
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Anywhere/Anytime Software and Information
Access via Collaborative Assistance

Ren-Song Ko
National Chung Cheng University

Taiwan

1. Introduction

The development of computing has recently been dominated by three trends: the emergence
of a wide range of embedded systems with diverse architectures and purpose; the rise of
relatively high-speed mobile communication devices such as smart phones, personal digital
assistants (PDAs), portable media players, ebook readers, etc; and the development of cloud
computing, offering virtually unlimited data storage and computing resources, which may
extend the capabilities of resource-constrained mobile devices. As a consequence, these
devices and infrastructures have begun to pervade our daily life, creating a new paradigm
in the interaction between people and computing environments along the lines of that
envisioned by Weiser (Weiser, 1991), and thus opening up the potential of many novel
applications.
For instance, the ubiquitous presence of computers allows people to carry with them only a
minimal amount of computing hardware and software, depending on ambient computers to
boost performance as needed. A smart phone may not have sufficient computation power to
playback a high-definition movie but,rather than running the media playback software on a
single device, one could look for available computers nearby and connect them together to
constitute an ad-hoc system (Ko et al., 2008). The software can then utilize the resources of all
participating devices to accomplish the execution collaboratively. Such a system is unplanned
and organized on a temporary basis, usually to execute a specific task.
Another possible application is the timely information query. Even with sophisticated search
engines available nowadays, the answers to some questions (e.g., “is the department store
crowed now?” or “can someone take a snapshot of the car race now?”) are time-sensitive
and may become less significant if they cannot be obtained immediately; only people who are
currently near the store or the race track can provide the appropriate responses. Similarly, with
the ubiquity of mobile network-connected devices, it is highly possible to find such people and
thus applications requiring timely information become feasible.

1.1 Problems

However, the scale of ubiquitous computing is huge, and so is the need to enable
interoperability among mobile devices and infrastructures. Thus, realizing a system for
ubiquitous applications as described above may face the following research challenges.

2

www.intechopen.com

1.1.1 Software reuse

Given the number and variety of mobile and embedded devices, software development is, in
most cases, a complex and time-consuming process since heterogeneous environments raise
problems above and beyond source code level portability, which has a significant impact on
ease of software reuse. With careful coding, the software may be compiled into native code
for various platforms. Nevertheless, the software will probably be difficult to deploy and use.
The source code has to be compiled for the target platform, either by vendors or users, and
the computing environment needs to be correctly configured to the required hardware and
shared libraries. While this problem may be alleviated by platform-independent intermediate
bytecode and virtual machines (e.g., Java), a higher level of portability vis-a-vis performance
also needs to be considered (Ko & Mutka, 2002). For instance, while a multimedia application
may run perfectly on a desktop, it may run so slowly on a mobile device as to be unusable. One
way to improve performance would be to reduce the output quality. An alternative would be
to improve software to detect and exploit special the functionality of particular devices.
To achieve a higher level of portable performance, information on the resources available on
the target devices is necessary but, unfortunately, not available until run time. Therefore,
instead of making assumptions regarding the capabilities of target devices, developers
specify performance and resource requirements during the software development stage. The
software may then determine at run time whether it can run on the target platform, or, even
better, adapt itself to the computing environment by adjusting performance and resource
requirements.

1.1.2 Dynamic computing environment

These computing environments are open and dynamic; i.e., usage is not confined to a fixed
location, and people carrying computers may join and leave the environment at will. Thus,
the environment may change during the execution of an application, leading to problems such
as resource variability, system errors, and changing requirements.
To improve system dependability, robustness, and availability, software execution has to be
aware of environmental changes and take appropriate actions to accommodate these changes.
Traditionally, such auto-adapting mechanisms may be implemented at the code level, e.g.,
explicit coding of environmental conditions and corresponding remedial actions. However,
such approaches are specifically targeted and the adaptive capabilities are often limited in
scope, brittle, costly to change, and difficult to reuse. Furthermore, they lack a global
view of software systems, so they usually only detect the symptoms but not true sources of
environmental changes and thus may not be able to determine the most suitable response.

1.1.3 Resources and information location

Dramatic improvements in the quality of and accessibility to networks makes it increasingly
feasible to use collections of networked commodity devices as computational resources. Thus,
the widespread use of dynamically-assembled collections of computers, located on local and
even wide area networks, as powerful computational resources is becoming possible. For
instance, a computational task might be initially mapped to available computers within a
workgroup, but then extended or migrated to other resources provided by a commercial
computational services provider because of changes in computational characteristics or
resource availability. However, locating computational resources or information that are
relevant to users’ interests can be challenging for ubiquitous computing since it needs to

32 Ubiquitous Computing

www.intechopen.com

determine which resource is the best candidate at minimum cost given the heterogeneous,
dynamic nature of the resources involved.
For example, searching for devices to constitute an ad-hoc system, a good resource discovery
mechanism may need to consider many factors including user interfaces, architectures, or
physical locations to minimize the costs of interoperability among participants. In addition,
it is preferable that all ad-hoc system participants be in geographic proximity to promote
ease of interaction. It is also highly likely that people currently close to the store would
have an answer to the query, “is the department store crowed now?”. Therefore, a range of
physical locations must be incorporated within a resource discovery mechanism; e.g., routing
mechanisms using geographic parameters such as Greedy Forwarding (GF) (Finn, 1987) may
be used to locate participants and initiate communication among them.

1.2 Possible solutions

Due to the problems described above, the rapid the development of ubiquitous applications
usually requires identifying appropriate middleware abstractions and organizing successful
protocols, algorithms, and software modules into generic middleware platforms. An ideal
platform should allow applications to handle the resource constraints of the ubiquitous
devices but, at the same time, exploit their unique features such as availability of location
information, embedded sensors, mobility, and spontaneous interaction.

