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1. Introduction     

Some industrial applications, such as spindle, traction, and electric vehicles, need a high 
speed for the fixed rating power, Fig. 1. To achieve this goal a suitable control method based 
on the flux weakening is usually applied. This gives an economic solution for the power 
converter and the motor (Grotstollen, H. & Wiesing, J, 1995).  
 

 

Fig. 1. Motor torque according to speed range 

For the induction motor, its magnetic state changes during the flux weakening phase. It goes 
from the saturation to the linear region, since the rating magnetic point is at the knee of the 
magnetizing curve of the iron. Therefore, the change of the magnetic state of the motor 
should be taken into account in the control law.  
Field Oriented Control (FOC) and Direct Torque Control (DTC) are based on a linear two-
phase model of the induction motor (Vas, P. & Alakula, M. 1990).  This model considers that 
the magnetic state of the motor is fixed, and all control parameters are calculated according 
to this state. When decreasing the flux level, the motor inductances increase. The change of 
real inductances values of the motor influences the desired current and speed dynamics. 
In this chapter, the linear two-phase model of the induction motor is re-examined, and a 
new non linear two-phase model of the induction motor is developed. This model takes into 
account the variation of the saturation level (Kasmieh, T. & Lefevre, Y, 1998). The calculation 
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of this model needs the motor inductances values at each calculation step. The inductances 
curves, as functions of the magnetic state of the motor, can be obtained using a finite 
elements calculation program.  
Unlike many models developed for the induction motor that take into account the variation 
of the saturation level (Vas, P, 1981), the model presented in this chapter does not introduce 
the inductances time derivatives. This leads to an easy computation algorithm, using 
iteration method at each calculation step. The derived model is validated by comparing its 
dynamic behavior to the dynamic behavior of a finite elements model.  
Based on the new model, a complete sensitivity study of the classical FOC and DTC techniques 
is presented. The FOC is highly dependent on the motor parameters. During the flux 
weakening phase, the inductances values increase. This influences the dynamic behavior fixed 
by the controllers, which is calculated for the rating inductances values. To overcome this 
problem an adaptive FOC is introduced. At each sampling period, the magnetic state of the 
motor is calculated by iteration, and then the controllers are tuned to this new magnetic state. 
Concerning the DTC, this control law is less sensitive to the variation of the saturation level 
(Kasmieh, T, 2008). The DTC is based on applying the good voltage stator vector in order to 
achieve the desired stator fluxes and torque variations. The main problem of the DTC lies in is 
the accuracy of the stator fluxes calculation at each sampling period. Usually, this calculation is 
easily done by using the stator electric equation. The performance of this estimator is highly 
dependent on the value of the stator winding resistor, which varies with the motor 
temperature. A more complicated flux estimator can be derived from the rotor electric 
equation (Kasmieh, T, 2008). This estimator is less sensitive to the variation of the rotor 
resistor, but more sensitive to the variation of the saturation level. To overcome this problem, 
an adaptive flux estimator is presented in this chapter. The estimator parameters are tuned 
according to the saturation level of the motor. This new estimation method increases the 
computation time of the DTC, but it remains smaller than the computation time of the FOC. 

2. Magnetic state study of the induction motor using finite elements 
calculation program 

The goal is to determine the main variable that influences the magnetic state of the induction 
motor, and to establish new flux-current relationships in the two-phase reference that take 
into account the influence of the magnetic saturation level variation. The study is done for a 
two pole pairs (p=2) 45(KW) induction motor using a finite elements calculation program. 
Fig. 2 shows the cross section of the studied 45(KW) induction motor. The motor has two 
cages of 40 bars each. 
 

 

Fig. 2. Cross section of the studied 45(KW) induction motor 
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The induction motor is modeled as a magnetic circuit of 3 stator phases and m rotor phases, 
(m=10 in the case of the 45(KW) induction motor), Fig. 3.  
 

 

Fig. 3 Axes of multi-phase model of an induction motor 

The flux-current relationships can be written as follows:  

 

[ ]
[ ] [ ]

[ ] [ ] [ ]+ +

⎡ ⎤θ
φ = ⎢ ⎥

θ⎢ ⎥⎣ ⎦

ss sr3,3 3,m

m 3 m 3
rs rrm ,3 m ,m

L M ( )
. I

M ( ) L
 

(1)

 

The elements of the vector [ ] +
φ

m 3
are the stator and rotor fluxes, the elements of the vector 

[ ] +m 3
I are the stator and rotor currents, [ ]ss 3,3

L is the stator inductance matrix, [ ]rr m ,m
L  is the 

rotor inductance matrix, [ ]θsr 3,m
M ( ) is  the stator to rotor mutual inductance matrix, 

[ ]θrs m ,3
M ( ) is the rotor to stator mutual inductance matrix and [ ]rr m ,m

L  is the rotor 

inductance matrix. 
For the non-linear case where the magnetic saturation effect is taken into account, the stator 

and rotor fluxes are functions of the motor angle θ, the stator and the rotor currents. 

 [ ] [ ] [ ]+ + +
φ = φ θ

m 3 m 3 m 3
( , I )  (2) 

In this case, it is difficult to find the fluxes analytically, but they can be calculated using a 
finite elements calculation program, in which the magnetic characteristics of the motor 
material can be introduced, Fig. 4. The calculation of the fluxes as functions of the motor 
 

 

Fig. 4. Iron magnetic characteristics of the 45(KW) motor 
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angle θ and the currents is possible using the concept of equivalent saturated inductances 
deduced from the saturation curve of the motor material. 
A finite elements calculation program is used to determine the main variable that influences 
the magnetic state of the induction motor in a two-phase reference related to the rotor, Fig. 5. 

 

 

Fig. 5. Two-phase reference related to the rotor 

The currents are applied in the two-phase reference, and then the currents [ ] +m 3
I  are 

calculated using the inversed Park transformation. These currents are injected in the motor 

finite elements model, and the program calculates the fluxes [ ] +
φ

m 3
. The fluxes in the two-

phase reference are finally calculated by applying the Park transformation.  The calculation 

procedure is shown in Fig. 6. 
 

