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1. Introduction

Visual surveillance plays an important role in security systems of digital home and enterprise
Regazzoni et al. (2001). Evolving from CCTV video surveillance, the IP camera surveillance
system with Internet as the connection backbone is a trend in recent years. A typical IP
camera surveillance system is shown in Fig. 1. IP camera systems have the advantages of
easy setup and universal access ability; however, several issues in network transmission are
introduced Foresti & Regazzoni (2001), which become more and more important when the
number of camera grows. Since the surveillance systems share the same network with other
applications and devices of digital home and enterprise, the congestion of network caused
by transmission of large surveillance contents may degrade the service quality of the these
applications, including the surveillance application itself. Besides, the control server can only
afford the content storage from a limited number of video channels, which limits the system
extension in camera number.
Further evolving from IP camera systems, the maturity of visual content analysis technology
makes it feasible to be integrated into the next-generation surveillance systems to achieve
intelligent visual surveillance network Mozef et al. (2001) Hu et al. (2004) Stauffer & Grimson
(1999) Elgammal et al. (2000) Comaniciu et al. (2003) Cavallaro et al. (2005) Maggio et al. (2007),
where high-level events can be automatically detected, and multiple cameras can cooperate
with each other, including different types of fixed cameras and mobile cameras hold by robots,
as shown in Fig. 1.
In the next-generation system in Fig. 1, namely cooperative visual surveillance network,
new design challenges are introduced. First of all, the system configuration should be
carefully designed since the distribution of the computations for these analysis functions will
significantly affect the performances of these visual content analysis algorithms, and it will
also affect the utilization efficiency of network resources. Moreover, the large computation of
content analysis algorithms will increase the loading of servers, which will further limit the
scale of camera number. Thanks to the advanced silicon manufacturing technology, which
makes the transistor count in single chip increase dramatically, more and more functions can
be considered to be integrated as a System-on-a-Chip (SoC) to cover more and more tasks for
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Fig. 1. Illustration of a cooperative video surveillance network.

surveillance applications Wolf et al. (2002). An efficient smart camera SoC is required to help
reducing the deployment space and cost and solving the above issues.
This chapter is organized as follows. In Section 2, the issues in conventional IP camera
surveillance systems are discussed, and our solution for the next-generation surveillance
system is introduced. The surveillance system pipeline in system level, and an five-layered
surveillance visual content abstraction hierarchy are presented. In Section 3, the proposed
algorithms to be embedded in each surveillance camera are introduced, including video
segmentation in complex and dynamic background, user-friendly video object description,
efficient multiple video object tracking with split- and merge-handling, and efficient face
detection and scoring. Next, in Section 4, our proposed visual content analysis hardware
engine is introduced, where the proposed content analysis algorithms are implemented,
and the overall hardware architecture for smart camera SoC is also provided. Two design
examples are then demonstrated. The first one is a multi-fixed-camera surveillance system,
which will be shown in Section 5; the second one is a surveillance network with several fixed
cameras, one robot (mobile camera), and in-door localization system using Zigbee, which
will be shown in Section 6. Finally, we will conclude this chapter and introduce some future
directions in Section 7.

2. Proposed system configuration and data abstraction hierarchy

In this section, the system configuration of the next-generation surveillance systems
are discussed with considering the issues mentioned previously, and a better system
configuration is analyzed based on the surveillance pipeline model shown in Fig. 2. After
that, the new ability of abstraction hierarchy of the next-generation surveillance systems
is introduced as shown in Fig. 3. With content analysis ability, the scalability in IP
camera surveillance systems can be extended across all of the five layers according to
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operation conditions, network conditions, and storage space conditions. The most important
information in semantics will be transmitted under restricted communication and storage
resources.
A conventional IP cameras surveillance system is modeled with the pipeline in Fig. 2. In this
pipeline, there are seven important tasks: Video Sensing (Sensor), Image Signal Processing (ISP),
Video Encoding, Network, Video Decoding, Content Storage, and Visualization. In the Back-end
Workstation, which is placed at the other side of the Network from the IP camera, the transmitted
video stream is decoded in Video Decoding. The video data is then displayed with Visualization
for the human operators. The coded video data is also received and stored in the Central
Storage Server, and the Back-end Workstation and Central Storage Server can be integrated in
the same machine in some cases. Note that the detailed tasks in Network are ignored in
the pipeline since they are beyond the scope of this chapter. From Fig. 2, we can see
that all of the compressed bitstreams from every IP camera should be transmitted through
Network for inspection by the human operators. When the number of cameras increases,
a network congestion problem will occur, and the surveillance system’s performance will
degrade significantly.

2.1 Content abstraction hierarchy

When visual content analysis tools are employed in surveillance systems, the essential change
is the introduction of a content abstraction hierarchy, which is described in the first place
before the system configuration discussion. As shown in Fig. 3, there are five different layers
to represent the visual surveillance contents: Source Data Layer, Compressed Bitstream Layer,
Low Level Meta Data Layer, High Level Meta Data Layer, and Event Layer. The Low Level Meta
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Data represents the low-level features of the source video, such as color and shape features,
and the High Level Meta Data is obtained through further analysis of the Low Level Meta Data,
where the concept of “object” is considered, such as face locations, object trajectories, poses,
and the gaits of human objects. Event represents the results of an event detection, where the
event is defined in advance according to different application scenarios. In a conventional
IP camera surveillance system, the content scalability only occurs in the Compressed Bitstream
Layer to adjust the coding bitrate according to different network conditions or storage space
conditions, which is indicated as the Conventional Content Adaptation in Fig. 3. With content
analysis ability, the scalability in IP camera surveillance systems can be extended across all of
the five layers in Fig. 3 according to operation conditions (results from event detection...etc),
network conditions (network congestion...etc), and storage space conditions. That is, the most
important information in semantics will be transmitted under restricted communication and
storage resources.