1.2.1 Adaptive systems

To cope with dynamic computing environments, the concept of reflective systems that have
the capability to reason and act autonomously was proposed (Maes, 1987). Such a system
provides a representation of its own behavior which is amenable to inspection and adaptation,
and so is able to observe its current state and alter its behavior at run time. Reflection has
been added into various systems, including languages (Java Platform Standard Edition API
Specification, n.d.), operating systems (Jr & Kofuji, 1996; Yokote, 1992), and middleware (Blair
et al., 1998; Kon et al., 2000; Wang & Lee, 1998). These systems allow users to inspect internal
states and modify several aspects of implementation, execution, and communication at run
time and can adapt themselves flexibly to heterogeneous and dynamic environments.
Many projects have proposed to implement reflection from various perspectives to provide
possible solutions for adaptive software development in ubiquitous computing. The
paper (da Costa et al., 2008) describes the fundamental issues such as heterogeneity,
dependability and security, privacy and trust, mobility, transparent user interaction, etc. A
number of software architectures have provided solutions for particular classes of systems
and specific domains of concerns to allow users simultaneously interact and collaborate using
multiple heterogeneous devices.
For instance, the projects outlined in (Cheng et al., 2006; Garlan et al., 2004; Oreizy et al., 1999)
adopt an architecture-based approach in which system architectural models are maintained
at run time and used as the basis for system adaptation. External control mechanisms,
considered in separable modules, allow system adaptation to become the responsibility of
components outside the system which can thus can be analyzed, modified, extended, and
reused across different systems. The architectural models usually provide a global view of the
system, allowing one to better identify the sources of environmental changes.
BEACH (Tandler, 2001) provides a software infrastructure for synchronous collaboration
with many different devices, supporting different forms of interaction and hardware
configurations. The layered architecture of Aura (Garlan et al., 2002) can anticipate requests

33Anywhere/Anytime Software and Information Access via Collaborative Assistance

www.intechopen.com

from a higher layer by observing current demands, and adjust its performance and resource
usage characteristics accordingly. HESTIA (Hill et al., 2004) provides a secure infrastructure
for ubiquitous computing environments. It addresses the incompatible interoperation
problem of securing critical information services in large-scale environments. Analysis of
extensive surveys on software infrastructures and frameworks which support the construction
of ubiquitous systems is given in (Endres et al., 2005).
Furthermore, many systems (de Lara et al., 2001; Flissi et al., 2005; Gu et al., 2004; Stevenson
et al., 2003) adopt component-based software infrastructure for ubiquitous environments,
which can take advantage of the exported interfaces and the structured nature of these
applications to perform adaptation without modifying the applications. These applications
are designed as assemblies of distributed software components and are dynamically
discovered according to the end-user’s physical location and device capabilities. With this
approach, an application can add new behaviors after deployment. In addition, the system
will dynamically partition the application and offload some components to a powerful nearby
surrogate. This allows for delivery of the application in a ubiquitous computing environment
without significant fidelity degradation. McKinley, et al. (Mckinley et al., 2004) provide a
review of technologies related to compositional adaptation.

1.2.2 Service composition

An approach similar to that of component-based software systems is to combine multiple
primitive programs for a complex task. For example, shell pipes in Unix provide useful
data I/O mechanisms, employing multiple programs to work together, and complex tasks
are accomplished by coordinating sequences of primitive programs. These programs
are “connected” by pipes which facilitate exchange of data among them. Truong and
Harwood (Truong & Harwood, 2003) extended this concept and proposed a shell that provides
distributed computing over a peer-to-peer network and is characterized by good scalability.
Another related topic is the composition of web services. Programmers may use the Web
Services Description Language (WSDL) to specify characteristics and access of web services,
and thus web services can be composed to provide a complicated service. However, WSDL
does not support semantic descriptions; thus, a composition always requires intervention by
a programmer. To enable web services to perform a dynamic composition by themselves,
Martin et al. (Martin et al., 2004) proposed the OWL-S approach, in which a client program
and web services may have a common consensus on the semantics of the terms in WSDL
by a third-party ontology, and thus a web service can automatically interact with another
web service by a priori setting the rule for the semantics. Mokhtar et al. (Mokhtar et al.,
2007) extended the OWL-S approach and proposed a conversation-based service composition
method named COCOA that aims for the dynamic composition of services to complete a user
task. With COCOA, a service as well as a user task is transformed to an automata, and an
algorithm is proposed to combine the automata of different services.
QoS-aware composition is another important issue of web service composition. For example,
Li et al. (Li et al., 2001) propose a hierarchical adaptive QoS architecture for multimedia
applications. A multimedia service is delivered by multiple service configurations, each of
which involves a different set of service components. Each service component is executed as a
process. Components cooperate through protocols over network communication. Usually, the
composition of web services needs to satisfy given optimization criteria, such as the overall
cost or response time, and can be formulated as a NP-hard optimization problem (Canfora
et al., 2005). Canfora et al. (Canfora et al., 2005) proposed a genetic algorithm for the NP-hard

34 Ubiquitous Computing

www.intechopen.com

QoS-aware composition problem. In addition, Wada et al. (Wada et al., 2008) proposed
a multi-objective genetic algorithm to deal with optimization criteria with trade-offs, and
Berbner et al. (Berbner et al., 2006) proposed a fast heuristic that was 99% close to optimal
solutions in most cases. Furthermore, various middleware and frameworks (Issa et al., 2006;
Yu & Lin, 2005; Zeng et al., 2004) have been proposed to realize QoS-aware web service
compositions.

