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1. Introduction

Problems of stabilization and determining of stablility characteristics of steady-state regimes
are among the central in a control theory. Especial difficulties can be met when dealing with
the systems containing nonlinearities which are nonanalytic function of phase. Different
models describing nonlinear effects in real control systems (e.g. servomechanisms, such as
servo drives, autopilots, stabilizers etc.) are just concern this type, numerous works are
devoted to the analysis of problem of stable oscillations presence in such systems.
Time delays appear in control systems frequently and are important due to significant impact
on them. They affect substantially on stability properties and configuration of steady state
solutions. An accurate simultaneous account of nonlinear effects and time delays allows to
receive adequate models of real control systems.
This work contains some results concerning to a stability problem for periodic solutions
of nonlinear controlled system containing time delay. It corresponds further development
of an article: Kamachkin & Stepanov (2009). Main results obtained below might generally
be put in connection with classical results of V.I. Zubov’s control theory school (see Zubov
(1999), Zubov & Zubov (1996)) and based generally on work Zubov & Zubov (1996).
Note that all examples presented here are purely illustrative; some examples concerning to
similar systems can be found in Petrov & Gordeev (1979), Varigonda & Georgiou (2001).

2. Models under consideration

Consider a system
ẋ = Ax + cu(t− τ), (1)

here x = x(t) ∈ E
n, t ≥ t0 ≥ τ, A is real n× n matrix, c ∈ E

n, vector x(t), t ∈ [t0 − τ, t0], is
considered to be known. Quantity τ > 0 describes time delay of actuator or observer. Control
statement u is defined in the following way:

u(t− τ) = f (σ(t− τ)) , σ(t− τ) = γ′ x(t− τ), γ ∈ E
n , ‖γ‖ �= 0;

nonlinearity f can, for example, describe a nonideal two-position relay with hysteresis:

f (σ) =

{

m1, σ < l2,

m2, σ > l1,
(2)
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here l1 < l2, m1 < m2; and f (σ(t)) = f− = f (σ(t− 0)) if σ ∈ [l1; l2].
In addition to the nonlinearity (2) a three-position relay with hysteresis will be considered:

f (σ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0,

{

|σ| ≤ l0,

|σ| ∈ (l0; l] , f− = 0;

m1,

{

σ ∈ [−l; −l0) , f− = m1,

σ < −l;

m2,

{

σ ∈ (l0; l] , f− = m2,

σ > l;

(3)

(here m1 < m < m2, 0 < l0 < l);
Suppose that hysteresis loops for the nonlinearities are walked around in counterclockwise
direction.

3. Stability of periodic solutions

Denote x(t − t0, x0, u) solution of the system (1) for unchanging control law u and initial
conditions (t0, x0).
Let the system (1), (3) has a periodic solution with four switching points ŝi such as

ŝ1 = x (T4, ŝ4,m2) , ŝ2 = x (T1, ŝ1, 0) , ŝ3 = x (T2, ŝ2,m1) , ŝ4 = x (T3, ŝ3, 0) .

Let si, i = 1, 4 are points of this solution (preceding to the corresponding ŝi) such as

γ′s1 = l0, γ′s2 = −l, γ′s3 = −l0, γ′s4 = l,

(let us name them Ťpre-switching pointsŤ, for example), and

ŝ1 = x (τ, s1,m2) , ŝ2 = x (τ, s2, 0) , ŝ3 = x (τ, s3, m1) , ŝ4 = x (τ, s4, 0) ,

or
ŝi+1 = x (Ti, ŝi, ui) , ŝi = x (τ, si, ui−1) ,

where
u1 = 0, u2 = m1, u3 = 0, u4 = m2

(hereafter suppose that indices are cyclic, i.e. for i = 1,m one have i + 1 = 1 if i = m and
i − 1 = m if i = 1).
Denote

vi = Asi+1 + cui, ki = γ′vi.

Theorem 1. Let ki �= 0 and ‖M‖ < 1, where

M =
1

∏
i=4

Mi, Mi =
(

I − k−1
i viγ

′
)

eATi ,

then the periodic solution under consideration is orbitally asymptotically stable.
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Proof As

si+1 = eA(Ti−τ) ŝi +
∫ Ti−τ

0
eA(Ti−τ−t)cui dt, ŝi = eAτsi +

∫ τ

0
eA(τ−t)cui−1 dt,

then the expression for si+1 can be written in a following form:

si+1 = eATisi + eATi
∫ τ

0
e−Atcui−1dt +

∫ Ti−τ

0
eA(Ti−τ−t)cuidt =

= eATi
(

si +
∫ τ

0
e−Atcui−1 dt +

∫ Ti

τ
e−Atcui dt

)

.

So,
(si+1)

′
si

= eATi , (si+1)
′
Ti

= Asi+1 + cui = vi,

and

d
(

γ′si+1

)

= 0 = γ′eATidsi + γ′vidTi, dTi = −k−1
i γ′eATidsi,

dsi+1 = eATidsi − vik
−1
i γ′eATidsi =

(

I − k−1
i viγ

′
)

eATi dsi = Midsi.