2.2 System configuration discussion

In order to discuss the system configuration, surveillance pipeline models similar to the one
in Fig. 2 are employed. Three representative surveillance pipelines are provided in Fig. 4.
In these pipelines, Content Analysis tasks are added. With the minimum modification to the
conventional surveillance pipeline in Fig. 2, the Back-End Content Analysis task in Fig. 4(a)
utilizes visual content analysis tools in the back-end workstation after the video bitstream is
received from the network and decoded. In such a surveillance pipeline, the delay of event
detection due to network transmission delay could be expected. Moreover, the coding process
and the packet loss in transmission may also degrade the video quality for analysis. Besides,
when the number of IP cameras becomes large, more Back-End Workstations are required to
provide sufficient computing power, which will dramatically increase the system cost and
deployment space. In addition, the Central Storage Server cannot afford to perform all the
storage tasks for all the surveillance cameras, and the network loading also increases for
the purpose of storage. To deal with the above-mentioned problems, the Back-End Content
Analysis can be moved to the front-end as distributed Front-End Content Analysis Workstations,
and distributed Local Storage can be used to replace the Central Storage Server. The resultant
pipeline from these two modification is shown in Fig. 4(b). In this pipeline, the network
congestion problem can be solved by using a content abstraction hierarchy to transmit only
the semantically meaningful information for visualization, while the Local Storage stores
the complete video bitstream for off-line historical inspection and review. However, the
number of Front-End Content Analysis Workstations will still increase as the number of cameras
increases, which leads to large cost and deployment space. Consequently, a choice is made
to replace the Front-End Content Analysis Workstation with a smart camera SoC with visual
content analysis functions. For the issues mentioned here, the surveillance pipeline that
features distributed local storage and smart camera SoCs in Fig. 4(c) is our chosen solution.
It is the best solution among these three pipelines in terms of system cost, deployment space,
network loading, and system scalability. The comparisons among these three pipelines are
summarized in Table 1.

2.3 Proposed visulization strategy

A visualization strategy is also proposed with the five-layered visual content abstraction
scalability in Fig. 3 and the selected pipeline in Fig. 4(c), where human objects is the focus
in our system. This strategy consists of three condition levels: normal level, alert level,
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Fig. 4. Surveillance pipelines with different configurations. (a) Surveillance pipeline with a
central storage server and back-end content analysis. (b) Surveillance pipeline with local
storage servers and front-end content analysis workstations. (c) Next-generation surveillance
pipeline with local storage servers and front-end content analysis in a smart camera SoC.
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Surveillance Pipeline Fig. 4(a) Fig. 4(b) Fig. 4(c)

Network Congestion1 More possible Less possible Less possible
Limitation from Storage Space2 More limited Less limited Less limited

Video Quality for Analysis3 Low High High

Event Detection Delay4 More possible Less possible Less possible
Deployment Space and Cost5 High High Low
System Scalability6 Lower Middle Highest

Table 1. Comparison between Surveillance Pipelines in Fig. 4

1. In Fig. 4(a), the video bitstreams should be transmitted to the back-end workstation through network
for analysis. This will cause network congestion problem more frequently.

2. In Fig. 4(a), one central storage server can not afford the storage of video from all of the cameras.

3. The quality of the video for analysis in Fig. 4(a) may be degraded due to network transmission loss,
such as packet loss, and video coding distortion.

4. The event detection delay in Fig. 4(a) is due to the delay of video streaming.

5. The deployment space and cost are largely reduced with smart camera SoCs in Fig. 4(c) .

6. The highest system scalability in Fig. 4(c) is due to its lowest requirements on the network bandwidth,
the processing capacity of a single storage server, and the system deployment space and cost.

and operator interaction level. In the normal level, only the data in event layer and meta
data layers in Fig. 3 will be transmitted to the back-end workstations for human operators.
Meta data here includes a clear, representative face for each human object, and all objects’
current positions and their color features. Once an event has been detected at a front-end
smart camera, the current condition level will be switched to alert level. Note that the event
definition can be defined according to different application scenarios by human operators. In
alert level, a small-sized video stream from the cameras that detect this event will be sent to
human operators along with the meta data. The human operators can judge the true condition
by inspecting the small-sized video and all the meta data. Once the human operators want to
see what happens clearly, the current condition level can be switched to operator interaction
level on human operators’ commands at any time. In operator interaction level, the upper
four layers of data, which includes a large-sized video, will be transmitted to the back-end for
further checking.
Two examples are described here to show the data-size-reduction ability of the proposed
visualization strategy. The sizes of the data to be transmitted for each frame are measured and
compared with those of conventional IP camera surveillance systems. In the first example, the
sequence Hall Monitor is tested, and the required data sizes to be transmitted are shown in
Fig. 5(a). For the proposed visualization strategy, the condition level will be switched to alert
level if there is any object appearing from the left door in the scene. At the begging, only the
meta-data is transmitted, and almost no data needs to be transmitted. At frame number 20,
these is a human object appeared from left door, so the alert level is triggered. The video of
size 176x144 is transmitted to the operator. At frame number 132, when the human operator
finds that the man is putting something near the wall, he requires the corresponding camera
to transmit the large-sized video in 352x288 frame size for detailed inspection. On the other
hand, for a conventional IP camera surveillance system, the video with frame size 352x288 is
always transmitted over the network even when there is no event of interests. As shown by
the dashed curve in Fig. 5(a), it is obvious that the size of transmitted data is larger. In the
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Fig. 5. Comparisons of data size to be transmitted.