1.2.3 Resource discovery

As mentioned earlier, design of such a resource discovery mechanism becomes increasingly
difficult under ubiquitous computing conditions in which useful information servers are
not known a priori. Porter and Sen (Porter & Sen, 2007) classified two approaches for
resource discovery mechanisms, namely referral (Candale & Sen, 2005; Sen & Sajja, 2002;
Singh et al., 2001; Yolum & Singh, 2005) and matchmaker (Albrecht et al., 2008; Iamnitchi
& Foster, 2004; Jha et al., 1998; Ogston & Vassiliadis, 2001). In the referral approach, the
resource providers provide both services and referrals to other providers. Providers which
provide high quality services are likely to be recommended by many providers. Providers
must, however, ascertain the trustworthiness and expertise of other providers to measure the
value of a recommendation. For example, in (Candale & Sen, 2005), the performance of a
provider is measured by the satisfaction obtained by its clients. This mechanism requires
learning both the performance levels of different service providers as well as the quality of
referrals provided by other providers by exchanging information.
Another possible solution to this problem is to use a matchmaker: a dedicated resource
discovery server that arranges the connections. Assuming clients are truthful in their
interactions with the matchmaker, optimal matches can be found. For example, in the SWORD
architecture (Albrecht et al., 2008), a resource query will be processed by a distributed query
processor to find candidate nodes whose characteristics match the specified requirements.
Then, the optimized subset of the candidate nodes will be determined by the optimizer
component accounting for desired device characteristics, such as load and network location,
and inter-device characteristics, such as latency and bandwidth.
Furthermore, several efforts (Albrecht et al., 2008; Balazinska et al., 2002; Huang & Steenkiste,
2003) have explored resource discovery mechanisms in large-scale environments. The system
must scale to thousands of devices and be highly available. It also has to support high rates of
measurement updates from participating devices, from static characteristics such as operating
system, processor speed, and network coordinates to more dynamic characteristics such as
available CPU capacity, memory, and disk storage.

1.3 Organization of this article

The remainder of this article is organized as follows. Section 2 describes the idea of
ad-hoc systems in detail and how it may be realized by the adaptive software framework,
FRAME, implemented as part of the adaptive software architecture project, ASAP. Under
FRAME, software components can be discovered, loaded, combined, adapted, and executed
on the target platforms in accordance with available resources and performance constraints.
Software may have a list of specifications, specified during the development stage, to gather
information about its environment. During execution, the software may check the list for
environmental changes, and then respond accordingly. Therefore, an ad-hoc system can be
constructed and executed without human intervention.

35Anywhere/Anytime Software and Information Access via Collaborative Assistance

www.intechopen.com

Section 3 introduces the Distributed Shell System, or DISHES, in which a mobile user can
issue a shell script of a task, and DISHES will automatically locate the required programs
and retrieve the necessary data. The required programs will be dispatched and executed on
their host computers. Intermediate results will be piped between the host computer through
networks, and final result will be I/O redirected to the user-specified location.
In Sec. 4, we present the basic idea of mutual assistant networks (MANs) which combine social
networks and wireless sensor networks (WSNs) to query local and timely information. The
proposed infrastructure uses routing protocols commonly adopted in WSNs, such as GF, to
forward the query to someone who may have an answer. Conceptually, people in MANs serve
the role played by sensors in WSNs; they may accept queries from others, gather information
based on queries, and then respond. Such a new social network application will promote the
sharing of knowledge and bring people closer together. Finally, a summary is given in Sec. 5.

2. Ad-Hoc systems

2.1 Overview

As mentioned earlier, the ubiquity of computers makes it possible to combine several
resource-limited devices as an ad-hoc system to complete a complex computing task. Imagine
a scenario in which a user watches a movie on his smart phone. Referring to Fig. 1, to
completely execute on the smart phone, the media player software needs to decoding the
multimedia stream, output video and audio, and interact with the user. Due to limited
computing capability, the performance or quality of the video and audio may be unacceptably
poor. In addition, the small size of the phone may lead to an unpleasant interaction experience.

Fig. 1. The media player software needs to decode the multimedia stream, output video and
audio, and interact with the user. Due to limited computing capability, the performance or
quality of the video and audio may be unacceptably poor.

Alternatively, the user may search ambient devices for their hardware features. For example,
he may find a TV for its big LCD display, a Hi-Fi audio system for its stereo sound quality, and
a PC for its computing power. He can connect these devices together to form an ad-hoc system
as shown in Fig. 2. After the media player software is launched, the appropriate part of the
code will be distributed to each device, i.e., the code for audio processing to the Hi-Fi audio
system, the code for video processing to the TV, and the code for decoding the multimedia
stream to the PC. As a consequence, instead of watching the movie on the smart phone, the
user may enjoy the smoother movie on the ad-hoc system with a larger image on the TV and
better sound from the Hi-Fi audio system.
One challenge to realizing ad-hoc systems is the diversity of participating devices. It is
impossible to know the performance of components on each device in advance to determine
the appropriate component distribution. In Fig. 2, before distributing the video processing
component to the TV, one must first know if the TV has the appropriate resource for video
processing. Such performance information can only be known after the ad-hoc system is
formed. Manually probing the performance of each participating device is difficult for the

36 Ubiquitous Computing

www.intechopen.com

Fig. 2. The media player software executes on an ad-hoc system consisting of a smart phone,
a TV, a Hi-Fi audio system, and a PC. The components are distributed to the appropriate
participating devices in which all specifications are satisfied for a better movie watching
experience.

average user, but the adaptive software framework, FRAME (Ko & Mutka, 2002), may provide
a better solution to alleviate this configuration problem.