Denote dsk1 the successive deviations of pre-switching points of some diverged solution
from s1. In such a case

dsk+1
1 =

1

∏
i=4

Mids
k
1.

The system under consideration causes continuous contracting mapping of some
neighbourhood of the point s1 lying on hyperplane s = l0, to itself. Use of fixed point principle
(Nelepin (2002)) completes the proof. �

Example 1. Let τ = 0.3,

A =

⎛

⎝

−0.1 −0.1 0
0.1 −0.1 0

0 0 0.01

⎞

⎠ , c =

⎛

⎝

1
1
1

⎞

⎠ , γ =

⎛

⎝

0.2
0

−1

⎞

⎠ ,

m1,2 = ∓1, l0 = 0.1, l = 0.5.

System (1), (3) has periodic solution with four switching points; the pre-switching points are:

s1 ≈

⎛

⎝

0.468349
0.497302

−0.006307

⎞

⎠ , s2 ≈

⎛

⎝

0.005176
−0.000633

0.501036

⎞

⎠ , s3 = −s1, s4 = −s2;

and

T1 ≈ 53.6354, T2 ≈ 0.7973, T3 = T1, T4 = T2.

As ‖M‖ ≈ 0.0078 < 1, then the periodic solution is orbitally asymptotically stable.
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Similarly, the system (1), (3) may have a periodic solution with a pair of switching points ŝ1,2

and a pair of pre-switching points s1,2 such as

ŝ1 = x (T2, ŝ2,m2) , ŝ2 = x (T1, ŝ1, 0) ,

ŝ1 = x (τ, s1,m2) , γ′s1 = l0, ŝ2 = x (τ, s2, 0) , γ′s1 = l.

for some positive constants T1,2. This solution will be orbitally asymptotically stable if

k1 = γ′v1,2 �= 0, where vi = Asj + cui, i �= j, u1 = 0, u2 = m2,

and
‖M‖ =

∥

∥

∥

(

I − k−1
2 v2γ′

)

eAT2

(

I − k−1
1 v1γ′

)

eAT1

∥

∥

∥
< 1

(the proof is similar to the previous one).

Example 2. Let τ = 0.5,

A =

⎛

⎝

−0.1 −0.2 0
0.2 −0.1 0

0 0 0.01

⎞

⎠ , c =

⎛

⎝

1
1
1

⎞

⎠ , γ =

⎛

⎝

0.1
0

−1

⎞

⎠ ,

l0 = 0.75, l = 1, m1,2 = ∓1.

Then the system (1), (3) has a periodic solution with pre-switching points

s1 =

⎛

⎝

0.2727
0.2886

−0.7227

⎞

⎠ , s2 =

⎛

⎝

0
0

−1

⎞

⎠ , T1 = 149.6021, T2 = 0.7847,

‖M‖ ≈ 0.9286 < 1,

and the solution is orbitally asymptotically stable.

4. Some extensions (bilinear system, multiple control etc.)

Consider a bilinear system
ẋ = Ax + (Cx + c) u(t− τ), (4)

In case of piecewise constant nonlinearity it is easy to obtain sufficient conditions for orbital
asymptotical stability of periodic solutions of this system.
Denote xi(t− t0, x0), i = 1, 4 solution of the system

ẋ = Aix + ci,

where (t0, x0) are initial conditions and

A1 = A3 = A, A2 = A + Cm1, A4 = A + Cm2, c1 = c3 = 0, c2 = cm1, c4 = cm2.

Lef the control u is given by (3) and the system (4), (3) has a periodic solution with four control
switching points (see the Theorem 1) ŝi and "pre-switching" points si such as

ŝi+1 = xi (Ti, ŝi) , γ′s1 = l0, γ′s2 = −l, γ′s3 = −l0, γ′s4 = l.

Denote
vi = Aisi+1 + ci, ki = γ′vi, i = 1, 4.
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Theorem 2. If ki �= 0 and

‖M‖ =

∥

∥

∥

∥

∥

1

∏
i=4

(

I − k−1
i viγ

′
)

eAiTi+(Ai−1−Ai)τ

∥

∥

∥

∥

∥

< 1,

then the periodic solution under consideration is orbitally asymptotically stable.

Proof As

si+1 = xi (Ti − τ, ŝi) = xi (Ti − τ, xi−1 (τ, si)) =

= eAi(Ti−τ)
(

eAi−1τsi +
∫ τ

0
eAi−1(τ−t)ci−1dt

)

+
∫ Ti−τ

0
eAi(Ti−τ−t)cidt =

= eAiTi+(Ai−1−Ai)τsi + eAi(Ti−τ)
∫ τ

0
eAi−1(τ−t)ci−1dt + +

∫ Ti−τ

0
eAi(Ti−τ−t)cidt,

then

(si+1)
′
si

= eAiTi+(Ai−1−Ai)τ, (si+1)
′
Ti

= Aisi+1 + ci.