[ ]
[ ]

[ ]
[ ]

sd sd

3,2 2 ,3
sq sqs s3 3

rd rdr rm m
m ,2 2,m

rq rq

i Finite
P( p ).T T .P(p )

i I ( ) ( )Elements

i I ( ) ( )Program
T T

i

φ⎡ ⎤ ⎡ ⎤
− θ θ⎢ ⎥ ⎢ ⎥φ⎡ ⎤ ⎡ ⎤θ φ θ⎢ ⎥ ⎢ ⎥− − − − − − −→ − − − − − − − − − − −→⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥φθ φ θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥

φ− − − − − − − − − − −→⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Fig. 6. Calculation procedure of the two-phase fluxes 

 

Where 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

3,2

1 0

2 1 3
T

3 2 2

1 3

2 2

, 

⎡ ⎤
⎢ ⎥π π⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥π π⎢ ⎥− −
⎢ ⎥⎣ ⎦

m ,2

1 0

2 2
cos( ) sin( )

m m
2

. .T
m

. .

2 2
cos((m 1) ) sin((m 1) )

m m

 are the 

Concordia matrices, and 
cos( ) sin( )

P( )
sin( ) cos( )

ψ ψ⎡ ⎤
ψ = ⎢ ⎥− ψ ψ⎣ ⎦

 is the rotation matrix. 

The simulations show that the magnetic state of the induction motor depends on the 

modulus of the magnetizing current vector 2 2
m sd rd sq rqI (i i ) (i i )= + + + . The magnetizing 
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current vector can be written using complex representation as follows: 

m sd rd sq rqI (i i ) j.(i i )= + + + . Fig. 7 shows the magnetic state of the motor for different two-

phase currents that give the same value of mI . 
 
 

 

Fig. 7. Magnetic state of the motor for different two-phase currents of the same mI  
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The flux-current relationship can then be written, in the two-phase reference, as follows: 
 

 [ ] [ ]

s m m

sd sd

s m msq sq

m
rd rd

m r m

rq rq

m r m

L ( I ) 0 M( I ) 0
i

0 L ( I ) 0 M( I ) i
. M( I ) . I

iM( I ) 0 L ( I ) 0
i

0 M( I ) 0 L ( I )

⎡ ⎤
⎢ ⎥φ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥φ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎡ ⎤= = φ =⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥φ
⎢ ⎥⎢ ⎥ ⎢ ⎥

φ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

 (3) 

 

It is possible to obtain the cyclic inductances curves as functions of mI , by injecting one 

two-phase current. Fig. 8 shows the cyclic inductances curves as function of this injected 

current. 
 

 

Fig. 8. Cyclic inductances curves 

From these curves, inductances lookup tables are established. The values of the injected 

current can be associated to mI  (Kasmieh, T. & Lefevre, Y. 1998). 
It is important to mention that the saturation harmonics disappear from the two-phase 

fluxes. This issue can be demonstrated taking into accounts the saturation third harmonics 

of the fluxes: 
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sa

sb

sc

a.cos(p ) b.cos(3p )

2 6
a.cos(p ) b.cos(3p )

3 3
4 12

a.cos(p ) b.cos(3p )
3 3

φ = θ + θ
π π

φ = θ − + θ −

π π
φ = θ − + θ −

 

Two-phase stator fluxes can be obtained by applying Park transformation of an angle pθ: 

sa
sd

sb
sq

sc

2 4
cos(p ) cos(p ) cos(p )

2 3 3 .
2 43

sin(p ) sin(p ) sin(p )
3 3

π π⎡ ⎤ φ⎡ ⎤θ θ − θ −⎢ ⎥φ⎡ ⎤ ⎢ ⎥φ= ⎢ ⎥⎢ ⎥ ⎢ ⎥φ π π⎢ ⎥⎣ ⎦ − θ − θ − − θ − ⎢ ⎥φ⎣ ⎦⎢ ⎥⎣ ⎦

 

sd

sq

3a a b 4 8
(cos(2p ) cos(2p ) cos(2p ))

2 2 3 3
b 8 16

(cos(4p ) cos(4p ) cos(4p ))
2 2 3 3

b a 4 83
(sin(2p ) sin(2p ) sin(2p ))

2 3 3
b 8 16

(sin(4p ) sin(4p ) sin(4p ))
2 3 3

+ π π⎡ ⎤+ θ + θ − + θ − +⎢ ⎥
⎢ ⎥

π π⎢ ⎥θ + θ − + θ −φ⎡ ⎤ ⎢ ⎥
=⎢ ⎥ ⎢ ⎥φ − π π⎣ ⎦ ⎢ ⎥θ + θ − + θ − +

⎢ ⎥
⎢ π π⎢ − θ + θ − + θ −
⎣ ⎦

3

2

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

 

The demonstration can be extended to the general expressions of the saturated fluxes. 
The next paragraph presents a new dynamic model of the induction motor that takes into 
account the variation of the saturation level. The resolution of the non-linear equations of 
the model is done by iteration. 

3. Establishment of a saturated two-phase model of the induction motor 

Since the magnetic state of the induction motor depends on the modulus of the magnetizing 
current vector, thus, the new equations that describe the dynamic behavior of a variable 
saturation level motor in the two-phase reference are: 
The electric equations: 

 

sd
sd s sd sq

sq

sq s sq sd

rd
r rd rq

rq

r rq rd

d d
v R .i .

dt dt
d d

v R .i .
dt dt

d d( p )
0 R .i .

dt dt
d d( p )

0 R .i .
dt dt

Φ ψ
= + − Φ

Φ ψ
= + + Φ

Φ ψ − θ
= + − Φ

Φ ψ − θ
= + + Φ

 or 

s
s s s s

r
r r r

d d
V R .I j. .

dt dt

d d( p )
0 R .I j. .

dt dt

Φ ψ
= + + Φ

Φ ψ − θ
= + + Φ

 (4) 

The flux-current relationships:  

 [ ] [ ]mM( I ) . I⎡ ⎤φ = ⎣ ⎦  or s s s r

r r r s

L .I M.I

L .I M.I

Φ = +

Φ = +
 (5) 
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The mechanical equation: em r

d
j T T

dt

Ω
= −  

where 

 em r s rd sd rq sd

r r

M M
T p ( I ) p ( .i .i )

L L
= Φ ∧ = Φ −Φ  (6) 

is the electromagnetic torque and rT is the resistive torque. Rs and Rr are the stator and the 

rotor windings resistances. Vsd and Vsq are the stator two-phase voltages and J is the rotor 

inertia. 