2.2 The adaptive software framework, FRAME

In many mass production industries, such as automobiles and electronics, final products are
assembled from parts. The parts may be built by various vendors, but they are plug-in
compatible if they have the required functionality. It is technically impossible for vendors
to develop parts that may work perfectly in every environment. As a consequence, vendors
usually specify how well the parts may perform in certain environments, and users can select
appropriate parts based on these specifications. If, under certain conditions, a part fails or
does not perform as required, it can be replaced with an appropriate part. For example,
regular tires are designed for normal weather conditions, but may be prone to skidding on
snow and thus may not meet safety requirements. Consequently, special snow tires may be
used to achieve better safety.
A similar idea was adopted in FRAME. In addition to function implementation as normal
components, specifications for required resources were added as shown in Fig. 3(a). The
specifications allow FRAME to identify an appropriate participating device for execution.
FRAME is a middleware which provides APIs for Java applications to adapt themselves to
heterogeneous environments. Figure 3 illustrates the component structure and its middleware
architecture. A component provides abstract function interfaces without exposing detailed
implementations. Similar to components in the automobile and electronic industries, a
component may have multiple implementations developed by various vendors. Different
implementations may require different resources and produce different quality of results;
these are specified as specifications. The components of an application are not linked during
the development stage, but are “assembled” at run time after determining the resources

37Anywhere/Anytime Software and Information Access via Collaborative Assistance

www.intechopen.com

(a) Component

(b) Middleware architecture

Fig. 3. The adaptive software framework, FRAME consists of three modules, namely
assembly, execution, and communication. In addition to function implementation,
specifications for required resources are added for components in FRAME.

of the computing environment with their specifications. If the application fails to work
appropriately because of dynamic environmental changes, it may also use the FRAME APIs
to replace component implementations for better performance or quality of execution without
down-time. In summary, FRAME provides the following features:

• Developers may specify specifications for component implementations.

• Application components may be automatically distributed to single or multiple
participating devices.

• Before execution, FRAME may probe the available resources from the computing
environment and then adapt themselves to the computing environment via a special
process called assembly.

• During execution, FRAME may detect run-time environmental changes and, if necessary,
invoke the assembly process without down-time.

38 Ubiquitous Computing

www.intechopen.com

Referring to Fig. 3(b), these features are implemented as three modules, namely assembly,
execution, and communication. The assembly module resolves the components of
an application and discovers all possible component implementations, then distributes
and verifies the implementation specifications for participating devices to determine the
appropriate execution devices. The execution module distributes each component to the
selected execution device following the assembly process. It also monitors the specifications
during run-time and, if necessary, invokes the assembly process for more appropriate
implementations without down-time. The communication module provides necessary data
marshalling/unmarshalling mechanisms for cooperation among components on different
devices.
The assembly process is worthy of special attention. The traditional approach to component
implementation selection is to use condition statements such as if-else statements as shown
in Table 1. There may be nested if-else statements and each is used to decide the appropriate
implementation of a component. Once an implementation is selected, execution flow may
go into the inner if-else statements to select the appropriate implementation of other
components. However, from a software engineering perspective, the condition statements
approach is primitive. As the numbers of components and their implementations increase, the
code tends toward so-called “spaghetti code” that has a complex and tangled control structure
and the software will become more difficult to maintain or modify. The most important
limitation of this approach is that condition statements are hard-coded, so the availability
of all implementations needs to be known during the development stage. It is impossible
to integrate newly-developed implementations without rewriting and recompiling the code,
and, of course, the down-time.

if (constraints of component 1 with implementation 1)

{ // select component 1 with implementation 1

if (constraints of component 2 with implementation 1)

{ // select component 2 with implementation 1

// check each implementation of component 3, 4,...

}

else if (constraints of component 2 with implementation 2)

{ // select component 2 with implementation 2

// check each implementation of component 3, 4,...

}

... // more else if blocks for other implementations of component 2

}

else if (constraints of component 1 with implementation 2)

{ // select component 1 with implementation 2

// similar as the code in the if block of

// component 1 with implementation 1

}

... // more else if blocks for other implementations of component 1

Table 1. if-else statement structure for the component implementation selection

39Anywhere/Anytime Software and Information Access via Collaborative Assistance

www.intechopen.com

Fig. 4. All possible implementation combinations of an application: each row represents a
possible implementation combination and the constraints of a combination constitute a
software constraint set.

FRAME uses a different approach than condition statements to select appropriate component
implementations. By identifying all component implementations of an application via service
discovery, the assembly module builds all possible combinations of the application as shown
in Fig. 4. Each combination has a set of specifications, called a software specification set, which
consists of all the specifications from the involved component implementations. Since no two
implementations should have same set of specifications, the mapping between combinations
and software specification sets is one-to-one. By solving which specification set is feasible,
i.e., all specifications in the software specification set are satisfied, the corresponding feasible
combination will be found.
To realize ad-hoc systems, the assembly module distributes components to participating
devices prior to constructing the software specification sets. There might be more than one
possible distribution of components, and we call each possibility a distribution. For each
distribution, the assembly module constructs all possible software specification sets and
determine whether a feasible specification set exists. A distribution is feasible if it has a
feasible software specification set, and then the application is assembled from the feasible
distribution. In other words, the assembly process for an ad-hoc system application is to
find a feasible distribution from all possible distributions. For the example of the media
player software in Fig. 2, there may be an implementation for the audio component with
good sound quality, and all its specifications are satisfied on the Hi-Fi audio system, but not
the PC and the TV. Thus the audio component implementation will be executed on the Hi-Fi
audio system. As a consequence, an ad-hoc system for the media player is constituted without
human intervention.