second example, the PETS2001 multi-camera sequences PETS (2007) are tested as shown in
Fig. 5(b). In this case, there are two cameras monitoring the same area. We set that camera 1
is used to detect illegal treading on grass, and camera 2 is used to detect illegal parking. At
frame number 660, an illegal parking event is detected. At frame number 1116, a treading on
grass event is detected. It can be seen that compared with conventional approach, the data
size is greatly reduced in Fig. 5(b) with our proposed visualization strategy because only the
semantically meaningful information for visualization is transmitted, which will greatly relief
the network loading.
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Fig. 6. The block diagram of the proposed front-end content analysis algorithm in a single
smart camera.

3. Single camera operation

In this section, the algorithms proposed to be embedded in each smart camera in the
next-generation surveillance pipeline for the front-end content analysis are introduced. The
proposed algorithms can be shown with the block diagram in Fig. 6. There are three
major components, which are video object segmentation Chan & Chien (2007), video object
description and tracking Chien, Chan, Cherng & Chang (2006), and face detection and scoring
Chen et al. (2007). These three components are described as follows.

3.1 Video object segmentation

As shown in Fig. 6, the video object segmentation is the first step. The segmentation algorithm
employs a multiple layer background modeling technique named Multi-Background
Registration. It models the background with N layers of images to contain up to N possible
values of the background at every pixel Chan & Chien (2007). The object mask is produced
with comparing the current frame with these background images (background subtraction),
while the thresholds are decided with our threshold decision technique Chien et al. (2004).
The object mask is further de-noised with morphological operations.

3.2 Video object description and tracking

In this subsection, the video object description and tracking component of our algorithm is
introduced. We designed this component with the considerations below. First, the style of
video object description should be close to what people are used to describe video objects,
since the users would like such a description style for their inspection convenience. Second,
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the tracking algorithm should be capable of tracking multiple video objects with mutual
merging and splitting. Finally, since there are usually similar operations in segmentation,
description, and tracking, these operations should be further combined as a single system
without redundant computations.
This component is based on Chien, Chan, Cherng & Chang (2006) combined with a
mechanism to handle the object merging and splitting Kumar et al. (2006). As shown in Fig.
6, this component is a segmentation-and-description based video object tracking algorithm.
It receives the segmentation results from our proposed Multi-Background Registration Video
Segmentation introduced in the previous subsection. The Connected Component Labeling step
in Fig. 6 is used to give each blob on the object mask a unique label. After that, several
features/descriptors are extracted for each blob, which corresponds to the Feature Extraction
step in Fig. 6. Our proposed Human Color Structure Descriptor (HCSD) Chien, Chan, Cherng
& Chang (2006) is used as one of the descriptors to be extracted. The HCSD requires a
skeletonization process to decompose the blobs. A decomposition example is shown in Fig.
7. We can see that the human object’s blob is decomposed into a Body part and Limbs part in
Figs. 7(d) and (e), respectively. After skeletonization decomposition, we can easily extract the
color features in each individual part. Especially for human objects, they can be described in
terms of their shirt color and pants color, which is usually how people describe strangers.
Beside HCSD, four other features are also extracted. These are the overlapped area sizes
of the blobs in the current frame with the video objects in the previous frame (Object- Blob
Overlapped Area), the area of each blob (Blob Area), the center of each blob (Blob Center),
and the color histogram of each blob in YUV color space (Blob Color Histogram).
On the other hand, the merging and splitting conditions are judged in Merge/Split Condition
Decision step in Fig. 6 in advance before Object Classi�cation, where the correspondences
between the blobs on the object mask and the video objects in the history database will be built.
Here we use the reasoning method based on blob-object overlapping condition Kumar et al.
(2006) to judge the merging and splitting conditions. However, we do not use the Kalman filter
to predict video objects’ motions Kumar et al. (2006). The overlapping conditions between
the blobs in the current frame and the video objects in the history are employed instead
considering that Kalman filter may fail to predict random motions.
After Feature Extraction and Merge/Split Condition Decision, the correspondences between the
blobs and the video objects in the history database are built in Object Classi�cation. The
correspondences involved with merging objects or splitting objects are built according to the
merging or splitting conditions obtained from the Merge/Split Condition Decision step, while
the correspondences involved with only single objects (non-merging and non-splitting) are
built with selecting the closest object in the history database for each blob. The closest object
here is obtained with the comparison based on the four features extracted previously.
In Merged Object Update step, the single objects split from some merged objects (judged
with the Merge/Split Condition Decision step) can be removed from the merged object lists.
Meanwhile, objects that are no longer observed for a predefined length of time will be
removed from the object list for object-blob matching in the No Longer Existing Object Removal
step.

