrochemical sensors, particularly voltammetric sensor. For the first
time, in 2005, Liu et al. introduced using imidazolium salt functionalized by polyelectrolyte
in carbon paste electrodes (Liu et al., 2005). In voltammetric carbon paste sensors, as well as
advantages mentioned in potentiometric carbon paste sensors, addition of traces of the ILs
increased the electrocatalytic activity of the electrode. Maleki et al. used N-octylpyridinium
hexafluorophosphate (OPFP) as a binder in a carbon paste electrode (Maleki et al., 2006).
This type of electrode has lower ohmic resistance than CPE and gives very reproducible and
sensitive voltammetric results. The electrocatalytic activity of the ILs 1-octyl-3-
methylimidazolium hexafluorophosphate [OMIM][PF¢] in carbon paste electrode was
investigated by using the redox probe Fe(CN)s*~/4- (Maleki et al., 2007). Trace amount of
chloride has been measured by linear sweep, square wave and cathodic stripping
voltammetry using [BMIM][BF4], [BMIM][Tf,N] and [BMIM][PF] (Villagran et al., 2004). In
another report a carbon paste base ILs was used in a flow-injection system with a
voltammetric detector (Shen et al. 2007). The electroactive compounds to be determined can
diffuse better from the eluent into the thin layer of the ionic liquid on the surface of a carbon
paste electrode as a working electrode.

4.3 All solid state sensors

All-solid-state sensors are a kind of potentiometric sensors which are more durable and can
be miniaturized. The potential of the sensor to be miniaturized is an additional requirement
that can give a lot of new applications to this device. Solid state ISEs are based on
conducting polymers as the transduction layer in the electrode construction. Although the
fabrication of all-solid-state sensor, which do not require any internal filling solutions, is one
way to achieve durable sensors, the design of a proper solid contact between the ion-
selective membrane and the electronic conductor is a difficult challenge in the way of
obtaining reliable all solid-state electrodes.

Application of ILs in construction of all-solid-state sensor has recently been reported by
Maminska et al. (Maminska et al., 2006). They used 1-dodecyl-3-methylimidazolium
chloride [DMIM][CI] in PVC membranes. In this way, the electrode showed good potential
stability and reproducibility. In 2007, Kakiuchi et al. have also introduced a new solid-state
reference electrode (Kakiuchi et al., 2007). A new type of Ag/AgCl reference electrode is
consists of a Ag/AgCl electrode coated with a AgCl-saturated with a hydrophobic ionic
liquid ionic liquid, 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide
([Csmim*][C1C1N-]), instead of the internal aqueous solution. The [Csmim*][C;C;N-] phase
plays dual roles, that is, as a medium dissolving AgCl and an ionic-liquid-type salt bridge
upon contact with an aqueous solution. This new class of reference electrodes opens the way
for a variety of miniaturized and solid-state reference electrodes.

There is another report in 2009 (Chernyshov et al. 2009) in which ILs that melt slightly above
room temperature (and may be called low-melting ionic solids, LMISs) were used as sensing
materials for the detection of ions in aqueous solutions. In this work, Chernyshov et al. used
a simple method to prepare solid-contact ion-sensitive electrodes based on the consecutive
melting and further solidification of the LMISs. Indeed, instead of using plasticizer, ion-
exchanger polymeric matrix, they used LMIS in the potentiometric sensor. A potentiometric
response toward a number of anions and the possibility of altering the selectivity by
incorporating additional ionophores into the LMIS matrix was studied in this work.
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5. lonic liquids used in electrochemical biosensors

An electrochemical biosensor is an analytical device which converts a biological response
into an electrical signal. In general, it is difficult to exchange the electron between an
enzyme and solid surface of the electrodes directly. This is because of the inaccessibility of
its redox center and loss of bioactivity of the enzyme due to the conformational changes by
adsorption on the electrode surface. ILs have shown good compatibility with biomolecules
and enzymes, and even whole cells. Thus, ILs can be used in electrochemical biosensors
typically as both binder and conductor. Common ILs advantages observed when they
incorporate into the biosensors include higher conductivity, good biocatalytic ability (Park,
S. & Kazlauskas, 2003), long-term stability (including stability at high temperature),
superior sensitivity, improved linearity, better selectivity, and the ability to fabricate third-
generation biosensors with direct (without using mediator) electron transfer between
protein and electrode.

