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1. Introduction 

Ubiquitous Computing (UbiCom), Autonomic Computing (AC) and Organic Computing 
(OC) research has produced a substantial body of work dealing with smart devices, smart 
environments and smart interaction technologies.  
Ubiquitous computing was introduced by (Weiser, 1991) and is related to a vision of people 
and environments augmented with computational resources providing information and 
services when and where they could be desired, going beyond than just infrastructure 
aspects, and suggesting new paradigms of interaction inspired by widespread access to 
information and computational capabilities (Abowd & Mynatt, 2000) (Poslad, 2009). This 
vision involves social, technological, engineering and foundational questions (Milner, 2006). 
UbiCom environments are increasingly challenging domains when compared with those 
traditional – also not so easy to deal with traditional computing applications domains. 
According to (Brachman, 2002) in such scenario there exists the need for a software 
infrastructure that supports all sorts of heterogeneities (hardware, operating systems, 
networks, protocols and applications). 
Autonomic Computing is related to someone or something acting or occurring 
involuntarily. It is related to the ability to manage the computing enterprise through 
hardware and software that automatically and dynamically responds to the requirements of 
the business. This means self-healing, self-configuring, self-optimizing, and self-protecting 
hardware and software that behaves in accordance to defined service levels and policies 
(Murch, 2004)(Balasubramaniam, et al., 2005). 
Organic Computing is a research field emerging around the conviction that problems of 
organization in complex systems in computer science, telecommunications, neurobiology, 
molecular biology, ethology, and possibly even sociology can be tackled scientifically in a 
unified way, by means of which progress in understanding aspects of organization in either 
field  can be fruitful in the others (Würtz, 2008).  OC systems are based on a general 
architecture, which would permit users to create specific applications by defining goal 
hierarchies (Malsburg, 2008) taking advantages of one of the key attributes of biological 
systems making it possible to adapt and change on multiple time scales as they evolve, 
develop, and grow, and they should do so without external direction or control (Bellman, 
Landauer, & Nelson, 2008). 
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The pervasiveness characteristic of these demands also implies the growing dependency on 
the expectance to obtaining the proper services when the system is fault-free and especially 
when it encounters perturbations. So, it is important to qualitatively and quantitatively 
associate some measures of trust in the system’s ability to actually deliver the desired 
services in the presence of faults. 
Since the first steps in the computing history we have seen the field of Software Engineering 
expand in several ways including the application of software architecture principles to the 
development of systems. Software architecture involves both the structure and organization 
by which modern system components and subsystems interact to form systems, and the 
properties of systems that can best be designed and analyzed at the system level. The 
importance of software architecture for software development is widely recognized, yet 
transfer of innovative techniques and methods from research to practice is slow (Krutchen, 
2004) (Osterweil, 2007)(Kruchten, Capilla, & Dueñas, 2009)(Buschmann, 2010) and costly 
(Lagerström, von Würtemberg, Holm, & Luczak, 2010) due to rapid and continuous 
technology changes. 
One important aspect to be pointed is that the current computing platform is made upon a 
vast collection of code – operating systems1, programming languages, compilers, libraries, 
run-time systems, middleware – and hardware that make possible a program to execute. 
This platform has not evolved beyond computer architectures, operating systems (OS), and 
programming languages of the 1960’s and 1970’s (Hunt G., et al., 2005)(Hunt & Larus, 2007). 
In consequence, application and operating system errors are a continuing source of 
problems in computing. Existing approaches to software development have proven 
inadequate in offering a good tradeoff between the assurance, reliability, availability, and 
performance  in such a way that software remains notoriously buggy and crash-prone (Naur 
& Randell, 1969) (Anderson, 1972) (Randell, 1979) (Linde, 1975)(Kupsch & Miller, 
2009),(Ackermann, 2010). In this context, the OS is probably the most crucial piece of 
software that runs on any computer (Iyoengar, Sachdev, & Raja, 2007). 
The preceding paragraphs bring us a scenario that is contrasting: from one side the 
landscapes of software engineering domains are constantly evolving and for the other side, 
the computing environments (hardware, OS, telecommunication infrastructure and tools) 
have historically proved not be robust enough. In this ever-changing scenario, the 
mainstream research in software engineering goes in a direction trying to propose 
innovative solutions in the realm of building, running, and managing software systems. 
In order to find an appropriate solution to development and design of the new class of 
systems an appropriate paradigm seems necessary. We choose to take the opposite direction 
towards the past to try to figure out what could be changed in the beginning of the process 
in order to minimize the recurrent problems that we are faced in developing and using 
software. As a consequence we proposed a new software architecture where: 

• the only alive (runnable) entity is the operating system, and 

• the operating system has the ability of learning based on past experiences on what to 
do, how to do it and when start learning about solving tasks. 