The resistive torque is the sum of the viscosity resistive torque, and a resistive torque 

sT : r sT f. T= Ω + , where f is the viscosity factor. Usually, the variations of sT  are considered 

smaller than the variation of the velocity when controlling the motor. Note that the complex 

quantity d qX x j.x= + is used to represents the vectors in the D, Q reference. 
The numeric resolution of the new saturated two-phase model equations is done avoiding 
the complicated development of the equations as currents deferential equations. The 
following differential equations can simply be written. 

 
[ ] [ ] [ ]m

d
A( I ). v

dt

Φ
+ Φ =  (7) 

 

s s

s s r

s s

s s r

m m

r r

s r r

r r

s r r

R M.R
0 0

.L .L .L

R M.R
0 0

.L .L .L
A( I ) ( I )

M.R R d(p. )
0

.L .L .L dt

M.R d(p. ) R
0

.L .L dt .L

⎡ ⎤−⎢ ⎥σ σ⎢ ⎥
⎢ ⎥

−⎢ ⎥σ σ⎢ ⎥=
⎢ ⎥θ
−⎢ ⎥σ σ⎢ ⎥
⎢ ⎥θ

− −⎢ ⎥
σ σ⎣ ⎦

 (8) 

The matrix A is written for a two-phase reference related to the stator Ψ=0. 
2

s r1 M /(L .L )σ = −  is the dispersion factor which is never equal to zero because the leakage 

inductances. 
The new non-linear model of the induction motor is described by equations (3), (7) and the 

expression of the electromagnetic torque. This model is called the saturated two-phase 

model. 

The numeric resolution procedure of these equations starts from an initial state. At each 

calculation step equation (7) is solved using for example Runge-Kutta 4 (RK4) method. This 

will give a new flux vector that describes a new magnetic state of the motor. Then, the 

corresponding current vector must be determined by resolving equation (3). In fact, 

equation (3) is a non-linear equation. The matrix M depends on the modulus magnetizing 

current vector. The resolution of this equation can be done by a non-linear iterative 

resolution method, like substitution method. 

Equation (7) can be written as follows: 
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[ ] [ ] [ ] [ ]

t t t

d
[F( , I )] F

dt

Φ
= Φ =  (9) 

where [ ]
t

F is a function of the two-phase fluxes and currents. 

The RK4 method gives an approximated numerical solution of equation (9). The fluxes at the 

instant t+Δt are calculated using equation (10).  

 [ ] [ ] [ ]
4

it t t i
i 1

b . t F
+Δ

=

Φ = Φ + Δ∑  (10) 

where  

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

1 t 1 t t

2 1 2 1 1 1

3 2 3 2 2 2

4 3 4 3 3 3

t t
F F

2 2
t t

F F( , I )
2 2
t t

F F( , I )
2 2
t t

F F( , I )
2 2

Δ Δ
Φ = Φ + = Φ +

Δ Δ ⎡ ⎤Φ = Φ + = Φ + Φ⎣ ⎦

Δ Δ ⎡ ⎤Φ = Φ + = Φ + Φ⎣ ⎦

Δ Δ ⎡ ⎤Φ = Φ + = Φ + Φ⎣ ⎦

 

and 1

1
b

6
= , 2

1
b

3
= , 

3

1
b

6
= , 4

1
b

6
= . 

To be able to calculate [ ]
i 1+

Φ , the currents [ ]
i

I must be calculated by solving the non-linear 

equation [ ] [ ]mi ii
M( I ) . I⎡ ⎤φ = ⎣ ⎦ . Finally, Fig. 9 shows the calculation procedure of the 

saturated two-phase model of the induction motor. 
The resolution of the non-linear equations of the flux-current relationships can be done 
using a non-linear iterative resolution method. The substitution method searches the 

intersection point between [ ]( )mM( I ) . I (t)⎡ ⎤
⎣ ⎦ and [ ]

t t+Δ
φ starting from the first iteration 

[ ] [ ]
1 t

I I= . The next iteration is calculated from the previous iteration: [ ] [ ] [ ]
i 1 i

I I I
+
= + Δ , 

where [ ] [ ] [ ]( )1

m mt t ii i
I M( I ) . M( I ). I

−

+Δ
⎡ ⎤Δ = Φ −⎣ ⎦ . In fact the Inductance matrix can be 

inversed, since the leakage inductances cannot be zero: 

s s r

1
s s r

m m

r

s r r

s r r

1 M
0 0

.L .L .L

1 M
0 0

.L .L .L
M( I ) ( I )

M 1
0 0

.L .L .L

M 1
0 0

.L .L .L

−

⎡ ⎤−⎢ ⎥σ σ⎢ ⎥
⎢ ⎥

−⎢ ⎥σ σ⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
−⎢ ⎥σ σ⎢ ⎥
⎢ ⎥

−⎢ ⎥
σ σ⎣ ⎦

 

Fig. 10. shows the substitution calculation procedure for vectors dimension equal to one. 
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Fig. 9. Calculation procedure of the saturated two-phase model of the induction motor 

 

Fig. 10. Substitution calculation procedure 

The iteration procedure is stopped when achieving a suitable error of the modulus of the 
flux vector. 
The execution of the calculation procedure of the Fig. 9 gives the results shown in Fig. 11. 
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Fig. 11. Dynamic behavior of the saturated two-phase model of the induction motor 

The comparison between the saturated two-phase model and the finite elements model is 
shown in Fig. 12. It is clear that it gives closer results to the finite elements model results 
than the results of the linear model. 
 