40 Ubiquitous Computing

www.intechopen.com

3. Distributed Shell System

This section introduces another approach for accomplishing a resource intensive task by
using ambient computing resources. The approach is based on the concept that many single
machine systems provide a command line interface (e.g., shell) which allows a user to issue
a command consisting of many primitive programs to accomplish a complex task. These
programs are coordinated by the pipe mechanism and the result may be stored as a file via
the I/O redirection. DISHES (DIstributed SHEll System) (Lai & Ko, 2010) extends this idea to
ubiquitous computing environments, in which a mobile device user can issue a command
specifying the data location and a sequence of programs to process the data. When a mobile
device receives the command, it will seek out appropriate ambient devices which have the
required programs and send tasks-to-do to these devices. Each device may retrieve the data
from the specified location and execute the designated program to process the data. Once
finished, it will send the result to other devices for further processing or back to the user’s
mobile device. Thus, a complicated task can be achieved by the sequential cooperation of
multiple primitive programs.
Imagine a scenario in which a student in a school library is looking for research literature with
the keywords “ubiquitous computing” in descending order of the year published. He may
issue the following command with his smart phone:

grep ‘‘ubiquitous computing’’ http://myschool.edu.tw/reference_list |

sort -k 2,2 -r > sorting_result

Based on the command, the student’s smart phone will find devices providing the required
programs (grep and sort). Suppose computer A provides grep and computer B provides
sort, as depicted in Fig. 5. Then A will retrieve the client information from the specified data
location, http://myschool.edu.tw/reference_list, execute grep “ubiquitous

computing” to pick up the literature containing the phrase “ubiquitous computing”,
and send the intermediate result to B via the pipe. After receiving the intermediate result from
A, B will execute sort -k 2,2 -r to sort the literature by publication year. The final sorted
result will be sent back to the student’s smart phone and stored as the file, sorting_result,
via the I/O redirection.
In the above example, the student only specifies the data location and a sequence of programs.
DISHES will automatically seek out appropriate computers with the required programs to
process the data retrieved from the specified location. Moreover, a complicated task may
be accomplished by gluing multiple primitive programs (grep and sort). These primitive
programs do not have to be stored in or executed on the student’s smart phone. They can
be executed on the other computers (A and B) for better performance, and the results will be
returned to the user. With this approach, the hardware and software of a mobile device may
be kept as simple as possible, allowing the device volume, weight, and cost to be minimized.
Thus, DISHES boosts people’s mobility. Besides, gluing together multiple primitive programs
to perform a complicated task can reduce software development costs. Note that though both
DISHES and FRAME use ambient computing resources to execute resource intensive tasks,
their fundamental purposes and approaches are different. DISHES tries to reuse the software
that has been well established on single machine systems without making any modifications.
There is no software migration involved in DISHES and the shared resources are software
oriented; that is, users look for ambient computing resources completely from a software
perspective. On the other hand, when building an ad-hoc system, users select a device based

41Anywhere/Anytime Software and Information Access via Collaborative Assistance

www.intechopen.com

Fig. 5. The student issues the command with his smart phone to find research literature with
the keyword “ubiquitous computing”. DISHES finds computers providing the specified
programs, and coordinates their execution via the remote pipe and I/O redirection
mechanisms.

on the hardware features it provides. For example, in Fig. 2, the user may consider adding the
TV into the ad-hoc system for the multimedia application because of its big LCD display.
The main feature of DISHES is the implementation of the remote version of the pipe and
I/O redirection without any modification to the original programs. The remote pipe allows
the standard output of one process to be fed directly as the standard input to another over
networks. It may be realized by the assistance of two agent processes as depicted in Fig. 6(a).
For example, to construct a remote pipe from process P1 of device A to process P2 of device B,
two agent processes, AP1 on A and AP2 on B, are created with two regular UNIX pipes, from
P1 to AP1 and AP2 to P2. Moreover, a socket connection between AP1 and AP2 is constructed.
Thus, AP1 may receive the output of P1 from the regular UNIX pipe and relay it to AP2 via the
socket connection, and then AP2 may feed the output to P2 via the other regular UNIX pipe.
Consequently, we have a remote pipe from P1 to P2. Note that the tasks of the agent processes
AP1 and AP2 are to relay the information, regardless of the output of P1. Therefore, the remote
pipe is realized without any modification to the original programs.
Similar to the remote pipe, two agent processes, AP3 on A and AP4 on B, are needed for remote
I/O redirection, as illustrated in Fig. 6(b). The output of P3 is fed to AP3 via a regular UNIX
pipe, and then to AP4 via a socket connection. Finally, the output is saved to file via a regular
UNIX I/O redirection mechanism.
Traditional shells on single machine systems use an explicit specified list of directories (e.g.,
via the environment variable PATH under UNIX) for searching programs by name. However,
due to the dynamic characteristics of ubiquitous computing environments, program locations
are usually unknown in advance. Therefore, similar to the assembly module in FRAME,
service discovery mechanisms may be incorporated to search programs in an unfamiliar
environment. In addition, the intermediate results of one computer may be transmitted
to another computer for subsequent program execution via the network, so performance
optimization may need to be considered during the service discovery (e.g., to find a sequence
of computers so that the total communication time for transmitting the intermediate results
is minimized). The problem can be formulated as a minimum sequential workflow problem
in static environments and solved by a polynomial algorithm (Lai & Ko, 2010). However, it

42 Ubiquitous Computing

www.intechopen.com

(a) remote pipe

(b) remote I/O redirection

Fig. 6. Implementation of remote pipe and I/O redirection. Agents are needed to relay
information between processes on different devices.

becomes an on-line problem under ubiquitous computing environments and requires further
study.