                                                 
1
 In this work, we refer to the concept of operating system in a broader sense, involving the categories of 

general purpose, embedded, stand-alone or networked, because we need to get an overview first, before 
examining each class in depth. Moreover, the aspects under review do not require differentiation 

between these classes. 
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In the present work, we aim at attracting the reader’s attention towards the conception of a 
system with the ability of knowing how to perform tasks and how to self-adapt to the 
fluctuations of resource availability when interacting with the surrounding environment. 
We call this system as a Knowledge-based Operating System (KBOS). 
The work  is organized as follows: a problem’s contextualization related to the current 
paradigm of computing systems development is presented in section 2; some fundamental 
concepts are reviewed in section 3; a knowledge-based operating system concept in section 
4;  section 5 presents some related works and in the conclusion section the final comments 
are presented. 

2. Current paradigm    

Sequential programs can be described by a single flow of execution and by the use of simple 
programming structures such as loops and nested function calls. The execution context of 
these programs in some point of the run time is defined by the value of the program 
counter, the value of the cpu  registers and the content of the program’s stack.  
The figure 1 presents an overview of the current paradigm in computing. From a software 
development perspective, to develop software is to follow some method (software 
development life cycle) in order to go from requisites analysis to implementation. Also, let 
us to consider that a program can be represented by a development team (figure 1b) and 
that a particular software development team, in general, does know nothing about other 
team’s work. This could lead us to situations like: 

• similar code continues to be developed by different teams; 

• programming errors continues to be introduced in different points of the development 
steps; 

• information about the final run-time environment remains unavailable for the OS; 

• race conditions between non synchronized programs remains leading to instabilities; 
In other words: the development team does not have ENOUGH information about ALL 
POSSIBLE ENVIRONMENTS where the software will be used2. 
From the users perspective, to use a software is a matter of clicking over some icon and 
expecting the corresponding program to start running. The user knows about the purpose of 
a program and has some expectation about its behavior. 
From the operating system’s perspective, all knowledge that is previously known is about 
slicing (and possibly trying to protect) binary (executable) code over the time (figure 1a). 
Regardless of which method was chosen to develop a particular application, at some point 
we will move to the phase of code generation. In this moment, all the documents (and 
source code) will be stored in files (figure 1b) and the compiler will generate a string of bits 
that we used to call: a program. 
At this moment, the OS comes to scene - remembering that the main purpose of an operating 
system is to share computational resources among competing users. To do this efficiently a 
designer must respect the technological limitations of these resources (Peng, Li, & Mili, 2007).  
One of the difficulties of OS design is the highly unpredictable nature of the demands made 
upon them mainly because the relationship between different applications are not 
considered as a functional/non-functional requisite at the design time. This happens  
 

                                                 
2
 We should to consider that each user’s machine probably will have different hardware and software 

configurations that in some moment could be running a particular buggy combination of factors. 
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Fig. 1. Current paradigm: software from an inside-out perspective (a), and from an outside-
in perspective (b). 

because the structure of an OS requires a series of fine-grained event-handler functions for 
handling events. These event-handler functions must execute quickly and always return to 
the main event-loop. 
Behind the “software layer that manages the hardware” concept (Tanenbaum, 2008), an OS 
could be better described as a software architecture (Perry & Wolf, 1992) which embeds a 
large  number of design decisions related to hardware interface, programming languages 
and tools  that have a direct impact in almost every software that will be deployed. So, an 
OS architecture involves a set of functional components related to management of processes, 
memories, files, devices (input/output operations), security and user interface. In general 
they are organized in layers. 
The first level is the hardware that requires the OS attention by emitting signals to the CPU 
thru some kind of interrupt model. These hardware events are converted to some kind of 
logical messages to be dispatched to the application running on that computing device 
(figure 1a). This conversion exports an abstract view on hardware so that programmers do 
not have to deal with low level details. 
The analysis on the set of clues presented leads us to speculate on the influence that some of 
the key concepts related to current paradigm: multiprogramming3, operator, and program - 
can contribute to the recurrence of the historical problems4. 

                                                 
3 There is a class of embedded applications that, for the very specific nature, are not affected by the 

principle of interruption (have deterministic behavior). Even these, however, could be to some extent, 
included in this reflection. 
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2.1 Multiprogramming    

The computing device, in general, can run several applications at a time leading us to some 
kind of multiprogramming environment. The main difficulty of multiprogramming is that 
the concurrent activities can interact in a time-dependent manner which makes it practically 
impossible to locate programming errors by systematic testing. 
Perhaps, more than anything else, this explains the difficulty of making operating systems 
reliable (Hansen, 1973), (Hansen, 1977) (Post & Kagan, 2003).   
One of the most fundamental design decisions in conceiving a new OS architecture is related 
to the definition of the type of kernel: non-preemptive or preemptive. This decision imposes 
a tradeoff between the coupling in the time domain and resource sharing. A non-preemptive 
kernel makes the OS able to share resources among tasks but couples the tasks in the time 
domain while a preemptive kernel decouples the tasks in the time domain but enforces the 
resource sharing (Samek, 2009). 