So, as d (γ′si+1) = 0,

γ′eAiTi+(Ai−1−Ai)τdsi = −kidTi, dsi+1 =
(

I − k−1
i viγ

′
)

eAiTi+(Ai−1−Ai)τdsi,

and dsk+1
1 = Mdsk1. Use of fixed point principle completes the proof. �

Example 3. Let, for example, τ = 0.3,

A =

⎛

⎝

−0.1 −0.05 0
0.1 −0.05 0

0 0 0.01

⎞

⎠ , C =

⎛

⎝

0 0.05 0
0.05 −0.1 0.05

0 −0.05 0

⎞

⎠ , c =

⎛

⎝

1
1
1

⎞

⎠ ,

γ′ =
(

−0.2 0.5 −1
)

, l0 = 0.1, l = 0.5, m1,2 = ∓1.

In such a case the system (4), (3) has periodic solution with pre-switching points

s1 ≈

⎛

⎝

0.6819
0.5383
0.0328

⎞

⎠ , s2 ≈

⎛

⎝

−0.0534
−0.0073

0.5070

⎞

⎠ , s3 ≈

⎛

⎝

−0.6096
−0.6396
−0.0979

⎞

⎠ , s4 ≈

⎛

⎝

0.1127
−0.0664
−0.5557

⎞

⎠ ,

T1 ≈ 42.2723, T2 ≈ 0.8977, T3 ≈ 33.5405, T4 ≈ 0.8969.

One can verify that ki �= 0, and
‖M‖ ≈ 0.8223 < 1.

So, the solution under consideration is orbitally asymptotically stable.

Note that if matrices A1,2 = A + Cm1,2 are Hurwitz, and

−γ′A−1
2 cm2 < l1, −γ′A−1

1 cm1 > l2,

then the system (4), (2) has at least one periodic solution.
By the analogy with the system (1), a system with multiple controls can be observed:

ẋ = Ax + c1u1 (σ1(t− τ1)) + c2u2 (σ2(t− τ2)) . (5)
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Suppose for simplicity that ui are simple hysteresis nonlinearities given by (2):

ui(σ) = u(σ) =

{

m1, σi < l2,
m2, σi > l1,

σi = γ′
ix, i = 1, 2.

Denote x (t− t0, x0, u1, u2) solution of the system (5) for unchanging control laws u1,2 and
initial conditions (t0, x0). Let the system has periodic solution with four switching (ŝi) and
pre-switching (si) points such as

ŝ1 = x(T4, ŝ4,m2, m2), ŝ2 = x(T1, ŝ1, m1,m2), ŝ3 = x(T2, ŝ2,m1,m1), ŝ4 = x(T3, ŝ3,m2, m1),

ŝ1 = x(τ, s1,m2,m2), ŝ2 = x(τ, s2,m1,m2), ŝ3 = x(τ, s3,m1,m1), ŝ4 = x(τ, s4,m2, m1),

γ′
1s1 = −l1, γ′

2s2 = −l2, γ′
1s3 = l1, γ′

2s4 = l2.

Denote

p1 = c1m1 + c2m2, p2 = c1m1 + c2m1, p3 = c1m2 + c2m1, p4 = c1m2 + c2m2,

vi = Asi+1 + pi, i = 1, 4, k1 = γ′
2v1, k2 = γ′

1v2, k3 = γ′
2v3, k4 = γ′

1v4,

M1 =
(

I − k−1
1 v1γ′

2

)

eAT1 , M2 =
(

I − k−1
2 v2γ′

1

)

eAT2 ,

M3 =
(

I − k−1
3 v3γ′

2

)

eAT3 , M4 =
(

I − k−1
4 v4γ′

1

)

eAT4 .

It is easy to verify that the solution under consideration is orbitally asymptotically stable if
ki �= 0 and

∥

∥

∥

∥

∥

1

∏
i=4

Mi

∥

∥

∥

∥

∥

< 1.

Example 4. Consider a trivial case:

A =

(

λ1 0
0 λ2

)

, c1 =

(

1
0

)

, c2 =

(

0
1

)

, γ1 =

(

α1

0

)

, γ2 =

(

0
α2

)

.

So the system can be rewritten as a pair of independent equations

{

ẋ1 = λ1x1 + u (α1x(t− τ1)) ,

ẋ2 = λ2x2 + u (α2x(t− τ2)) ;

or
{

σ̇1 = λ1σ1 + α1u (σ1(t− τ1)) ,

σ̇2 = λ2σ2 + α2u (σ2(t− τ2)) .

Let, for example, λ1 > 0, λ2 < 0, l1 = −l2 = −l, m1 = −m2 = −m, τ1 = τ2 = τ. Denote

l̂i = eλiτ l − αiλ
−1
i

(

eλiτ − 1
)

m, i = 1, 2.

Between switchings σ looks as follows:

σi(t) = eλitσi(0) + αiλ
−1
i

(

eλit − 1
)

u, i = 1, 2.
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Suppose t1 is a positive constant such as

σ1(0) = −l̂1, σ1(0.5t1) = l̂1, u = −m;

i.e.
α1m

λ1
− l̂1 =

(

α1m

λ1
+ l̂1

)

e0.5λ1t1 , t1 =
2

λ1
ln

α1m− λ1 l̂1

α1m + λ1 l̂1
.