3.3 Face detection and scoring

The face detection and scoring algorithm is based on segmentation and feature based face
scoring Chen et al. (2007). Firstly, as shown in Fig. 6, the algorithm detects skin color regions
Chai & Ngan (1999) on the surveillance video after automatic white balance Ramanath et al.
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(a) (b)
(c) (d) (e)

Fig. 7. An example from segmentation step to skeletonization step, where the test sequence is
Hall Monitor. (a) Original sequence of Hall Monitor; (b) result after segmentation; (c) result
after connected component labeling; (d) result after skeletonization: Body part; (e) result
after skeletonization: Limb part.

(2005). Then, in Face Candidate Selection step, the possible locations of faces on the overlapped
area between the skin color regions and the foreground regions in the object mask are found
via a mean shift process Comaniciu et al. (2003). After finding the possible locations of
faces, these face candidates are scored with four face feature scores, which are Skin Color
Coverage Score, Luminance Variation Score, Circularity Measurement Score, and Eye-pixel
Histogram Score Chen et al. (2007). These four scores are linearly combined to form the final
score function. A neural network is employed to train the weighting of each score based on
Least-mean-square (LMS) delta rule. The faces with higher final scores are better ranked and
are selected as the detected faces.

4. Smart camera hardware architecture with embedded content analysis engine

Before hardware architecture design and mapping, the whole content analysis algorithm is
first analyzed with execution time profiling and data flow graph. We find that there are
three computationally intensive operations that dominate the computation time, which are
multi-background registration video segmentation, morphological operations (to de-noise
the object mask), and the connected component labeling. Based on this analysis result, the
hardware architecture of the smart camera SoC is proposed as shown in Fig. 8(a). We can
see that there are three hardware accelerators, Segmentation Hardware Accelerator, Morphology
Coprocessor, CCL Hardware Accelerator in the proposed Visual Content Analysis Hardware Engine.
These three accelerators are used to accelerate the processing of the three computation
intensive operations in our profiling.
There are several design issues for these hardware content analysis accelerators. First, the
operations involved in a single camera have very different requirements. For example, some
of the algorithms should be implemented to have high throughput, and dedicated hardware
accelerators may be a better solution for this case. Some of the algorithms are adaptive
according to different situations, and programmable hardware accelerators could be used.
In addition, morphology operations Serra (1982) are widely used in the proposed content
analysis algorithms. Hardware sharing between different algorithms should be considered.
Moreover, most of the operations involved are basically frame-level operations, which means
that the next operation can be executed only when the whole frame is completely scanned
or processed by the current operation. To achieve high throughput for such operations,
frame-level pipeline technique should be employed, and a frame buffer is required. For
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Fig. 8. (a) Block diagram of smart camera SoC hardware architecture with heterogeneous
content analysis hardware engine. (b) System specifications and implementation results.
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the requirement of large frame size, the frame buffer is not feasible to be implemented
on-chip and should be located in the off-chip memory, which will introduce high memory
bandwidth requirement. Furthermore, when these hardware accelerators are integrated in an
SoC, bit-width mismatch may sometimes lower the performance of the hardware. That is, for
the various algorithms, the data formats are quite different. Some are 8-bit, some are binary,
and some are 16-bit; however, the bit-width of the system bus is fixed, which is decided to be
64-bit in this paper after system analysis. To efficiently utilize the system bus bandwidth, the
hardware should be carefully designed.
For the above reasons, firstly, the visual content analysis hardware engine is proposed
to be designed with heterogeneous processing units, which includes CPU, dedicated and
programmable hardware accelerators here. Besides, these algorithms can be separated
into special operations and morphological operations. Therefore, in our proposed visual
content analysis hardware engine, there are three modules: Segmentation Hardware Accelerator,
Connected Component Labeling (CCL) hardware accelerator, and Morphology Co-Processor. The
Segmentation Hardware Accelerator and CCL Hardware Accelerator are dedicated hardware
accelerators for video object segmentation and connected component labeling operation,
respectively. The major design techniques employed are delay-line and partial-result-reuse
technique Chien, Hsieh, Huang, Ma & Chen (2006). The Morphology Co-Processor is a
programmable hardware accelerator for binary morphology operations, which can be used
to accelerate the processes of Video Segmentation, Skeletonization, and Face Detection and
Scoring Hartenstein (2001) Chan & Chien (2006a) Serra (1982). As for the bit-width mismatch
problem, the design concept of subword level parallelism (SLP) Chan & Chien (2006b) is
considered in our design to efficiently utilize the system bus bandwidth.
The implementation results are shown in Fig. 8(b), which demonstrates a nice trade-off
between hardware cost and performance. It can achieve the processing speed of 30 VGA
frames/s with a reasonable hardware cost.

5. Case study I: Surveillance system with multiple fixed cameras

The first case study is a surveillance system with multiple fixed cameras. We will introduce
two key techniques for the spatial consistency labeling in multi-camera surveillance systems:
homography transformation Semple & Kneebone (1979) and earth movers distance (EMD)
Rubner et al. (1998). The PETS2001 multi-camera sequences PETS (2007) are employed as the
test sequences.
Spatial consistency labeling (SCL) algorithm is used to find the object correspondences
between different camera views Chang et al. (2008). With the assumption that the views
should have a common ground plane, the algorithm for SCL is based on ground plane
homography transformation Semple & Kneebone (1979) Bradshaw et al. (1997). The
homography transformation matrix is defined as follows.