 

Fig. 12. Saturated two-phase model, linear model and finite element model results 
comparison 

4. Field oriented control law improvement during the flux weakening phase 

The vector control law or field-oriented control (FOC) law of an induction motor has 
become a powerful and frequently adopted technique world-wide. It is based on the two-
phase model, Park model. The aim of this control is to give the induction motor a dynamic 
behavior like the dynamic behavior of a direct current motor. This can be done by 
controlling separately the modulus and the phase angle of the flux (Blaschke, F. 1972). 
Using this control technique, the electrical and mechanical dynamic responses of the 
induction motor are determined by fixing the coefficients of the current loops controllers, 
flux loop controller and the velocity loop controller. Usually, these coefficients are calculated 
for the rating values of the cyclic inductances, which correspond to the rating saturation 
level. In fact, this level is achieved by applying the rating flux value as a reference value to 
the flux loop. 
Some industrial applications require the induction motor to operate at a high speed over the 
rating speed. The method used to reach this speed is to decrease the reference value of the 
flux in order to work at the rating power. This decrease can cause a coupling between the 
two-phase axes D and Q, so FOC does not work properly (Kasmieh, T. & Lefevre, Y. 1998).  
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Many published papers have studied the effects of the variation of the saturation level on 
FOC law (Vas, P. & Alakula, M. 1990) (Vas, P. 1981), but few attempts have been made to 
develop a FOC law that takes into account this variation.  
In this paragraph the sensitivity of the classical FOC law to the variation of saturation level 
of an induction motor is studied. Then, a new indirect vector control law in accordance to 
the rotor flux vector that takes into account this variation is developed. This law is based on 
the saturated two-phase model found in the previous sections.  
The simulations are done using an electromechanical simulation program called "A_MOS", 
Asynchronous Motor Open Simulator, (Kasmieh, T. 2002), Fig. 13. 
 

 

Fig. 13. The main window of “A-MOS” Software 

The resolution algorithm of the non-linear model is implemented in this programmed. The 
user can write his own control algorithm. 

4.1 Classical FOC law  
The strategy of the FOC in accordance with the rotor flux vector is adopted. This strategy 
leads to simpler equations than those obtained with the axis D aligned on the stator flux 
vector or with the magnetizing flux vector (Vas, P. & Alakula, M. 1990). 

The development of the FOC equations in accordance to the rotor flux vector can be done by 

supposing [ ]
t t

r rd rq r, ,0⎡ ⎤φ = φ φ = φ⎣ ⎦ , Fig. 14. The expression of the motor torque is reduced to:  

 em r sd

r

M
T p . .i

L
= Φ  (11) 

Since the rotor flux vector turns at the synchronized speed sω , the electric equations become: 
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sd
sd s sd s sq

sq

sq s sq s sd

r
r rd

r rq s r

d
v R .i .

dt
d

v R .i .
dt

d
0 R .i

dt
d

0 R .i ( p ).
dt

Φ
= + −ω Φ

Φ
= + + ω Φ

Φ
= +

θ
= + ω − Φ

 (12) 

 

 

Fig. 14. Two-phase reference in accordance with the rotor flux vector 

4.1.1 Stator voltages and stator fluxes equations 
The stator voltages of equation (12), and the stator fluxes expressions can be written using 

complex representation ( d qX x j.x= + ): 

s
s s s s s

s s s r

d
V R .I j. .

dt

L .I M.I

Φ
= + + ω Φ

Φ = +

 

By adding and subtracting the term
2

s

r

M
.I

L
in the stator flux vector expression, the 

magnetizing rotor current vector is introduced mrI :  

2 2
r

s s s s r s s mr

r r

M L M
L .I .(I .I ) L .I .(I )

L M L
Φ = σ + + = σ + . 

Since the rotor flux vector is aligned on the magnetizing rotor current vector: 

r r r r s m rL .I M.I M.IΦ = Φ = + = , the stator flux vector can be written as a function of the stator 

current vector and the rotor flux. 

 s s s r

r

M
L .I .

L
Φ = σ + Φ  (13) 

Substituting (13) in the expression of the stator voltage vector: 
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 s r
s s s s s s

r

dI M d
V R .I L . . j. .

dt L dt

Φ
= + σ + + ω Φ  (14) 

4.1.2 Rotor voltages and rotor fluxes equations 

The pulsation s

d
( p )

dt

θ
ω − is the rotor pulsation rω , thus the rotor electric equations become: 

 
r

r rd

r rq r r

d
0 R .i

dt
0 R .i .

Φ
= +

= + ω Φ
 (15) 

From the rotor fluxes expressions, the rotor currents are expressed as functions of the rotor 
flux and the stator currents: 

rd r rd sd r r rd sd

rq r rq sq r rq sq

L .i M.i L .i M.i

L .i M.i 0 L .i M.i

φ = + φ = +
⇒ ⇒

φ = + = +
 

 r
rd sd

r r

M
i .i

L L

φ
= −  (16) 

 rq sq

r

M
i .i

L
= −  (17) 

4.1.3 Transfer functions of the induction motor 

In order to establish the FOC strategy, the transfer functions of the motor are developed. 

The inputs of the transfer functions are sdv and sqv , and the outputs the variables that 

determine the motor torque rΦ and sdi . 

Transfer functions on D axis: 

It is possible to control the rotor flux via the stator current on the D axis. This can be 
demonstrated from the rotor electric equation on the D axis and from equation (16): 

 r r
r r sd

r r

d R M
. R . .i

dt L L

Φ
= − Φ +  (18) 

Developing equation (14) on the axis D yields to: 

sd r
sd s sd s s sq

r

di M d
v R .i L . . .

dt L dt

Φ
= + σ + −ω Φ  

By substituting equation (17) in the expression of sqΦ , the following equation is obtained: 

2 2 2

sq s sq rq s sq sq s sq s sq s sq

r r r s

M M M
L .i M.i L .i .i (L ).i L .(1 ).i L . .i

L L L .L
φ = + = − = − = − = σ .  

The D stator voltage expression becomes: 
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 sd r
sd s sd s s s sq

r

di M d
v R .i L . . .L . .i

dt L dt

Φ
= + σ + −ω σ  (19) 

By replacing (18) in (19), the stator voltage of the D axis can be written as follows: 

 sd
sd sr sd s d

di
v R .i L . E

dt
= + σ +  (20) 

where 

2

sr s r

r

M
R R R .

L

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
, and the electrical force d r r s s sq2

r

M
E R . . .L . .i

L
= − Φ −ω σ represents 

the coupling between the two axes D and Q. 

Transfer functions on Q axis: 

By developing equation (14) on the axis Q, the stator voltage of the same axis is obtained: 

sq

sq s sq s s sd

di
v R .i L . .

dt
= + σ + ω Φ  

From equation (13) the D stator flux is: sd s sd r

r

M
L .i .