Similarly,

t2 =
2

λ2
ln

α2m− λ2 l̂2

α2m + λ2 l̂2
.

If ti are commensurable quantities (i.e. t1/t2 is rational number) then the system has a periodic solution
with the period T = LCM (t1, t2).
This example also demonstrates that there can exist an almost periodic solution of the system (5) (as a
superposition of two periodic solutions with incommensurable periods) if t1/t2 ∈ I .
Let, for example,

τ = 0.1, λ1 = −λ2 = λ = 0.1, l = m = 1.

Let us choose parameters α1,2 in such a way that t1 = t2. It is easy to verify that the latest equality
holds true if

α1 − λl̂1

α1 + λl̂1
=

α2 − λl̂2

α2 + λl̂2
, or

α1

α2
=

l̂1

l̂2
So,

α2 =
α1λl

(λl − α1m) e2λτ + 2α1meλτ − α1m
.

Let α1 = −1, then
α2 ≈ −0.979229,

then we can calculate l̂1,2:

l̂1 ≈ 1.110552, l̂2 ≈ 1.087485.

And, �nally,
t1 = t2 ≈ 4.460606.

The system under consideration has a T-periodic solution, T = ti. Let s
′
1 =

(

1 0
)

, then

s′2 ≈
(

0.19809 1.02122
)

, s3 = −s1, s4 = −s4,

T1 = T3 ≈ 1.07715, T2 = T4 ≈ 1.15315;

and

dsk+1
1 = Mdsk1, M =

(

0 0
1.1362... 1

)

.

So, as s1,1 = 1, then ds1,1 = 0,

dsk+1
1,2 = dsk1,2,

and the periodic solution under consideration cannot be asymptotically stable (of course this fact can be
established from other general considerations).
It is obvious that the system under consideration may have periodic solutions with greater amount of
switching points (depending of LCM (t1, t2) value).

Similar computations can be observed in case of nonlinearity (3).
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5. Stability in case of multiple delays

In more general case the system under consideration can also contain several nonlinearities or
several positive delays τi (i = 1, k) in control loop:

ẋ(t) = Ax(t) + c f

(

k

∑
i=1

γ′
i x(t− τi)

)

, γi ∈ E
n, ‖γi‖ �= 0. (6)

Let, for example, k = 2, τ1 = 0, τ2 = τ, denote γ̂ = γ1, γ = γ2, i.e.

ẋ(t) = Ax(t) + c f (σ̂(t) + σ(t− τ)) , σ̂ = γ̂′x, σ = γ′x. (7)

Consider one simple particular case. Let f is given by the (2) and the system (7), (2) has a
periodic solution with two switching points ŝ1, 2 such as

ŝ1 = x(T2, ŝ2,m2), ŝ2 = x(T1, ŝ1,m1),

γ̂′ ŝ1 + γ′s1 = l1, γ̂′ ŝ2 + γ′s2 = l2.

Here

ŝ2 = eAτs2 +
∫ τ

0
eA(τ−t)cm1dt, ŝ1 = eAτs1 +

∫ τ

0
eA(τ−t)cm2dt.

Denote

Γ =
(

eAτ
)′

γ̂ + γ, l̂1 = l1 − γ̂′
∫ τ

0
eA(τ−t)cm2dt, l̂2 = l2 − γ̂′

∫ τ

0
eA(τ−t)cm1dt.

then
Γ′s1 = l̂1, Γ′s2 = l̂2.

Theorem 3. Let

v1 = As2 + cm1, v2 = As1 + cm2, k1, 2 = Γ′v1, 2 �= 0,

and
∥

∥

∥

(

I − k−1
2 v2Γ′

)

eAT2

(

I − k−1
1 v1Γ′

)

eAT1

∥

∥

∥ < 1,

then the periodic solution under consideration is orbitally asymptotically stable.

Proof The proof is similar to the previous proofs. As d (Γ′si) = 0, then

dsi+1 =
(

I − k−1
I viΓ

′
)

eATidsi = Midsi.

So, dsk+1
1 = M2M1ds

k
1, and use of fixed point principle completes the proof. �

Note that here we can obtain sufficient conditions for the orbital stability in the alternative
way. Suppose

Γ = γ̂ +
(

e−Aτ
)′

γ, l̂1 = l1 + γ′
∫ τ

0
e−Atcm2dt, l̂2 = l2 + γ′

∫ τ

0
e−Atcm1dt,

v1 = Aŝ2 + cm1, v2 = Aŝ1 + cm2, k1, 2 = Γ′v1, 2,

in such a case
Γ′ ŝi = l̂i, i = 1, 2,
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and the periodic solution will be orbitally asymptotically stable if k1,2 �= 0 and
∥

∥

∥

(

I − k−1
2 v2Γ′

)

eAT2

(

I − k−1
1 v1Γ′

)

eAT1

∥

∥

∥ < 1.