⎡

⎣

λiXi

λiYi
λi

⎤

⎦ =

⎡

⎣

M11 M12 M13

M21 M22 M23

M31 M32 1

⎤

⎦

⎡

⎣

xi
yi
1

⎤

⎦ (1)

In this equation, M is the ground plane warping matrix between two views. (Xi,Yi) and
(xi , yi) represent the corresponding ground plane positions. Homography transformation
converts the coordinates of a ground point in one view to the coordinates in the other view.
An example is shown in Fig. 9. Given four or more matching pairs, the ground plane warping
matrix can be derived with least square errors.
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Fig. 9. Warping a ground plane from one view to another using homography transformation.

The bottom center of a bounding box of a mask is assumed to be the object ground point.
However, for a mask of a person, the shadow in the mask may shift the ground point from
the true position, and for a mask of a vehicle, the same object in different views may have
totally different ground points. For instance, for the same car, the left rear tire is regarded as
its ground point in one view, and the right rear tire may be regarded as its ground point in
another view. For this issue, two concepts, earth mover’s distance (EMD) Rubner et al. (1998)
and trusting-former-pairs-more, are employed to prevent the generation of wrong matching
pairs in this type of case.
EMD is originally used as a difference measure between two distributions. The distance
measurement is modeled as a transportation problem, where a flow of goods with minimum
transportation cost from suppliers to customers is required to be found and the minimum
transportation cost per unit of good flow is defined as the earth mover’s distance. In our
matching approach, let P = {(p1,wp1

), ..., (pm,wpm
)} be the ground-point distribution with

m converted coordinates of points from the first view to the second view with homography
transform, where pi is the converted coordinate of a point and wpi

is the weighting of the
point. Here we set the weighting to 1 since each point needs to be paired to only one point at
most in the other view. Then letQ = {(q1,wq1

), ..., (qn,wqn
)} be the ground-point distribution

with n points in the second view. We also let D = {dij} be the distance matrix where dij is
the distance between pi and qj. F = { fij} is the flow matrix where fij is 1 if and only if

pi and qj are considered as a pair otherwise fij would be 0. Fig. 10 shows an example of

notation representation. The objective is finding an F that will minimize the total cost function
C(P,Q, F)

C(P,Q, F) =
m

∑
i=1

n

∑
j=1

dij fij, (2)

and then the EMD(P,Q) is calculated as

EMD(P,Q) =
C(P,Q, F)

m
∑
i

n
∑
j
fij

. (3)

EMD tries to find the matching pairs that will minimize the overall cost. It means that if
some ground point deviations exist, EMD still works correctly because it finds pairs with a
minimum global cost but does not pursue a minimum matching distance one point by one
point.
The other concept, trusting-former-pairs-more, is performed for stable and reliable
consistency labeling. To work with satisfactory performance, we have to make an assumption
that a new incoming object should keep its distance from other objects at the start. In this case,
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Fig. 10. Illustration of earth mover’s distance. The ground point addresses p̄i in the first view
are converted to the addresses pi in the second view. qj are the ground point addresses in the

second view. Yellow points are referenced points for generating a homography
transformation matrix.
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Fig. 11. Spatial consistency labeling flow.

if a new mask starts to appear in two cameras, the corresponding mask found at this time has
higher confidence than the other corresponding masks found in the future, since the mask has
relatively less occluding problems, less interactions with other masks, and fewer matching
choices. Therefore, even if it has a large ground point deviation, the matching algorithm can
still produce a correct pair. The pair still has chances to be renewed if the absolute point
distance goes too far. The large absolute point distance reveals that a wrong pair has been
generated, and the pair should be discarded from the database.
The overall flow of SCL is shown in Fig. 11. The database generated by single camera tracking,
named as Temporal Consistent Labeling (TCL), is used as the input for SCL. The database
provides the ground point information of single objects to EMD object matching. The concept
of trusting-former-pairs-more is realized in the one-to-one object mapping. Note that the merged
object masks are not matching in this stage because the ground point of a merged object is
meaningless. Finally, the merged objects get the pair information from every single object
before they are merged. This stage depends totally on the pairs in the history database.
One SCL result is shown in Fig. 12. Blue, green, red, and yellow grid points in two views are
the given match points for homography matrix generation. The bounding boxes of objects
with same color indicate they are matched pairs. A merged object will present alternately all
color tags come from single objects paired before they are merged. Fig. 13 shows two cases
that the pairs are renewed when their distances are larger than the predefined outlier distance.
Fig. 13(a) shows that a man is leaving a car, which lead to an object splitting case. Fig. 13(b)
shows that a car enters the left view but it is merged with the bike at the boundary. These
errors are fixed at the SCL stage. In order to present the objective results of SCL, the concepts
in multi-object tracking evaluation Smith et al. (2005) are employed and modified for SCL
here. We define the ratio of the false pair number to the total ground true pair number in
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Fig. 12. Spatial consistency labeling result. The merged object in left view contains green, red,
and blue tag which represents the driver, the green car, and the dark blue car in turn. If an
object in the left view is a single object, its transformed ground point is shown in the right
view.