L
Φ = σ + Φ . By replacing sdΦ in the 

previous expression, sqv becomes: 

 
sq

sq s sq s s s sd s r

r

di M
v R .i L . . L .i . .

dt L
= + σ + ω σ + ω Φ  (21) 

rΦ can be written as a function of the stator current on the Q axis by substituting the 

expression of irq, equation (17), in the rotor electric equation on the Q axis: 

 r r sq

r r

M
R . i

.L
Φ =

ω
 (22) 

By replacing (22) in (21) : 

2

sq s
sq s sq s s s sd r sq

r r

2

sq r
sq s sq s s s sd r sq

r r

di M
v R .i L . . L .i . .R .i

dt L

di M
v R .i L . . L .i . .R .i

dt L

⎛ ⎞ω
= + σ + ω σ + ⎜ ⎟

ω ⎝ ⎠

⎛ ⎞ω+ ω
= + σ + ω σ + ⎜ ⎟

ω ⎝ ⎠

 

Finally sqv can be written as follows: 

 

2

sq sq

sq sr sq s s s sd r sq sr sq s q

r

di diM
v R .i L . . L .i . .R .i R .i L . E

dt L dt

⎛ ⎞
= + σ + ω σ + ω = + σ +⎜ ⎟

⎝ ⎠
 (23) 

The electrical force Eq represents the coupling between the two axes D and Q. 
The equations (18), (20) and ( 23) describe the transfer functions of the induction motor if the 
D axis is aligned on the rotor flux vector, Fig. 15. 
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Fig. 15. Transfer functions of the induction motor (D axis is aligned on the rotor flux vector) 

4.1.4 Establishment of the classical FOC law  
It is important to mention that the transfer functions shown on Fig. 15 are valid if the axis D 
is rotating with the rotor flux vector. Taking into account this hypothesis the control scheme 
of Fig. 16 can be built. 
The two axes D and Q are decoupled by estimating the electric forces Ed and Eq: 

e e e m
d r r s s sq2

r

M
E R . . .L . .i

L
= − Φ −ω σ  and 

2

e e m m m
q s s sd r sq

r

M
E . L .i . .R .i

L

⎛ ⎞
= ω σ + ω ⎜ ⎟

⎝ ⎠
. The index e is for the 

estimated variables, and the index m is for the measured variables. 
e
rΦ  is calculated by solving numerically the equation ( 18). The value of e

rΦ  is also used as a 

feedback for the rotor flux control closed loop. 

e
sω is calculated from equation (18): e m m

s r sqe
r r

M
R . i

.L
ω = ω +

Φ
. m mp. p.d /dtω = Ω = θ is the 

electric speed of the motor that can be measured using a speed sensor, and p is the pole 
pairs number. 

For the induction motor, r rL /R is ten times bigger than s sr.L /Rσ , so it is possible to do 

poles separation by doing an inner closed loop for the current and an outer closed loop for 
the rotor flux. 
From Fig. 16, it is clear that the D axis closed loops are for controlling the amplitude of the 
rotor flux, and the closed loop of the Q axis is for controlling the stator current, thus for 
controlling the motor torque, equation (11). 
In practice, the three phase currents are measured, and then the two phase currents are 

calculated using Park transformation of an angle Ψ. The angle Ψ is estimated by integrating 

e m m
s r sqe

r r

M
R . i

.L
ω = ω +

Φ
. After calculating the control variables sdv and sqv , the three phase 

control variables sav , sbv  and scv are found using the inversed Park transformation. 

4.2 Sensitivity of the classical FOC law to the variation of the saturation level 
the FOC algorithm is implemented in “A_MOS“ program. The controller parameters are 
fixed according to rating values of the induction motor cyclic inductances. The simulation 
results of  fig. 17 show that during the flux weakening phase, the rotor flux does not follow 
its reference and the dynamic response of the speed is disturbed. This due to the fact that the  
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Fig. 16. FOC law scheme 

 

 

Fig. 17. Simulation results of the dynamic behavior of the induction motor modeled by the 
saturated two-phase model, and controlled by the classical FOC law 

cyclic inductances values of the motor become different from the cyclic inductances values 
introduced in the controllers. 
In the next paragraph, the classical FOC law is developed in order to take into account the 
variation of the saturation level. The new control law is called the saturated FOC law. 

4.3 New saturated FOC law 

To simplify the study, stator and rotor leakage inductances ( sfL  and rfL ), are supposed to be 

constant. Only the mutual cyclic inductance M is considered to be variable with the 

modulus of magnetizing current vector, where s sfL M L= +  and r rfL M L= + . 
From expression (13), The derivative of the stator flux vector is:  

2
s s r s s r rf rfr

s s r s s r2 2
r r r r

M
d( )

d dI M d d( L ) dI M d dM L dM LL
.L . . I . . .L . . I . .( ) . .

dt dt L dt dt dt dt L dt dt L dt L

Φ Φ σ Φ
= σ + + + Φ = σ + + + Φ  
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Finally the expression of the stator flux vector derivative is: 

 s s r rf
s s rf r 2

r r

d dI M d L dM
.L . . (I .L ) .

dt dt L dt L dt

Φ Φ
= σ + + + Φ  (24) 

The stator voltage vector is then modified to: 

 s r rf
s s s s s rf r s s2

r r

dI M d L dM
V R .I .L . . (I .L ) . j. .

dt L dt L dt

Φ
= + σ + + + Φ + ω Φ  (25) 

As previous, the resistance Rsr can be introduced. The stator voltages on the D and Q axes 
are: 

 

sd rf
sd sr sd s r r s s sq sd rf r2 2

r r

sd
sr sd s d

di M L dM
v R .i .L . R . . .L . .i (i .L ) .

dt L L dt

di
R .i .L . E

dt

= + σ − Φ − σ ω + + Φ

= + σ +
 (26) 

 
2

sq sqrf
sq sr sq s r sq s s sd sr sq s q2

r r

di diM L dM
v R .i .L . . . i . . .L . .i R .i .L . E

dt L L dt dt
= + σ + ω Φ + + σ ω = + σ +  (27) 

where Ed and Eq are electrical forces and equal to:  

rf
d r r s s sq sd rf r2 2

r r

M L dM
E R . . .L . .i (i .L ). .