All the above statements we can reformulate in a similar way, defining the above vector Γ,
considering the switching points instead of pre-switching and re-defining threshold values li
(or l0, l in case of (3)).
Let us return to the system (6). In general case we can repeate the previous derivations. Let it
has a periodic solution with two control switching points ŝ1,2, such as

k

∑
i=1

γ′
is1,i = l1,

k

∑
i=1

γ′
is2,i = l2,

where
ŝ1 = x

(

τi, s1,i,m2

)

, ŝ2 = x
(

τi, s2,i,m1

)

, i = 1, k.

Then

k

∑
i=1

γ′
i

(

e−Aτi ŝ1 −
∫ τi

0
e−Atcm2dt

)

= l1,
k

∑
i=1

γ′
i

(

e−Aτi ŝ2 −
∫ τi

0
e−Atcm1dt

)

= l2,

and
Γŝj = l̂j, j = 1, 2,

here

Γ =
k

∑
i=1

(

e−Aτi
)′

γi, l̂1 = l1 +
k

∑
i=1

γ′
i

∫ τi

0
e−Atcm2dt, l̂2 = l2 +

k

∑
i=1

γ′
i

∫ τi

0
e−Atcm1dt.

So the considered periodic solution will be orbitally asymptotically stable if k1,2 �= 0 and
∥

∥

∥

(

I − k−1
2 v2Γ′

)

eAT2

(

I − k−1
1 v1Γ′

)

eAT1

∥

∥

∥
< 1,

where
v1 = Aŝ2 + cm1, v2 = Aŝ1 + cm2, k1, 2 = Γ′v1, 2.

Of course the system considered can have periodic solutions with amount of control switching
points larger then two. Consider an example:

Example 5. Consider the system (6), (2). Let τ1 = 0.013, τ2 = 0.015,

A =

⎛

⎝

−0.25 −1. −0.25
0.75 1. 0.75
0.25 −7. −3.75

⎞

⎠ , c =

⎛

⎝

1
1
1

⎞

⎠ , γ1 =

⎛

⎝

0.536
0
0

⎞

⎠ , γ2 =

⎛

⎝

0
−1.108
−0.567

⎞

⎠ ,

m1,2 = ∓1, l1 = −0.1, l2 = 0.5.

System (1), (2) has periodic solution with six switching points:

ŝ1 ≈

⎛

⎝

0.69484
−0.64902

2.12876

⎞

⎠ , ŝ2 ≈

⎛

⎝

0.06226
−1.91945

2.92801

⎞

⎠ , ŝ3 ≈

⎛

⎝

0.72238
−1.05935

2.95759

⎞

⎠ ,

ŝ4 ≈

⎛

⎝

0.51706
−1.95858

3.43423

⎞

⎠ , ŝ5 ≈

⎛

⎝

1.08072
−0.87355

2.93260

⎞

⎠ , ŝ6 ≈

⎛

⎝

0.11909
−1.44650

2.05635

⎞

⎠ ,
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T1 ≈ 1.8724, T2 ≈ 0.4018, T3 ≈ 6.8301, T4 ≈ 0.4019, T5 ≈ 1.6087, T6 ≈ 0.4084.

Let

Γ =
(

e−Aτ1

)′
γ1 +

(

e−Aτ2

)′
γ2 ≈

(

0.552607 −1.144496 −0.584956
)

,

l̂1 = l1 + γ′
1

∫ τ1

0
e−Atcm2dt + γ′

2

∫ τ2

0
e−Atcm2dt ≈ −0.118450,

l̂2 = l2 + γ′
1

∫ τ1

0
e−Atcm1dt + γ′

2

∫ τ2

0
e−Atcm1dt ≈ 0.518450,

then
Γ′ŝ1 = Γ′ ŝ3 = l̂1, Γ′ ŝ2 = Γ′ ŝ4 = l̂1.

Denote
u2k+1 = m1, u2k = m2.

One can verify that
ki = Γ′ (Aŝi+1 + cui) �= 0, i = 1, 6.

Let
Mi =

(

I − k−1
i (Asi+1 + cui) Γ′

)

eATi ,

in such a case

‖M‖ =

∥

∥

∥

∥

∥

1

∏
i=6

Mi

∥

∥

∥

∥

∥

≈ 0.13771 < 1

and the periodic solution under consideration is asymptotically orbitally stable.

Let us obtain similar results for the system (4). Suppose for simplicity that

ẋ = Ax + (Cx+ c) f (σ̂(t) + σ(t− τ)) , σ̂ = γ̂′x, σ = γ′x. (8)

Let f is given by the (2). Denote

Ai = A + Cmi, ci = cmi, i = 1, 2, xi(T, x0) = eAiTx0 +
∫ T

0
eAi(T−t)cidt.

Let the system (8), (2) has a periodic solution with two switching points ŝ1, 2 such as

ŝ1 = x2(T2, ŝ2), ŝ2 = x1(T1, ŝ1),

γ̂′ ŝ1 + γ′s1 = l1, γ̂′ ŝ2 + γ′s2 = l2,

here

ŝ1 = eA2τs1 +
∫ τ

0
eA2(τ−t)c2dt, ŝ2 = eA1τs2 +

∫ τ

0
eA1(τ−t)c1dt.