ILs have a wide electrochemical potential window. The difference between the potentials of
their anodic (E.) and cathodic (E;) decomposition is usually greater than 3 V (Ohno, 2005),
while for aqueous electrolytes is about 1.2 V. Because of this remarkable property of ionic
liquids, they find wide use in electrochemical biosensors.

Recently, some authors have reported increased stability of enzymes in ILs compared with
stability in some organic solvents (Lozano et al.,, 2001; Laszio, et al. 2002; Park, S. &
Kazlauskas, 2003; Persson & Bornscheuer, 2003). ILs were also found to act as agents to
stabilize proteins effectively at high temperatures (Baker et al.,, 2004). [BMIM][BE4],
[BMIM][PFs], [OMIM][PF¢], 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate
[HEMIM][BF,], and Butylpyridinium hexafluorophosphate ([BP][PFs]) was widely used in
construction of electrochemical biosensors due to their very good biocompatibility.

Most investigations to date have focused on the amperometrically determined biocatalytic
activity of common enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP),
or various other heme proteins (e.g.,, Hb, Mb) incorporated into electrodes. Laszlo and
Compton have also reported the catalysis of hemin activated by an electron acceptor in IL
solutions and it was found that the activity of hemin increased with the enhanced amount of
IL in the methanol-IL system (Laszlo & Compton, 2002). Dramatic enhanced activity and
thermal stability of horseradish peroxide (HRP) were obtained when it was immobilized it
in the [BMIM][BF4] based sol-gel matrix (Liu et al. 2005a). Direct electrochemical response of
HRP (Liu et al. 2005b), myoglobin (Ding et al., 2007) and Hb (Sun et al., 2007) have been
observed on IL modified electrodes. Direct electrochemical reduction of hemin has been
studied by cyclic voltammetry and chronocoulometry in the ILs, [BMIM][PFs] and
[OMIM][PF¢] (Compton & Laszlo, 2002).

Nafion films have been used widely in construction of electrochemical biosensors. Nafion,
due to its easy fabrication, good electrical conductivity, high chemical stability and good
biocompatibility, has been used as a protective coating material for enzyme immobilization.
Mixture of nafion with ILs can improved the coating ability and stability. Nafion-
[BMIM][PFs] composite film has been reported to help immobilization of enzyme HRP on
the glassy carbon electrode (Chen et al. 2007). Paraffin can also be replaced by [BMIM][PF¢]
as binder in H,O» and nitrite carbon paste biosensor (Sun et al., 2007).

Yu et al also reported that the water-miscible imidazolium-based ILs can interact with
glassy carbon electrode and form molecular films on the electrode surface (Yu et al. 2005).
Various approaches have been investigated to use ionic liquids with carbon nanotube in
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biosensors. One interesting approach involves the use of multiwall carbon nanotube-IL
(MWCN-IL) modified glassy carbon electrodes (GCEs). In this approach, MWCNs was
thoroughly mixed with the ILs, by grinding them together in a mortar to create a gel-like
paste which was then applied to the surface of a cleaned GC electrode. Using a platinum
wire and a saturated calomel electrode as auxiliary and reference electrodes, respectively,
cyclic voltammograms (CVs) can be measured. An immediate advantage of the MWCN-IL is
a larger peak current with smaller peak separations, an indication of faster electron
transport to the electrode surface.