4. Mutual Assistant Networks

In this section, we introduce the concept of integrating social networks which connect people
and ubiquitous computing which connects computers, allowing people to use not only
ambient computing resources, but also human resources. For example, a user may want to
know if a festival is worth going to before setting out. Such information is timely; it becomes
useless after the festival ends and thus must be answered by someone who is currently near
the festival. Given the ubiquitous existence of people carrying network-connected devices,
finding people close to the festival who are willing to help is quite feasible. Thus, the objective
of mutual assistant networks (MANs) is to provide necessary mechanisms to bridge the user
and these people. Referring to Fig. 7, a MAN will forward the user’s question about the
festival to people near the festival to collect their opinions. Similar to WSNs, a MAN may
analyze and aggregate the data, and then return the results to the user.
The features of MAN applications and WSN applications are similar in some aspects.
WSNs can collect information about physical environments from sensors while MANs collect
knowledge or opinions from people. Both can use geographical parameters to specify whether
data is collected from sensors or people. Therefore, many proposed WSN infrastructures
may also be adopted for MANs, such as geographic routing, network configuration and
coordination, data dissemination, and data aggregation, to name just a few.

43Anywhere/Anytime Software and Information Access via Collaborative Assistance

www.intechopen.com

Fig. 7. A MAN can forward a user’s question about the festival to the people close to the
event and collect their responses. The MAN then analyzes and aggregates the data, and then
returns the results to the user.

The current prototype has been implemented on the Android platform, with the architecture
illustrated in Fig. 8. It provides APIs for MAN applications implemented into four
modules. The user profile module manages user information under MAN, including
identity. It also maintains a credit system to encourage users to share knowledge and a
reputation system to track the validity of information that users have provided depending
on feedback ratings provided by questioners. The networking module can deliver messages
to destinations via routing techniques using geographic parameters such as GF (Finn, 1987)
and GPSR (Karp & Kung, 2000). The data processing module provides various functions for
manipulating information collected from people, including statistics, indexing, aggregation,
and dissemination. The sensor module is basically an abstraction layer allowing applications
to access the various hardware sensors present in devices.

Fig. 8. The architecture of the current MAN prototype. MAN applications are developed
through four modules, namely networking, user profile, data processing, and sensor.

Several social networking projects have been prosed to connect people, including
WhozThat (Beach et al., 2008), SocialFusion (Beach et al., 2010), MoSoSo (Tsai et al., 2009),
and Micro-Blog (Gaonkar et al., 2008). SocialFusion is a system capable of systematically
integrating diverse data streams including sensors for mobile social networks that enable
new context-aware applications such as context-aware video screens and mobile health
applications. Note that one conceptual difference between the MAN and SocialFusion is
that MAN uses people as sensors. As many of the infrastructure design considerations for

44 Ubiquitous Computing

www.intechopen.com

MANs originate from WSNs, the infrastructure can handle thousands or millions of nodes,
i.e., people, spread over a large area. Many of constraints and challenges facing WSNs are
also found in MANs. For example, a MAN is more expansive and dynamic than the current
TCP/IP network and may create new types of traffic patterns that are quite different from
the conventional Internet and raise demand for new approaches to minimize the amount
and range of communication through local collaboration, such as aggregation or duplicate
data suppression. How, where, and what information is generated and consumed by users
will affect the way information is compressed, routed, and aggregated. Furthermore, MANs
connect people who may not have had any prior social interaction, so it is more appropriate
to address people by physical properties, such as location or proximity, than by names or IP
addresses. There is also a need for advanced query interfaces and resource discovery engines
to effectively support user-level functions.
MAN is still a developing project that requires further improvements. The goal of the
architecture design is to provide service abstractions as a base for the development of new
applications. The modular architecture design allows new protocols or algorithms, along
with the integration of third party services; e.g., Google Maps for specifying geographic
parameters.

5. Conclusion

This article illustrates three possible approaches for people to access the computing and
information resources from ambient devices and other people anytime and anywhere.
FRAME can realize the concept of ad-hoc systems in which a user may utilize hardware
features from the computers nearby for better performance and interfaces. DISHES allows
a user to coordinate the execution of a sequence of programs located on different devices
without modifications. MANs provides an infrastructure for new location-aware social
network applications, in which people may share the local and timely information that cannot
be obtained in time from the Internet. With the ubiquitous existence of computers, there is no
need to carry excess software and hardware, and thus people’s mobility will be boosted. In
addition, the ubiquitous existence of people carrying mobile devices may promote sharing of
knowledge and thus extend the senses of human beings to a normally inaccessible locations
via knowledge sharing.

6. References

Albrecht, J., Oppenheimer, D., Vahdat, A. & Patterson, D. A. (2008). Design and
Implementation Tradeoffs for Wide-Area Resource Discovery, ACM Transactions on
Internet Technology 8(4): 1–44.

Balazinska, M., Balakrishnan, H. & Karger, D. (2002). INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery, Proceedings of the First International
Conference on Pervasive Computing, Springer-Verlag, Zurich, Switzerland, pp. 195–210.

Beach, A., Gartrell, M., Akkala, S., Elston, J., Kelley, J., Nishimoto, K., Ray, B., Razgulin, S.,
Sundaresan, K., Surendar, B., Terada, M. & Han, R. (2008). WhozThat? Evolving an
Ecosystem for Context-Aware Mobile Social Networks, IEEE Network 22(4): 50–55.

Beach, A., Gartrell, M., Xing, X., Han, R., Lv, Q., Mishra, S. & Seada, K. (2010). Fusing Mobile,
Sensor, and Social Data To Fully Enable Context-Aware Computing, Proceedings of
the Eleventh Workshop on Mobile Computing Systems & Applications, ACM, Annapolis,
Maryland, pp. 60–65.

45Anywhere/Anytime Software and Information Access via Collaborative Assistance

www.intechopen.com

Berbner, R., Spahn, M., Repp, N., Heckmann, O. & Steinmetz, R. (2006). Heuristics for
QoS-aware Web Service Composition, Proceedings of the IEEE International Conference
on Web Services, IEEE Computer Society, Washington, DC, USA, pp. 72–82.

Blair, G. S., Coulson, G., Robin, P. & Papathomas, M. (1998). An Architecture for Next
Generation Middleware, Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, Springer-Verlag, London.