So,

γ̂′eA2τs1 + γ̂′
∫ τ

0
eA2(τ−t)c2dt + γ′s1 = l1, γ̂′eA1τs2 + γ̂′

∫ τ

0
eA1(τ−t)c1dt + γ′s2 = l2,

or
Γ′

1s1 = l̂1, Γ′
2s2 = l̂2,
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where

Γ1 =
(

eA2τ
)′

γ̂ + γ, Γ2 =
(

eA1τ
)′

γ̂ + γ,

l̂1 = l1 − γ̂′
∫ τ

0
eA2(τ−t)c2dt, l̂2 = l2 − γ̂′

∫ τ

0
eA1(τ−t)c1dt.

Let
v1 = A1s2 + c1, v2 = A2s1 + c2, k1 = Γ′

2v1, k2 = Γ′
1v2.

Theorem 4. If k1,2 �= 0 and

∥

∥

∥

(

I − k−1
2 v2Γ′

1

)

eA2T2+(A1−A2)τ
(

I − k−1
1 v1Γ′

2

)

eA1T1+(A2−A1)τ
∥

∥

∥
< 1,

where
Ai = A + Cmi, ci = cmi, i = 1, 2.

Then the considered periodic solution is orbitally asymptotically stable.

Proof As

s2 = x1 (T1 − τ, x2(τ, s1)) =

= eA1T1+(A2−A1)τs1 + eA1(T1−τ)
∫ τ

0
eA2(τ−t)c2dt +

∫ T1−τ

0
eA1(T1−τ−t)c1dt,

(s2)
′
s1

= eA1T1+(A2−A1)τ, (s2)
′
T1

= A1s2 + c1 = v1,

then

0 = d
(

Γ′
2s2

)

= Γ′
2e

A1T1+(A2−A1)τds1 + k1dT1,

dT1 = −k−1
1 Γ′

2e
A1T1+(A2−A1)τds1, and ds2 =

(

I − k−1
1 v1Γ′

2

)

eA1T1+(A2−A1)τds1.

Similarly,

ds2 =
(

I − k−1
2 v2Γ′

1

)

eA2T2+(A1−A2)τds2.

In order to finalize the proof one can use the fixed point principle for s1. �

In case of the system (8), (3) the sufficient conditions for orbital stability will change slightly.
Let the system has periodic solution with four control switching points ŝi, i = 1, 4, where

ŝi+1 = xi (T1, ŝi) .

Let si, i = 1, 4, are points on the trajectory of the solution such as

ŝi = xi−1 (si, τ) ,

and
γ̂′ ŝi + γ′si = li, l1 = l0, l2 = −l, l3 = −l0, l4 = l.

In such a case

γ̂′eAi−1τsi + γ̂′
∫ τ

0
eAi−1(τ−t)ci−1dt + γ′si = l̂i,

or

Γisi = l̂i, i = 1, 4, Γi =
(

eAi−1τ
)′

γ̂ + γ, l̂i = li − γ̂′
∫ τ

0
eAi−1(τ−t)ci−1dt.
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Denote

vi = Aisi+1 + ci, ki = Γ′
i+1vi, Mi =

(

I − k−1
i viΓ

′
i+1

)

eAiTi+(Ai−1−Ai)τ

Theorem 5. Let ki �= 0, i = 1, 4, and
∥

∥

∥

∥

∥

1

∏
i=4

Mi

∥

∥

∥

∥

∥

< 1, (9)

then the periodic solution is orbitally asymptotically stable.

Let us skip the proof, it is similar to the above one.

Example 6. Let A, c, l1,2, m1,2 are the same as in the example 5,

C =

⎛

⎝

−0.01 0 0
0 0.005 0

−0.01 0.01 0.005

⎞

⎠ ,

and
ẋ = Ax + (Cx + c) f (−0.565x3(t)− 1.11x2(t− 0.015) + 0.54x1(t− 0.1)) ,

where f is given by the (2). I.e.

τ1 = 0, τ2 = 0.015, τ3 = 0.1,

γ′
1 =

(

0 0 −0.565
)

, γ′
2 =

(

0 −1.11 0
)

, γ′
3 =

(

0.54 0 0
)

.

In such a case the system has a periodic solution with four switching points

ŝ′1 ≈
(

1.1250 −1.0662 3.3411
)

, ŝ′2 ≈
(

0.1806 −1.3848 2.0040
)

,

ŝ′3 ≈
(

0.7081 −0.6317 2.0672
)

, ŝ′4 ≈
(

0.5502 −2.1717 3.9062
)

,

T1 ≈ 1.5668, T2 ≈ 0.3846, T3 ≈ 4.4353, T4 ≈ 0.3890.

Denote

A1,2 = A + Cm1,2,

Γ1 = γ1 +
(

e−A2τ2

)′
γ2 +

(

e−A2τ3

)′
γ3 ≈

(

0.564337 −1.035933 −0.538052
)′

,

Γ2 = γ1 +
(

e−A1τ2

)′
γ2 +

(

e−A1τ3

)′
γ3 ≈

(

0.563215 −1.036110 −0.538057
)′

,

l̂1 = l1 + γ′
2

∫ τ2

0
e−A2tcm2dt + γ′

3

∫ τ3

0
e−A2tcm2dt ≈ −0.058212,

l̂2 = l2 + γ′
2

∫ τ2

0
e−A1tcm1dt + γ′

3

∫ τ3

0
e−A1tcm1dt ≈ 0.458270.