In 2010, a nano-composite material consisting of amine functionalized multi-walled carbon
nanotubes and a room temperature ionic-liquid, 1-butyl-3-methylimidazolium
tetrafluoroborate, was reported to use in construction of a novel catalase based biosensor for
the measurement of hydrogen peroxide. The modified electrode exhibited a quasi-reversible
cyclic voltammogram corresponding to the Fe(Il)/Fe(Ill) redox couple in the heme
prosthetic group of catalase with a formal potential of ~460 mV in 0.1 M phosphate buffer
solution at pH=7.0. The nano-composite film showed an obvious promotion of the direct
electron transfer between catalase and the underlying electrode. The apparent charge
transfer rate constant and transfer coefficient for electron transfer between the electrode
surface and enzyme were reported as 2.23 s! and 0.45, respectively. The immobilized
catalase exhibited a relatively high sensitivity (4.9 nA/nM) toward hydrogen peroxide
(Rahimi et al., 2010).

Table 3, summarized some important ILs which are immiscible in water and they have been
widely used in construction of electrochemical sensors and biosensors.

6. Conclusion

In this chapter, besides a brief discussion of the properties of ILs, the application of ILs in
electrochemical sensors and biosensors are reviewed. ILs are liquids with non-volatility,
high ion conductivity, the ability to dissolve many compounds, thermal stability, high
viscosity, high polarity, and low vapor pressure. Ionic liquids have many applications, such
as powerful solvents and electrically conducting electrolytes. Nowadays, electrochemical
sensors and biosensors can be powerful tools for analysis of different species. Due to the
some special characterization of ionic liquids such as wide potential windows (a voltage
range between which the electrolyte is not oxidize or reduced.) and high electrical
conductivity, hydrophobicity and the insolubility in water, the extraction and plasticizing
ability, they are used in construction of electrochemical sensors and biosensors. They can be
applied for improvement and modification of the composite materials in an electrochemical
sensor or biosensor. Using room temperature ionic liquids instead of paraffin oil in the
carbon paste electrodes yields more efficient extraction of ions with high charge density into
the carbon paste surface. This is due to the much higher dielectric constant of the ionic
liquids as binder compared to paraffin oil. Also, in the case of voltammetric measurements,
the electroactive compounds to be determined can better diffuse from the eluent into the
thin layer of the ionic liquid on the surface of a carbon paste electrode. In addition, ILs can
be used in electrochemical biosensors typically as both binder and conductor. Common ILs
advantages observed when they incorporate into the biosensors include higher conductivity,
good biocatalytic ability, long-term stability, superior sensitivity, improved linearity, better
selectivity, and the ability to direct (without using mediator) electron transfer between
protein and electrode.
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Name

Structure

M.P.
(W)

Viscosity (cP)
in 20°C

Application

Reference

1-butyl-3-
methylimidazoliu
m
hexafluorophosph
ate ((BMIM][PFs))

11

272.7

ISE

Coll et al., 2005

1-butyl-2,3-
dimethylimidazol
ium bis(trifluoro-
methylsulfonyl)i
mide
([BDMIM][T£:N])

ISE

Shvedene et al.,
2006

1-Methyl-3-
octylimidazolium
chloride
(MOImCI)

CHg
N*
U )
N) Cl

|
(CHz)7CHg

ISE

Peng et al., 2008

1-dodecyl-3-
methylimidazoliu
m chloride
[DMIM][CI]

. CHs
s
N

CHa(CHg),CHs

102

All-solid-
state

Maminska et al.,
2006

1-octyl-3-
methylimidazoliu
m
hexafluorophosph
ate [OMIM][PFs]

&
Nt F, F
(\ F-R-F
N FF

807.1

Voltammetric
carbon paste
sensor

Maleki et al., 2007

1-butyl-3-
methylimidazoliu
m
tetrafluoroborate
([BMIM][BF4])

Ha

BF,

F
N\
L

1

CHj

99.9

1-CPE
2- Biosensor

Ganjali et. al,
2009b,c; Faridbod
et al., 2010; Rahimi

etal., 2010

Table 3. Some common ILs which are immiscible in water and can be used in

electrochemical sensors and biosensors
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