Candale, T. & Sen, S. (2005). Effect of referrals on convergence to satisficing distributions,
Proceeding of the 4th International Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, The Netherlands, pp. 347–354.

Canfora, G., Di Penta, M., Esposito, R. & Villani, M. L. (2005). An Approach for QoS-aware
Service Composition based on Genetic Algorithms, Proceedings of the 2005 conference
on Genetic and Evolutionary Computation, ACM, Washington DC, USA, pp. 1069–1075.

Cheng, S.-W., Garlan, D. & Schmerl, B. (2006). Architecture-based Self-Adaptation in the
Presence of Multiple Objectives, Proceedings of the 2006 International Workshop on
Self-Adaptation and Self-Managing Systems, ACM, New York, NY, USA, pp. 2–8.

da Costa, C. A., Yamin, A. C. & Geyer, C. F. R. (2008). Toward a General Software Infrastructure
for Ubiquitous Computing, IEEE Pervasive Computing 7(1): 64–73.

de Lara, E., Wallach, D. S. & Zwaenepoel, W. (2001). Puppeteer: Component-based
Adaptation for Mobile Computing, Proceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems, San Francisco, California.

Endres, C., Butz, A. & MacWilliams, A. (2005). A Survey of Software Infrastructures and
Frameworks for Ubiquitous Computing, Mobile Information Systems 1(1): 41–80.

Finn, G. G. (1987). Routing and Addressing Problems in Large Metropolitan-Scale
Internetworks, Research ISI/RR-87-180, Information Sciences Institute.

Flissi, A., Gransart, C. & Merle, P. (2005). A Component-based Software Infrastructure for
Ubiquitous Computing, Proceedings of the 4th International Symposium on Parallel and
Distributed Computing, IEEE Computer Society, Washington, DC, USA, pp. 183–190.

Gaonkar, S., Li, J., Choudhury, R. R., Cox, L. & Schmidt, A. (2008). Micro-Blog: Sharing
and Querying Content Through Mobile Phones and Social Participation, Proceeding
of the 6th International Conference on Mobile Systems, Applications and Services, ACM,
Breckenridge, CO, USA, pp. 174–186.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. & Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure,
Computer 37(10): 46–54.

Garlan, D., Siewiorek, D., Smailagic, A. & Steenkiste, P. (2002). Project Aura: Toward
Distraction-Free Pervasive Computing, IEEE Pervasive Computing 1(2): 22–31.

Gu, X., Messer, A., Greenberg, I., Milojicic, D. & Nahrstedt, K. (2004). Adaptive Offloading for
Pervasive Computing, IEEE Pervasive Computing 3(3): 66–73.

Hill, R., Al-Muhtadi, J., Campbell, R., Kapadia, A., Naldurg, P. & Ranganathan, A. (2004). A
Middleware Architecture for Securing Ubiquitous Computing Cyber Infrastructures,
IEEE Distributed Systems Online 5(9).

Huang, A.-C. & Steenkiste, P. (2003). Network-Sensitive Service Discovery, Proceedings of the
4th conference on USENIX Symposium on Internet Technologies and Systems, USENIX
Association, Seattle, WA.

Iamnitchi, A. & Foster, I. (2004). A Peer-to-Peer Approach to Resource Location in Grid
Environments , Grid Resource Management: State of the Art and Future Trends, Kluwer
Academic Publishers, Norwell, MA, USA, pp. 413–429.

46 Ubiquitous Computing

www.intechopen.com

Issa, H., Assi, C. & Debbabi, M. (2006). QoS-Aware Middleware for Web Services Composition
- A Qualitative Approach, Proceedings of the 11th IEEE Symposium on Computers and
Communications, IEEE Computer Society, Washington, DC, USA, pp. 359–364.

Java Platform Standard Edition API Specification (n.d.).
URL: http://download.oracle.com/javase/6/docs/api/

Jha, S., Chalasani, P., Shehory, O. & Sycara, K. (1998). A Formal Treatment of Distributed
Matchmaking, Proceedings of the second International Conference on Autonomous Agents,
ACM, Minneapolis, Minnesota, United States, pp. 457–458.

Jr, J. M. A. & Kofuji, S. T. (1996). Bootstrapping the Object Oriented Operating System Merlin:
Just Add Reflection, in C. Zimmerman (ed.), Advances in Object-Oriented Metalevel
Architectures and Reflection, CRC Press, chapter 5.

Karp, B. & Kung, H. T. (2000). GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks, Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking, ACM, Boston, MA, US, pp. 243–254.

Ko, R.-S., Lai, C.-C., Yen, C.-K. & Mutka, M. W. (2008). Component-Based Ad Hoc
Systems for Ubiquitous Computing, International Journal of Pervasive Computing
and Communications Special Issue on Towards merging Grid and Pervasive Computing
4(4): 333–353.

Ko, R.-S. & Mutka, M. W. (2002). A Component-Based Approach for Adaptive Soft Real-Time
Java within Heterogeneous Environments, A special issue of Parallel and Distributed
Real-Time Systems 5(1): 89–104.

Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., MagalhÃčes, L. C. & Campbell, R. H.
(2000). Monitoring, Security, and Dynamic Configuration with the dynamicTAO
Reflective ORB, Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware’2000), number 1795 in
LNCS, Springer-Verlag, New York, pp. 121–143.

Lai, C.-C. & Ko, R.-S. (2010). DISHES: A Distributed Shell System Designed for
Ubiquitous Computing Environment, International Journal of Computer Networks &
Communications 2(1): 66–83.

Li, B., Kalter, W. & Nahrstedt, K. (2001). A Hierarchical Quality of Service Control Architecture
for Configurable Multimedia Applications, Journal of High Speed Networks, Special
Issue on Management of Multimedia Networking, IOS Press.