L L dt
= Φ + σ ω − + Φ ,  

2
rf

q r s s sd sq 2
r r

M L dM
E . . .L . .i i . .

L L dt
= −ω Φ − σ ω − . 

The obtained transfer functions are approximately the same as in the linear case. The main 
difference is that the parameters of these transfer functions are time variant. Terms containing 

dM

dt
 appear in the expressions of Ed and Eq. Anyhow, this term can be neglected since r

r

L

R
is 

bigger than s

s

L
10

R

σ
for induction machines, so the expressions of Ed and Eq become: 

d r r s s sq2
r

M
E R . . .L . .i

L
≈ Φ + σ ω , q r s s sd

r

M
E . . .L . .i

L
≈ −ω Φ − σ ω . 

The idea of the saturated FOC is to tune the coefficients of the controllers according to the 

value of mI . At each sampling period mI is calculated, and the corresponding cyclic 

inductances are found from look up tables to update the controller’s coefficients.  

The expression of mI  is 2 2
m sd rd sq rqI (i i ) (i i )= + + + . isd and isq can be measured at each 

sampling period. ird can be calculated from the first rotor equation ( 15), and irq from the 
equation (17) using a non-linear resolution method as the substitution method.  
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Fig. 18 shows the strategy of the new FOC law. The blocks with dashed lines are the blocks 
necessary for calculating the modulus of magnetizing current vector. At each sampling 
period the controller’s coefficients are updated according to the new values of the cyclic 
inductances. 
 

RIRΦ

Ed

isd

ref

isd

+
−

+
−

RI

Eq

isq

ref

isq

+
−

+
−

Lr

pM|Φr|

|Φr|

|Φr|
ref

−
+

ωref

Cem

ref

Rω

|Φr|
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d
dt = (Misd-
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Fig. 18. Saturated FOC law 

Fig. 19 presents simulation results of the dynamic response of the 45KW induction motor 
controlled by the new saturated FOC control. This simulation is done for the same inputs of 
figure 5. It is clear that the performance of the machine is clearly improved. 
 

 

Fig. 20. Simulation results with saturated FOC 

5. Stator flux estimation improvement during the flux weakening phase for 
the Direct Torque Control Law 

Thirteen years after developing the FOC law by F. Blaschke in 1971 (Blaschke, F. 1972), I. 
Takahashi and M. Depenbrock presented a new technique for the induction motor torque 
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control called Direct Torque Control (DTC), (Noguchi, T. & Takahashi, I. 1984), Depenbrock, 
M. & Steimel A. 1990). DTC is based on applying the appropriate voltage space vector in 
order to achieve the desired flux and torque variations.  
DTC permits to have very fast dynamics without any intermediate current control loops. 
The DTC is based on the fact that the variations of the stator flux vector are directly 
controlled by the stator voltage vector for high speed: 

 s s
s s s

d d
V R .I

dt dt

Φ Φ
= + ≈  (28) 

5.1 Direct Torque Control Law for an induction machine with a voltage source inverter 
drive 
A small variation of the stator flux vector is in fact the product of the stator voltage vector 

and the sampling period TΔ : 

 s sV . TΔΦ = Δ  (29) 

Usually, the motor is driven by a voltage source inverter. The stator voltage vector for such 

an inverted has only 8 positions, Fig. 21. From Fig. 21 If the stator flux vector is in sector i, 

then its magnitude is increased when applying iV , i 1V + or i 1V − . To decrease sΦ , the vector 

i 2V + , i 2V − or i 3V +  can be applied. 
 

 

Fig. 21. Stator Voltage space vector for a voltage source inverter 

In order to search what does the stator voltage space vector act on the motor torque, its 
expression can be rewritten starting from equation ( 6) and taking into account the flux-
current relationships as follows: 

 em s sT p. I= Φ ∧  (30) 

 em s r s r sr

M M
T p. . p. . . .sin

Ls.Lr M2 Ls.Lr M2
= Φ ∧Φ = Φ Φ θ

− −
 (31) 

where srθ is the angle difference between sΦ and rΦ . 
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It is important to mention that the rotor flux vector time constant is bigger than the time 
constant of the stator flux vector. This can be demonstrated by writing the transfer function 
from the stator flux vector to the rotor flux vector. For a two-phase reference related to the 

rotor: pψ = θ , the rotor electric equation becomes: r
r r

d
0 R .I

dt

Φ
= + . From the flux-current 

relationships: r
r s

r s r

M
I .

.L .L .L

Φ
= − Φ
σ σ

. By substituting the expression of rI in the rotor electric 

equation, the following transfer function is obtained: 

 rr

rs

M L

1 . .p

Φ
=

+ σ τΦ
 (32) 

where r r rR Lτ = is the rotor time constant. From equation (32), it is clear that the stator flux 

vector changes slowly compared to the stator flux vector. 
Going back to the expression of the motor torque, equation (31), if the stator flux vector 
modulus is maintained constant, then the motor torque can be rapidly changed and 

controlled by changing the angle srθ . Thus the tangential component of s sV . TΔΦ = Δ is for 

controlling the torque, and its radial component is for controlling sΦ . 

For a stator flux vector existing in sector i, the following stator voltage vector can is applied 
in order to have the desired variations of the stator flux vector modulus and the motor 
torque. 
 

sV  Increase Decrease 

sΦ  
iV , i 1V + or i 1V −  i 2V + , i 2V − or i 3V +  

Tem i 1V + or i 2V +  i 1V − or i 2V −  

Table 1. Stator voltage vector for the desired variations of sΦ and Tem 

The vectors iV and i 3V + are not considered for controlling the torque because they increase 

the torque for the positive 30 degree half sector, and decrease it for the negative 30 degree 
half sector. They can be used if 12 sectors are considered for dividing the total locus.  

By analyzing Table 1, it is possible to do a decoupled control of sΦ and Tem. For all the six 

sectors, Table 2 shows the good stator voltage vector that gives the desired variations of 

sΦ and Tem.  