(a) (b)

Fig. 13. Fig. 13(a) shows that a man is leaving a car. The system has no prior information
about the man in the car and the car is considered as a single object. Due to the warping
point deviation, the car in the left view matches the man in the right view. Later, the distance
between them is large enough for fixing their pairs. Fig. 13(b) shows that a car enters the left
view but it is merged with the bike at the boundary. That mask is considered as same objects
before and after the switching during object tracking stage. The error is fixed at the SCL
stage.

an entire sequence as the averaged falsely identified pair (FIP). The FIP of the PETS2001
sequence is 0.22, which means that there are 0.22 false pair per ground true pair. Most errors
are generated from bad foreground masks and the situation when objects enter the view but
occluded by others.
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Fig. 14. Hierarchical surveillance system. In a localized area, bitstreams and object
coordinates generated by each camera should be transmitted to a local storage server.

Running with on an Intel Core 2 Duo processor at 2.8 GHz, the SCL processing speed is about
4,638 fps per one pair of CIF-sized video channels. To carry out SCL, object positions from
different cameras are needed to be transmitted to a server. Besides, all recorded bitstreams in a
localized area should be stored for future inspection. These two reasons make the hierarchical
surveillance system shown in Fig. 14 become reasonable. The local storage server stores all
the data in this area, and the proposed low-complexity SCL makes it easy to be realized in this
server.

6. Case study II: Cooperative surveillance system with fixed camera localization

and mobile robot target tracking

The second case study is a cooperative surveillance system with fixed-camera localization and
mobile-robot target tracking Chia et al. (2009). As shown in Fig. 15, the fixed cameras detect
the objects with background subtraction and locate the objects on a map with homography
transform with the techniques described in Section 3 and 5. At the same time, the information
of the target to track, including the position and the appearance, is transmitted to the mobile
robot. After breadth-first search in a map of boolean array, the mobile robot finds the target in
its view by use of a stochastic scheme with the given information, then it will track the target
and keep it in the robot’s view wherever the intruder goes. With this system, the dead spot
problem in typical surveillance systems with only fixed cameras is considered and resolved.

6.1 Motivation and introduction to the cooperative system

Recent approaches in surveillance systems typically include the use of static cameras along
with the content analysis algorithms Regazzoni et al. (2001) Stauffer & Grimson (1999).
The drawback is that blind spots cannot be covered, and intruders can try to avoid the
fixed camera’s sight, which results in less robustness for the surveillance systems. Systems
employing pan-tilt-zoom (PTZ) cameras or omni-directional camera system can increase the
covering range Micheloni et al. (2005) Foresti et al. (2005) Iwata et al. (2006). However, there
may still exist blind spots and the covering area still depends on the cameras’ positions
decided in the deployment phase. Besides, several object tracking algorithms that are capable
of tracking targets with a mobile camera are developed in recent years Maggio et al. (2007)
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Fig. 15. (a) The proposed cooperative surveillance system. (b) Video captured by one fixed
camera. (c) Video captured by the mobile robot.

Comaniciu et al. (2003). The critical issue in the use of these algorithms is the initialization of
the tracker, which is usually manually selected without automatic initialization scheme.
We now introduce a prototype system which consists of fixed cameras and a mobile robot as
shown in Fig. 15 and the overall operation flowchart is shown in Fig. 16. In this system,
we propose a cooperation scheme between ZigBee localization system, fixed cameras and a
mobile robot. The fixed cameras can do object detection and feature extraction automatically
as described in Section 3. Then the object is localized on a map of the environment via
homographic relations Bradshaw et al. (1997) between the fixed cameras and a global map,
which is constructed in the camera calibration phase. After these fixed camera operations, the
information of the object’s location in the map and its appearance are provided to the mobile
robot, in which a target finding algorithm and a target tracking algorithm are implemented.
The robot will follow the target throughout the entire environment and keep it in the center
of the robot’s view.

6.2 Intruder detection and localization

In this section, the Target Detection and Localization subsystem in Fig. 16 is introduced. This
subsystem integrates two localization mechanisms: ZigBee Localization and Vision Localization.

6.2.1 ZigBee localization

ZigBee is a specification for a suite of high level communication protocols using small,
low-power digital radios based on the IEEE 802.15.4 standard for wireless personal area
networks (WPANs). It is generally targeted at radio-frequency applications that require a
low data rate, long battery life, and secure networking.
Being widely deployed in wireless monitoring applications with high-reliability and larger
range, ZigBee transmitters are spread around the environment. We assume that all authorized
in-comers should wear a ZigBee receiver so that their locations can always be monitored. The

115Cooperative Visual Surveillance Network with Embedded Content Analysis Engine

www.intechopen.com



ZigBee Localization

Fixed Camera

Object Segmentation

Camera-to-Map

Homography

Intruder Detection

Target FindingTarget Tracking

Vision Localization

Fixed Cameras and Control Center for Target Detection and Localization

Mobile Robot for Tracking

(a)

Fig. 16. the proposed cooperation scheme.

(a) (b)

Fig. 17. (a) Shot of the test environment taken by one of the fixed cameras and (b) a simple
global map. The colored points are the four corresponding pairs of points chosen.

control center can receive information about the number of authorized visitors and their rough
locations Lorincz & Welsh (2005).