Maes, P. (1987). Computational Reflection, PhD thesis, Laboratory for Artificial Intelligence, Vrije
Universiteit Brussel, Brussels, Belgium.

Martin, D. L., Paolucci, M., McIlraith, S. A., Burstein, M. H., McDermott, D. V., McGuinness,
D. L., Parsia, B., Payne, T. R., Sabou, M., Solanki, M., Srinivasan, N. & Sycara, K. P.
(2004). Bringing Semantics to Web Services: The OWL-S Approach, Proceedings of the
first International Workshop on Semantic Web Services and Web Process Composition, San
Diego, CA, USA, pp. 26–42.

Mckinley, P. K., Sadjadi, S. M., Kasten, E. P. & Cheng, B. H. (2004). Composing Adaptive
Software, IEEE Computer 37(7).

Mokhtar, S. B., Georgantas, N. & Issarny, V. (2007). COCOA: COnversation-based service
COmposition in pervAsive computing environments with QoS support, Journal of
Systems and Software 80(12): 1941–1955.

Ogston, E. & Vassiliadis, S. (2001). Matchmaking Among Minimal Agents Without a
Facilitator, Proceedings of the 5th International Conference on Autonomous Agents, ACM,
Montreal, Quebec, Canada, pp. 608–615.

47Anywhere/Anytime Software and Information Access via Collaborative Assistance

www.intechopen.com

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D. S. & Wolf, A. L. (1999). An Architecture-Based Approach to
Self-Adaptive Software, IEEE Intelligent Systems 14(3): 54–62.

Porter, J. & Sen, S. (2007). Searching for Collaborators in Agent Networks, Proceedings of the
2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology - Workshops, IEEE Computer Society, Washington, DC, USA, pp. 508–511.

Sen, S. & Sajja, N. (2002). Robustness of Reputation-based Trust: Boolean Case, Proceeding
of the first International Joint Conference on Autonomous Agents and Multiagent Systems,
ACM, Bologna, Italy, pp. 288–293.

Singh, M. P., Yu, B. & Venkatraman, M. (2001). Community-based service location,
Communications of the ACM 44(4): 49–54.

Stevenson, G., Nixon, P. & Ferguson, R. I. (2003). A General Purpose Programming
Framework for Ubiquitous Computing Environments, System Support for Ubiquitous
Computing Workshop, Seattle, USA.

Tandler, P. (2001). Software Infrastructure for Ubiquitous Computing Environments:
Supporting Synchronous Collaboration with Heterogeneous Devices, Proceedings of
the 3rd international conference on Ubiquitous Computing, Springer-Verlag, London, UK,
pp. 96–115.

Truong, M. T. & Harwood, A. (2003). Distributed Shell over Peer-to-Peer Networks,
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, USA, pp. 269–278.

Tsai, F. S., Han, W., Xu, J. & Chua, H. C. (2009). Design and development of a
mobile peer-to-peer social networking application, Expert Systems with Applications
36(8): 11077–11087.

Wada, H., Champrasert, P., Suzuki, J. & Oba, K. (2008). Multiobjective Optimization of
SLA-Aware Service Composition, Proceedings of the 2008 IEEE Congress on Services
- Part I, IEEE Computer Society, Washington, DC, USA, pp. 368–375.

Wang, Y.-M. & Lee, W.-J. (1998). COMERA: COM Extensible Remoting Architecture,
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), USENIX, pp. 79–88.

Weiser, M. (1991). The Computer for the 21st Century, Scientific American 265(3): 66–75.
Reprinted in IEEE Pervasive Computing, Jan-Mar 2002, pp. 19-25.

Yokote, Y. (1992). The Apertos Reflective Operating System: The Concept and Its
Implementation, in A. Paepcke (ed.), Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Vol. 27, ACM Press,
New York, NY, pp. 414–434.

Yolum, P. & Singh, M. P. (2005). Engineering Self-Organizing Referral Networks for
Trustworthy Service Selection, IEEE Transactions on Systems, Man and Cybernetics, Part
A 35(3): 396–407.

Yu, T. & Lin, K.-J. (2005). A Broker-Based Framework for QoS-Aware Web Service
Composition, Proceedings of the 2005 IEEE International Conference on e-Technology,
e-Commerce and e-Service, IEEE Computer Society, Washington, DC, USA, pp. 22–29.

Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J. & Chang, H. (2004).
QoS-Aware Middleware for Web Services Composition, IEEE Transactions on Software
Engineering 30(5): 311–327.

48 Ubiquitous Computing

www.intechopen.com

Ubiquitous Computing

Edited by Prof. Eduard Babkin

ISBN 978-953-307-409-2

Hard cover, 248 pages

Publisher InTech

Published online 10, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The aim of this book is to give a treatment of the actively developed domain of Ubiquitous computing.

Originally proposed by Mark D. Weiser, the concept of Ubiquitous computing enables a real-time global

sensing, context-aware informational retrieval, multi-modal interaction with the user and enhanced

visualization capabilities. In effect, Ubiquitous computing environments give extremely new and futuristic

abilities to look at and interact with our habitat at any time and from anywhere. In that domain, researchers are

confronted with many foundational, technological and engineering issues which were not known before.

Detailed cross-disciplinary coverage of these issues is really needed today for further progress and widening

of application range. This book collects twelve original works of researchers from eleven countries, which are

clustered into four sections: Foundations, Security and Privacy, Integration and Middleware, Practical

Applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ren-Song Ko (2011). Anywhere/Anytime Software and Information Access via Collaborative Assistance,

Ubiquitous Computing, Prof. Eduard Babkin (Ed.), ISBN: 978-953-307-409-2, InTech, Available from:

http://www.intechopen.com/books/ubiquitous-computing/anywhere-anytime-software-and-information-access-

via-collaborative-assistance

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