Then
Γ′

1ŝ1 = Γ′
1 ŝ3 = l̂1, Γ′

2 ŝ2 = Γ′
2 ŝ4 = l̂2.

Let

v1 = A1 ŝ2 + cm1, v2 = A2 ŝ3 + cm2, v3 = A1 ŝ4 + cm1, v4 = A2 ŝ1 + cm2,
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One can easy verify that

k1 = Γ′
2v1 �= 0, k2 = Γ′

1v2 �= 0, k3 = Γ′
2v3 �= 0, k4 = Γ′

1v4 �= 0.

Denote

M1 =
(

I − k−1
1 v1Γ′

2

)

eA1T1 , M2 =
(

I − k−1
2 v2Γ′

1

)

eA2T2 ,

M3 =
(

I − k−1
3 v3Γ′

2

)

eA1T3 , M4 =
(

I − k−1
4 v4Γ′

1

)

eA2T4 .

and

‖M‖ =

∥

∥

∥

∥

∥

4

∏
i=1

Mi

∥

∥

∥

∥

∥

≈ 0.3033 < 1.

So, as dsk+1
1 = Mdsk1, the periodic solution under consideration is orbitally asymptotically

stable.
Similar results can be obtained in case of nonlinearity (3).

6. Perturbed system

Consider a system:
ẋ = Ax + c

(

ϕ(t) + u(t− τ)
)

, (10)

where ϕ(t) is scalar Tϕ-periodic continuous function of time. Let f is given by (3).
Consider a special case of the previous system (see Nelepin (2002), Kamachkin & Shamberov
(1995)). Let n = 2,

ÿ+ g1 ẏ+ g2y = u(t− τ) + ϕ(t), (11)

here y(t) ∈ R is sought-for time variable, g1, 2 are real constants, σ = α1y + α2ẏ, α1, 2 are real
constants. Let us rewrite system (11) in vector form. Denote z′ =

(

y ẏ
)

, in that case

ż = Pz + q (ϕ(t) + u(t− τ)) , (12)

u(t− τ) = f (σ(t− τ)) , σ = α′ z,

where

P =

(

0 1
−g2 −g1

)

, q =

(

0
1

)

, α =

(

α1

α2

)

.

Suppose that characteristic determinant D(s) = det (P− sI) has real simple roots λ1, 2, and
vectors q, Pq are linearly independent. In that case system (12) may be reduced to the
form (10), where

A =

(

λ1 0
0 λ2

)

, c =

(

1
1

)

,

by means of nonsingular linear transformation

z = Tx, T =

⎛

⎝

N1(λ1)
D′(λ1)

N1(λ2)
D′(λ2)

N2(λ1)
D′(λ1)

N2(λ2)
D′(λ2)

⎞

⎠ , D′(λj) =
d

ds
D(s)

∣

∣

∣

∣

s=λj

, Nj(s) =
2

∑
i=1

qiDij(s), (13)

Dij(s) is algebraic supplement for element lying in the intersection of i-th row and j-th column
of determinant D(s).
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Note that
σ = γ ′ x, γ = T ′ α.

Furthermore, since

γi = −
(

D′ (λi)
)−1

2

∑
j=1

αj Nj (λi) , i = 1, 2.

then
γ1 = (λ1 − λ2)

−1 (α1 + α2λ1) , γ2 = (λ2 − λ1)
−1 (α1 + α2λ2) .

Transformation (13) leads to the following system:

{

ẋ1 = λ1x1 + f (σ(t− τ)) + ϕ(t),

ẋ2 = λ2x2 + f (σ(t− τ)) + ϕ(t).
(14)

If, for example,
α1 = −λ1α2,

then
γ1 = 0, γ2 = α2, σ = γ2x2.

Function f in that case is independent of variable x1, and

σ̇ = λ2σ + γ2 ( f (γ2 x2(t− τ)) + ϕ(t)) .

Solution of the latest equation when f = u (where u = m1,m2 or 0) has the following form:

σ (t, t0, σ0, u) = eλ2(t−t0)σ0 + γ2 e
λ2t

∫ t

t0
e−λ2s

(

u + ϕ(s)

)

ds.