6.2.2 Vision localization

Vision Localization is based on homography transform Bradshaw et al. (1997). After
background subtraction and appropriate denoising, the segmentation result can be used to
detect and localize the objects in the view of each fixed camera. Here, as described in Section
5, the bottom-centroid of each segmented object blob is treated as the object’s location in the
view of each fixed camera. In order to localize the object in a global coordinate system, a
homography transform is employed to build the correspondences between the coordinates
of fixed camera views and the coordinate of a global map, as shown in Fig. 17(b). The
vision localization gives location information about all objects, including authorized and
unauthorized, when they are detected with background subtraction.

6.2.3 Integration for identification

Identification (Intruder detection) can be easily done by comparing the results from ZigBee
Localization in Section 6.2.1 and those from Vision Localization in Section 6.2.2. From the
ZigBee Localization, the system receives information about the number of authorized visitors
and their rough locations. At the same time, fixed cameras can find the objects (people),
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including authorized and unauthorized, and locate them in terms of global coordinates.
Intruders, who have no authority to come in, are then detected by comparing the object
information from the fixed cameras with those from the ZigBee system.

6.3 Mobile robot for tracking

From Section 6.2, the coordinate of the intruder can be inferred. A template of the intruder
can also be obtained from the segmentation results in fixed cameras. Information about the
object’s location and appearance will then be transmitted immediately to the mobile robot to
start tracking. In this section, we will introduce our Tracking subsystem in Fig. 16.

6.3.1 Target modeling and similarity measurement

Since the camera on the robot may be different from the fixed cameras, specific camera
calibration techniques, including those for cameras with different lighting conditions
and orientations, are useful for the processing and analysis Haralick & Shapiro (1992).
The template of the intruder will be modeled with a color histogram, which is a
viewing-angle-invariant feature. The object is represented by an ellipse. The sample points
(pixels) of the model image are denoted by xi and h(xi), where xi is the 2D coordinates and
h(xi) is the corresponding color bin index of the histogram. The number of color bin indexes
used is denoted as β. The object’s color histogram is constructed as follows.

p(uj) =
I

∑
i=1

k(‖ xi − c

σ
‖)δ[h(xi)− uj], 0 ≤ j ≤ β (4)

where I is the number of pixels in the region, uj is the color bin index in the histogram. σ is
the bandwidth in the spatial space and c is the center of this object. δ is the Kronecker delta
function. To increase the reliability of the color distribution, smaller weights are assigned to
pixels farther away from the center (denoted as c), which are more likely to belong to the
background. The chosen weighting function here is the Epanechnikov kernel : k(u) = 3

4 (1 −
u2), |u| ≤ 1.
Here Bhattacharyya coefficient is adopted to measure the distribution similarity as shown
with the following equations Comaniciu et al. (2003).

B(Ix, Iy) =
√

1 − ρ(pxpy) (5)

where function ρ is defined as

ρ(px , py) =
∫

√

px(u)py(u)du (6)

6.3.2 Target finding with mobile robot

The mobile robot then receives information about the intruder, including its coordinate and
appearance (color distribution). The initial location and the initial direction of the robot can
be decided according to different environments in advance with respect to any target location.
The mobile robot can go to any location, including the initial location, by breadth-first search
with a 2D boolean array, in which the array element stores 1 or 0 indicating whether the
location is reachable or not Cormen et al. (2001). After arriving at the initial location and
turning to the initial direction with the help of a compass module, the robot finds the target
within its view with a stochastic scheme. First, different hypotheses are made randomly
about the target’s location and size. Each hypothesis is again represented by an ellipse, with
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randomly chosen center, and the ratio of the two axis is fixed into 3.5:1 (which approximately
stands for a person’s ratio in height and width). The Bhattacharyya distance between the
color histogram of each hypothesis and that of the target model is then calculated, and those
hyposthsis with smaller disntances will be selected. Finally, the estimated target’s location
and size can be derived with the average of these selected hypothesis.

6.3.3 Target tracking with mobile robot

Particle filter with color-based features is employed for target tracking with
mobile robot. Particle filter, also known as Sequence Monte Carlo method or
Sampling-Importance-Resampling (SIR) filter, is a state estimation technique based on
simulation Ristic et al. (2004) Nummiaro et al. (2003). Here, the state of target is described by
the center of the ellipse and a scaling factor representing the length of axis, since the ratio of
the two axes is fixed.
The idea of particle filter is to evaluate the probability of all the particles and thus estimate the

location of our target. We use a particle sample set S = {s(n)|n = 1 . . . N}, each sample s is a
hypothetical state of the target.
After successfully locating the target according to Section 6.3.2, we can construct a sample set
with all the samples equivalent to the target just found and then start evolution. Evolution of
the particles is described by propagating each particle according to a Gaussian noise added
to its center. Note that, many previous approaches propagated the particles according to a
system model including moving direction and speed; however, it is not considered in our
case since the tracker robot is also moving
After the particle propagation, weighting of the sample set can be computed by estimating
the Bhattacharyya coefficients. We would give larger weights to samples whose color
distributions are more similar to the target model. The weighting of each sample is given
as follows:

π′(n) =
1√
2πσ

e
−

1−ρ(p(n),q)

2σ2 (7)

Normalizing π′(n) with the following equation, we obtain π(n).