2.2 Operator    

Another interesting aspect to be considered is about the figure of a computer operator5. 
In 1961 Klausman wrote: “… I define a computer operator as a job responsibility of a person who 
is in charge of the computing equipment while it is in normal operating condition. The 
equipment includes the processor, its console or supervisory control panel, and the peripheral 
equipments on-line or off-line. The operator may have assistants to change tapes, paper forms 
or the like. Normal operating condition is that in which the system is able to operate in 
continuous or automatic mode without intervention for relatively long periods of time. These 
periods may be interrupted by occasional transient errors which do not cause maintenance 
service. The operator's responsibilities include the running of production programs, programs 
being debugged, and service routines, such as compilers, tape correction routines, etc. The 
operator's responsibility also includes the diagnosis and action taken as a consequence of 
transient errors. In addition is the general area of communications into which the operator fits. 
To intelligently operate the system his knowledge should transcend mere ability to push 
buttons, an activity which may steadily decrease with the growth in sophistication of the 
programming art and engineering developments during the sixties… It is conceivable that a 
data processing system will be completely automatic. A real time clock built into the system 
will turn it on in the morning or the middle of the night.  Automatic tape changes will mount 
and dismount tapes - feed cards, forms and the like. And the operator - where is he? He isn't - 
the function ceases to exist. This may not happen tomorrow or next year but it is coming. In an 
industry which is literally begging for competent personnel it seems to me that operators have 
nothing to fear from this progress, for more challenging jobs have appeared and will continue 
to be created for decades to come…” (Klausman, 1961). 
Currently, the figure of the computer operator was replaced by the figure of the end user 
and, in this context, one of the programmer’s role is to arrange virtual buttons in a graphical 
user interface for user to press them and thus make the program work. 

                                                                                                                            
4 It is important to emphasize that we are analyzing some characteristics in order to understand what 
could be the cause of recurring issues, and we are not arguing for or against the current paradigm. 
5 Even considering the class of embedded operating systems for the specific purpose, the concept of 
operator remains valid (albeit virtually) once the set of interactions between the external world and the 
controlled device is performed through a set of well established interfaces – replacing buttons for 
function calls. Under the functional perspective, there is no difference between pressing a button or 
calling a function. 
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2.3 Program    

One last aspect to be discussed refers to the concept of program (Haigh, 2002):  basically a 

program is a binary expression of some algorithm written in a programming language.  

The classical computing model is based on detailed algorithmic control, rests entirely on the 

insight of the programmer into the specific application of the program and has a strong 

dependency of abstraction layers. The machine is deterministic and blindingly fast, but is 

considered as totally clueless. The programmer is in possession of all creative 

infrastructures, in the form of goals, methods, interpretation, world knowledge and 

diagnostic ability (Malsburg, 2008).  

This approach can work for any well-defined and sufficiently narrow tasks. But, if the 

system fails, the programmers would diagnose and debug the errors. They would determine 

what knowledge to add or modify, how to program it, and how to modify and rebalance the 

pre-existing programs to accommodate the new performance without harming the parts that 

already worked well (Hayes-Roth, 2006).  

Automation in adaptation, learning, and knowledge acquisition is very limited – a tiny 

fraction of the overall knowledge required, which the engineers mostly prepared manually. 

The strategy to cope with the increasing complexity of software systems is to adopt some 

kind of infrastructure based on several levels of abstractions (Kramer & Magee, 2007), (da 

Costa, Yamin, & Geyer, 2008).  

3. Fundamental concepts 

“…Computers, unfortunately, are not as adept at forming internal representations of the 

world. ... Instead of gathering knowledge for themselves, computers must rely on human 

beings to place knowledge directly into their memories…” (Arnold & Bowie, 1985). 

Before proceeding, we must establish a conceptual basis related to the context of this work. 

3.1 Data, information, knowledge, knowledge-acquisition 

To (Frost, 1986): Knowledge is the symbolic representation of aspects of some named universe 

of discourse, and Data is a special case of knowledge and means the symbolic representation 

of simple aspects of some named universe of discourse.  

(Meadow & Yuan, 1997) in they work on measuring the impact of information on 

development affirm that "we can consider that the terms data, information and knowledge 

represent regions in an epistemological continuum. They are not specific points, because 

each one has many definitions and variations. Data generally means a set of symbols with 

little or no meaning to a recipient, information is a set of symbols that have meaning or 

significance to its recipient, and knowledge means the accumulation and integration of 

information received and processed by a recipient”.  