Let us trace out necessary conditions for existing of periodic solution of the system (10), (3)
having four switching points ŝi:

σ2 = σ (t1, t0 + τ, σ̂1, 0) , σ̂2 = σ (t1 + τ, t1, σ2, 0) ,

σ3 = σ (t2, t1 + τ, σ̂2,m1) , σ̂3 = σ (t2 + τ, t2, σ3,m1) ,

σ4 = σ (t3, t2 + τ, σ̂3, 0) , σ̂4 = σ (t3 + τ, t3, σ4, 0) ,

σ1 = σ (t4, t3 + τ, σ̂4,m2) , σ̂1 = σ (t4 + τ, t4, σ1,m2) ,

for some positive Ti, i = 1, 4, and ti = ti−1 + Ti. Denote u1 = 0, u2 = m1, u3 = 0, u4 =
m2, then

σi+1 = σ (ti, ti−1 + τ, σ (ti−1 + τ, ti−1, σi, ui−1) , ui) =

= eλ2(Ti−τ)
(

eλ2τσi + γ2e
λ2(ti−1+τ)

∫ ti−1+τ

ti−1

e−λ2t (ui−1 + ϕ(t)) dt

)

+

+γ2e
λ2ti

∫ ti

ti−1+τ
e−λ2t (ui + ϕ(t)) dt = eλ2Tiσi + Ki,

where

Ki = γ2e
λ2ti

(

∫ ti

ti−1

e−λ2tϕ(t) dt +
∫ ti−1+τ

ti−1

e−λ2tui−1 dt +
∫ ti

ti−1+τ
e−λ2tui dt

)

.
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So,
⎛

⎜

⎜

⎝

σ1

σ2

σ3

σ4

⎞





⎠

=

⎛

⎜

⎜

⎝

0 0 0 eλ2T4

eλ2T1 0 0 0

0 eλ2T2 0 0

0 0 eλ2T3 0

⎞





⎠

⎛

⎜

⎜

⎝

σ1

σ2

σ3

σ4

⎞





⎠

+

⎛

⎜

⎜

⎝

K1

K2

K3

K4

⎞





⎠

and

σ1 =
(

1 − eλ2T
) (

K2e
λ2(T2+T3+T4) + K3e

λ2(T3+T4) + K4e
λ2T4 + K1

)

= l0,

σ2 =
(

1 − eλ2T
) (

K3e
λ2(T1+T3+T4) + K4e

λ2(T1+T4) + K1e
λ2T1 + K2

)

= −l,

σ3 =
(

1 − eλ2T
) (

K4e
λ2(T1+T2+T4) + K1e

λ2(T1+T2) + K2e
λ2T2 + K3

)

= −l0,

σ4 =
(

1 − eλ2T
) (

K1e
λ2(T1+T2+T3) + K2e

λ2(T2+T3) + K3e
λ3T3 + K4

)

= l,

here T = T1 + T2 + T3 + T4 is a period of the solution (let it is multiple of Tϕ). Consider the
latest system as a system of linear equations with respect to γ2, m (for example), i.e.

σ1 = Ψ1(m, γ2) = l0, σ2 = Ψ2(m, γ2) = −l, σ3 = Ψ3(m, γ2) = −l0, σ4 = Ψ4(m, γ2) = l.

Suppose Ψi ≡ −Ψi+2 (it can be if the solution is origin-symmetric).
Denote

ψ̂i(t) = σ (ti + t, ti, σi, ui−1) , t ∈ [0, τ) ,
ψi(t) = σ (ti + τ + t, ti + τ, σ̂1, ui) , t ∈ [0, Ti − τ)

Following result may be formulated.

Theorem 6. Let the system
{

Ψ1(m, γ2) = l0,

Ψ2(m, γ2) = −l.

has a solution such as for given γ =
(

0, γ2

)

′ and m conditions

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ψ̂1(t) > −l, t ∈ [0, τ),
ψ1(t) > −l, t ∈ [0, T1 − τ),
ψ̂2(t) > −l0, t ∈ [0, τ),
ψ2(t) > −l0, t ∈ [0, T2 − τ),
ψ̂3(t) < l, t ∈ [0, τ),
ψ3(t) < l, t ∈ [0, T3 − τ),
ψ̂4(t) > l0, t ∈ [0, τ),
ψ4(t) > l0, t ∈ [0, T4 − τ)

(15)

are satis�ed. In that case system (14) has a stable T-periodic solution with switching points ŝi, if
λ1 < 0 and

T T−1
ϕ ∈ N.

Proof In order to prove the theorem it is enough to note that under above-listed conditions

system (14) settles self-mapping of switching lines σ = li. Moreover, for any x(i) lying on
switching line,

x
(i+1)
1 = eλ1Tx

(i)
1 + Θ, Θ ∈ R,
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and in general case (Θ �= 0) the latter difference equation has stable solution only if λ1 < 0. �

In order to pass onto variables zi it is enough to effect linear transform (13).
Note that conditions (15) may be readily verified using mathematical symbolic packages.
Of course the statement Theorem 6 is just an outline. Further investigation of the system (11)
requires specification of ϕ function, detailed computations are quite laborious.
On the analogy with the previous section a case of multiple delays can be observed.

7. Conclusion

The above results suppose further development. Investigation of stable modes of the
forced system (10) is an individual complex task (systems with several delays may also be
considered). Results similar to obtained in the last part can be outlined for periodic solutions
of the system (10) having a quite complicated configuration (large amount of control switching
point etc.).
Stabilization problem (i.e. how to choose setup variables of a system in order to put its steady
state solution in a prescribed neighbourhood of the origin) was not discussed. This problem
was elucidated in Zubov (1999), Zubov & Zubov (1996) for a bit different systems.
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