π(n) = π′(n)/ ∑ π′(n) (8)

We can then estimate the location of our target as:

E[S] =
N

∑
n=1

π(n)s(n) (9)

In the last step, namely resampling, samples with higher weights will be reproduced more
times than the samples with lower weights Ristic et al. (2004). When the next frame comes,
the whole process can be repeated again to continue tracking.
After locating the target in each frame, the robot will judge if the target is in the left-side or
the right-side of its view in order to decide which way it should turn. At the same time, it
make a decision on going forward or backward according to the change in the target’s scale,
for example, going forward if the target’s scale becomes smaller and going backward if the
target’s scale becomes bigger.
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(a) (b)

Fig. 18. (a) Dr.Robot X80; (b) Vivotek WLAN Network Camera IP7137.

(a) (b) (c)

(d)

Fig. 19. The environment of Ming-Da Building: (a) A simple map of the environment with
the three fixed cameras and their view range marked; (b) the image of camera colored in red;
(c) the image of camera colored in blue; (d) the image of camera colored in green.

6.4 System implementation and experiment

6.4.1 System implementation

The control center is a PC with an Intel Core 2 Quad 2.4GHz CPU (1066MHz FSB), and all
of the processing tasks are implemented with C♯ in Visual Studio 2005. The mobile robot we
used is Dr.Robot X80. Instead of the using the built-in camera of the robot, Vivotek Network
Camera IP 7137, a wireless camera with video streaming function, is equiped on the robot to
provides the high-qulity video for analysis. The robot and the camera are shown in Fig.18. The
overall system can track the target with the robot at 3–5 fps while the code is not optimized.
Our test environment is the Technology Exhibition Center at the Ming-Da Building 1st floor
of our university with three fixed cameras. The respective views of these three cameras are
shown in Fig.19.

6.4.2 Experimental result

In this section, we present some results of this cooperative surveillance system. In the first
place, two different scenarios are setup for testing this system. The first one (Fig.20) is that
an intruder comes in and goes into the blind spots that fixed cameras cannot cover. The
second scenario (Fig.21) is that an intruder is going out of the building, where the fixed
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Fig. 20. Scenario one — blind spot experiment: in image (d) and (e), the intruder goes into a
blind spot where the fixed cameras cannot see.

camera obviously cannot cover. In these two scenarios, our system have shown robustness
in successfully locating and tracking the intruder.
In Fig.20 and Fig.21, each figure contains one map with four images. The map shows the
intruder and the robot’s route, where the small black man represents the intruder and a mark
(viewpoint) represents the robot and its viewing direction. The four images are taken from
the moving camera (i.e. the robot’s view), and in each image, the target being tracked is
shown with an ellipse surrounding it. In the map, the position of the green mark (robot) and
the green-framed small man (target) shows where the first image is taken, while blue for the
second image, red for the third image, and purple for the last image.

7. Conclusion

In this chapter, we discuss the data abstraction hierarchy and the system configuration of the
next-generation surveillance systems. A conclusion has been made that each camera should
be embedded with content analysis ability to become a smart camera instead of just an IP
camera. The requirements of network condition, data storage, deployment space and cost are
largely reduced, and even the content analysis accuracy can be enhanced with better input
video quality. A simple example of smart camera SoC for the smart surveillance camera has
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Fig. 21. Scenario two — out of building experiment, in image (d) and (e), the intruder
escaped out of the door where the fixed camera cannot continue tracking.

been shown as well to show the feasiblity of the proposed concept. Finally, we provide two
examples of cooperative surveillance systems, one is composed of multiple fixed cameras to
jointly track objects across different camera views, and the other example is a cooperative
surveillance system composed of fixed cameras and a mobile robot to resolve the blind-spot
problem and the track initialization problem.
To construct robust and efficient next-generation smart surveillance systems, it is suggested
that more robust content analysis algorithms should be developed. The hard conditions,
such as occlusions and bad lighting conditions, should be considered and handled. Real-time
performance is critical for visual surveillance camera network. More flexible programmable
hardware accelerators should be designed and proposed in the future, especially for
supporting more complex algorithms, such as particle filter for object tracking. Moreover, the
cooperations between different cameras and even between different modalities, such as video,
audio and wireless localization, should be a good way to further enhanced the performance
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and ability of futher systems. All the above-mentioned issues or topics would be interesting
research directions for the researchers in this area.
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p. 246ąV252.

Wolf, W., Ozer, B. & Lv, T. (2002). Smart cameras as embedded systems, IEEE Computer
35(9): 48–53.

124 Video Surveillance

www.intechopen.com



Video Surveillance

Edited by Prof. Weiyao Lin

ISBN 978-953-307-436-8

Hard cover, 486 pages

Publisher InTech

Published online 03, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book presents the latest achievements and developments in the field of video surveillance. The chapters

selected for this book comprise a cross-section of topics that reflect a variety of perspectives and disciplinary

backgrounds. Besides the introduction of new achievements in video surveillance, this book also presents

some good overviews of the state-of-the-art technologies as well as some interesting advanced topics related

to video surveillance. Summing up the wide range of issues presented in the book, it can be addressed to a

quite broad audience, including both academic researchers and practitioners in halls of industries interested in

scheduling theory and its applications. I believe this book can provide a clear picture of the current research

status in the area of video surveillance and can also encourage the development of new achievements in this

field.
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