Fig. 22 shows the scheme of the DTC.  
There are two different loops for controlling the stator flux vector modulus and the motor 

torque. The reference values of sΦ and Tem are compared with the estimated values. The 

resulting errors are fed into the two-level and three-level hysteresis comparators 
respectively. The outputs of the hysteresis comparators and the position of the stator flux 
vector are used as inputs for the look up table (selection table of Table 2).  
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sΦ  Tem S1 S2 S3 S4 S5 S6 

TI 2V  3V  4V  5V  6V  1V  

= 0V  7V  0V  7V  0V  7V  
 

FI 

TD 6V  1V  2V  3V  4V  5V  

TI 3V  4V  5V  6V  1V  2V  

= 7V  0V  7V  0V  7V  0V  
 

FD 

TD 5V  6V  1V  2V  3V  4V  

Table 2. Stator voltage vector for the desired variations of sΦ and Tem in all sectors 

 

 

Fig. 22. Scheme of the DTC law 

Usually, the estimation of the stator flux vector is done using the stator electric equation:  

 ( )
t t

e e

s s s s s
tt

V R .I . t
+Δ

Φ = − Δ +Φ  (33) 

The accuracy of this flux estimator is highly dependent on the value of the stator winding 
resistor, which varies with the motor temperature.  
This chapter proposes a new estimation technique that uses the rotor electric equation. It 
shows that it is less sensitive to the variation of the rotor resistor, but more sensitive to the 
variation of the saturation level. To overcome this problem, an adaptive estimator is 
proposed, based on a previous saturation phenomenon study. 
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5.2 Direct Torque Control Law for an induction machine for a fixed chopping 
frequency voltage source inverter 
It is possible to develop the expression of a continuous optimal stator voltage vector that 

gives the desired variations of sΦ and Tem (C.A, Martins.; T.A, Meynard.; X, Roboam. & 

A.S, Carvalho2, 1999). The control voltages opt
sdv  and opt

sqv  that give the desired Des
emT tΔ Δ  

and 
Des

s tΔ Φ Δ  are searched. 

The expression of the motor torque derivative is: 

 
sq sqem sd sd

sq sd sd sq

di ddT d di
p( .i . .i . )

dt dt dt dt dt

ΦΦ
= +Φ − −Φ  (34) 

The expressions of sdd

dt

Φ
and 

sqd

dt

Φ
can be found from the stator electric equations in the 

fixed reference: 

 

sd
sd s sd

sq
sq s sq

d
v R .i

dt

d
v R .i

dt

Φ
= −

Φ
= −

 (35) 

By writing the expressions of isd and isq from the flux-current relationships, the derivatives 
of these currents versus time are: 

 

sd sd rd

s

sq sq rq

s

di d d1 M
. .

dt .L dt Lr dt

di d d1 M
. .

dt .L dt Lr dt

Φ Φ⎛ ⎞= −⎜ ⎟σ ⎝ ⎠
Φ Φ⎛ ⎞

= −⎜ ⎟⎜ ⎟σ ⎝ ⎠

 (36) 

The rotor electric equations give the expressions of the rotor fluxes derivatives versus time: 

 

( )

( )

rd r
rq r rd rq sd s sd

rq r
rd r rq rd sq s sq

d d(p ) d(p ) R
. R .i . . L .i

dt dt dt M
d d(p ) d(p ) R

. R .i . . L .i
dt dt dt M

Φ θ θ
= − Φ − = − Φ − Φ −

Φ θ θ
= Φ − = Φ − Φ −

 (37) 

The final expressions of the stator fluxes derivatives can be obtained by substituting rdΦ and 

rqΦ by their expressions using stator variables: 

 

( )

( )

rd r r
rq r rd sq s sq sd s sd

rq r r
rd r rq sd s sd sq s sq

d d(p ) d(p ) L R
. R .i . ( .L .i ) . L .i

dt dt dt M M
d d(p ) d(p ) L R

. R .i . ( .L .i ) . L .i
dt dt dt M M

Φ θ θ
= − Φ − = − Φ − σ − Φ −

Φ θ θ
= Φ − = Φ − σ − Φ −

 (38) 

By replacing (38) in (36), the stator currents derivatives become: 
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( )

( )

sd sd r r
sq s sq sd s sd

s

sq sq r r
sd s sd sq s sq

s

di d1 M d(p ) L R
. . . ( .L .i ) . L .i

dt .L dt Lr dt M M

di d1 M d(p ) L R
. . . ( .L .i ) . L .i

dt .L dt Lr dt M M

⎛ ⎞Φ θ⎛ ⎞= − − Φ − σ − Φ −⎜ ⎟⎜ ⎟σ ⎝ ⎠⎝ ⎠
Φ⎛ ⎞θ⎛ ⎞= − Φ − σ − Φ −⎜ ⎟⎜ ⎟⎜ ⎟σ ⎝ ⎠⎝ ⎠

 (39) 

The motor torque derivative is finally obtained as a function of stator voltage, stator current 
and stator flux components. 

 

em
sd sq sq sd 1

dT
p(v .K v .K K )

dt
= − +

 
(40)

 

with 

sd
sd sd

s

K i
.L

Φ
= −

σ
, 

sq
sq sq

s

K i
.L

Φ
= −

σ
, ' s

s s r
r

L
R R .R

L
= + , ( ) ( )22

s sd sq

2

3
Φ = Φ + Φ and 

' 2
s

1 em s sd sd sq sq
s s

' 2
s

em s sd sd s sd sq sq s sq
s s

d
3.p.

R ddtK T . p. ( .i .i )
.L .p 2. .L dt

d
3.p.

R ddtT . p. ( .( .L .i ) .( .L .i ))
.L .p 2. .L dt

θ
θ

= − − Φ + Φ −Φ =
σ σ

θ
θ

− − Φ + Φ Φ −σ −Φ Φ −σ
σ σ

 

Using the stator electric equations, the derivative of ( ) ( )22
s sd sq

2

3
Φ = Φ + Φ can be 

found: 

 ( )s

sd sd sq sq s sd sd sq sq

s

d 2
.v .v R .( .i .i )

dt 3.

Φ
= Φ +Φ − Φ +Φ

Φ
 (41) 

Finally, the optimal control opt
sdv and opt

sqv are obtained by replacing the desired variations 

during the sampling period Des
emT tΔ Δ and

Des

s tΔ Φ Δ in equations (40) and (41) instead of 

the derivatives emdT

dt
and 

sd

dt

Φ
. 

 
( )( )Des

Des
s s sd s sd sd sd sq sq sq em 1

opt
sd

sd sd sq sq

3
. . t .K R .K .( .i .i ) . T t / p K

2

.K .K
v

⎛ ⎞
Φ Δ Φ Δ + Φ +Φ +Φ Δ Δ −⎜ ⎟

⎝ ⎠=
Φ + Φ

 (42) 

At each sampling period the stator currents are measured and the stator fluxes are estimated 

from the stator electric equations. Actual values of sΦ and Tem are then calculated. Using 

the reference values for the motor torque and for the modulus of the stator flux vector, the 
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desired variations during a period of tΔ are calculated and used in equation (42) to find the 

optimal values of the control opt
sdv and opt

sqv . 

This control strategy can be implemented using a fixed chopping frequency source voltage 
inverter. 

5.3 Sensitivity study of the DTC stator flux estimator to the variation of the stator 
resistor 
The classical stator flux estimator used generally for the DTC is based on the stator electric 

equation written in a fixed two-phase reference: Ψ=0, 
s

s s s

d
R

dt

Φ
V I= + . It is clear that this 

estimator is highly affected by the stator resistor variations, due to the motor temperature 
variations, especially for low speed applications. 
The DTC for fixed chopping frequency of the voltage source inverter is implemented in 
A_MOS program. Fig. 23 shows simulation results of a 45(KW) induction machine 
controlled by the DTC law with the previous estimator. A difference of 15% between the 
motor stator resistor and its value implemented in the control estimator is considered. 
 

 

Fig. 23. Stator electric equation estimator results with 15% increase for the stator resistor 

The difference may cause oscillations to the motor speed, and this problem is more 
important for low speed. 

6. New stator flux estimator for the DTC 

If the motor speed is available, the stator fluxes can be calculated from the flux currents 
relationships: 
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M
L . .sd s sd rdLr

M
L . .sq s sq rqLr

Φ i Φ

Φ i Φ

= σ +

= σ +
 (43) 

At each sampling period the stator currents are measured and the rotor fluxes are calculated 

using the rotor electric equations: 

 

rd sd s
r rd rq r sd rq

rq sq s
r rq rd r sq rd

d Ld(p ) d(p )
R R . .i

dt dt M M dt

d Ld(p ) d(p )
R R . .i

dt dt M M dt

Φ Φθ θ
.i Φ Φ

Φ Φθ θ
.i Φ Φ

⎛ ⎞= − − = − − −⎜ ⎟
⎝ ⎠
⎛ ⎞

= − + = − − +⎜ ⎟⎜ ⎟
⎝ ⎠

 (44) 

The calculation of the stator fluxes using equations ( 43) and ( 44) does not require the stator 

resistor, thus any change in its value has no influence. In fact, the estimator uses the value of 

the rotor resistor which determines the time constant of the rotor flux. It is obvious that the 

accuracy in measuring the rotor resistor has no big effect on estimating the stator flux vector 

using the two previous equations. This is due to the fact that the stator fluxes time constant 

is smaller than the time constant of the rotor fluxes, as it was shown previously. Fig. 24 

shows that for an increase of 15% in the rotor resistor value, the DTC with the new estimator 

gives better results. 

 

 
 

Fig. 24. New estimator results with 15% increase for the rotor resistor 
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The new method of estimating the stator fluxes requires the knowledge of a greater number 

of motor parameters. It is clear that the new estimator will be more sensitive to the variation 

of the induction motor saturation level, since it uses the cyclic inductances. 

Fig. 25 shows simulation results of the induction motor controlled by the DTC with the new 

stator fluxes estimator. During the flux weakening phase a big difference between the 

desired stator flux and the real one was obtained. This influences the dynamic behavior of 

the speed when applying a load torque of 110(Nm) at 3(s).  

 
 
 
 
 

 
 
 
 
 

Fig. 25. New estimator sensitivity to the variation of saturation level 

It is possible to overcome this problem by tuning the new estimator parameters at each 

sampling period according to the magnetizing current modulus that can be estimated as 

described in the section of the saturated FOC. 

The scheme of the DTC using this estimator is presented in Fig. 26. 
Fig. 27 shows the improvement of dynamic behavior of the induction motor after 
implementing the adaptive estimator of Fig. 26. 
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Fig. 26. Adaptive stator fluxes estimator 

 

 

Fig. 27. 45(KW) motor behavior with the adaptive stator flux estimator 
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It is possible to combine the two previous estimators. The first one can be used for high 
speed, while the second estimator can be used for low speed range. In this case, there is no 
need to program the adaptive estimator of the stator fluxes, since it will not work during the 
flux weakening phase. 

7. Conclusion 

This chapter has presented a full study of the magnetic state variation of the induction 
motor. Using a finite elements calculation program, it was possible to establish a two-phase 
model that takes into account the variation of the saturation level. A very simple resolution 
method of this new model was presented. The dynamic response of the new model was 
validated by comparing it to the dynamic response of the induction motor given by the 
finite element calculation program. After establishing the new model it was possible to 
review the advanced control laws like the FOC and the DTC laws. A new saturated FOC law 
was developed in order to enhance the dynamic behavior of the motor during the flux 
weakening phase, because of the difference between the motor cyclic inductances values 
and the values of the cyclic inductances introduced in the controllers. Concerning the DTC 
law, it was shown that a small error in the stator resistor value will highly influence the 
stator flux estimation, which is done using the stator electric equation. A new stator fluxes 
estimator was developed using rotor electric equations. This estimator is less sensitive to the 
motor temperature variation, but it is more sensitive to the variation of the saturation level. 
An adaptive solution was proposed to tune the estimator parameters according to the 
saturation level of the motor. Nevertheless the adaptive part added to the DTC algorithm, 
its computation time remains very small comparing to the FOC algorithm that takes into 
account the variation of the saturation level. It is important to mention that it is possible to 
combine the classical estimator and the new estimator according to the speed range. The 
classical estimator can be used at high speed, but at low speed, it is better to use the new 
stator flux estimator. 
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