Although there is no unanimity (Lenat & Feigenbaum, 1988) (Davis, Shrobe, & Szolovits, 

1993) (Duch, 2007), the researchers agree that knowledge representation is the study of how 

knowledge about the world can be represented and what kinds of reasoning can be done 

with that knowledge. 

Knowledge in the context of this work is conceived as being a set of logical-algebraic 

operational structures that makes possible to organize the system's functioning according to 

interconnection and behavior laws.  
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It is well known that a significant obstacle to the construction of knowledge-based systems 

is the process of knowledge acquisition(Shadbolt, O'hara, & Crow, 1999). The key to this 

process is how we may effectively acquire the knowledge that will be implemented in the 

knowledge base. In an operating system environment, this is not an easy task. It is usually 

done by hooking the calls to operating system application programming interface (API) and 

recording logs for further analysis (Skjellum, et al., 2001). This approach is a time and 

resources consuming process and presents, as the main drawbacks:  

i. the data gathering process impacts the overall performance, influencing other 
applications that aren't involved in the application context being considered;  

ii. this impact on performance also interferes with the application being considered;  
iii. and this scenario probably will be different from that of where the application was 

developed.  

3.2 Intelligence, machine intelligence and finite state machines 

Also, there is no consensus on the definition of intelligence. (Legg & Hutter, 2007) in their 

work on "machine intelligence" states that, in general, most definitions share the fact that 

intelligence is a property of an entity (an agent) which interacts with an external problem or 

situation (usually unknown or partially known), and has the ability to succeed with respect 

to one or more goals (the goals) from a wide range of possibilities (not just some specific 

situations). 

A particular view for machine intelligence is presented by (Costa, 1993) where he introduces 

a definition for the concept of machine intelligence, shows the practical possibility to this 

definition and provides an indication of its need, it gives you an objective content and 

shows the value and usefulness that such a definition may have to the computing science in 

general, and artificial intelligence in particular. Rocha Costa started from the intelligence 

definition given by J. Piaget and established how the conditions for such a definition could 

be interpreted in the machine domain. The definition presented assumes that it must be 

recognized the operating autonomy of the machines. This leads to abandon, or at least put on 

second plan, the perspective of contrived imitation for intelligent behavior from humans or 

animals and adopt the point of view that he calls naturalism - to consider machine 

intelligence as a natural phenomenon on the machines.   

A common and straight way of modeling behavior is extending the event-action paradigm 

to explicitly include the dependency on the execution context through a finite state machine 

(FSM). An FSM is an efficient way to specify constraints of the overall behavior of a 

particular system. Also FSMs have an expressive graphical representation in the form of 

state diagrams - directed graphs in which nodes denote states, and connectors denote state 

transitions. The FSM has a drawback, the phenomenon known as state explosion, related to 

the fact that there is an implicit notion of repetition of states. To make its use more practical, 

state machines can be supplemented with variables. In this case, they are called extended 

state machines, and can apply the underlying formalism to much more complex problems 

than could be practical without including the variables (Samek, 2009). 

3.3 Time and cognition 

“…I'm trying to understand how time works. And that's a huge question that has lots of 

different aspects to it. A lot of them go back to Einstein and space-time and how we measure 
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time using clocks. But the particular aspect of time that I'm interested in is the arrow of time: 

the fact that the past is different from the future. We remember the past, but we don't 

remember the future. There are irreversible processes. There are things that happen, like you 

turn an egg into an omelette, but you can't turn an omelette into an egg. …”(Biba, 2010) 

Despite the importance, of the concept of time has been discussed in several venues 

(Church, 2006), (Stenger, 2001). However, it is undeniable that THE CONCEPT is  

implicitly linked to daily activities by establishing a sequence, seemingly logical, of real-

world events. 

According to (Carroll, 2008), from the perspective of physics, “the nature of time is 

intimately connected with the problem of quantum gravity. At the classical level, Einstein's 

general relativity removes time from its absolute Newtonian moorings, but it continues to 

play an unambiguous role; time is a coordinate on four-dimensional space-time, however, it 

measures the space-time interval traversed by objects moving slower than light. 

Under the Quantum Mechanics perspective, there are considered some fundamental aspects 

like the position and momentum of a particle what imperfectly reflect the reality of the 

underlying quantum state. It is therefore perfectly natural to imagine that, in a full theory of 

quantized gravity, the space-time itself would emerge as an approximation to something 

deeper. And if space-time is an emergent phenomenon, surely time must be”. 

Once the knowledge representation is captured, inferences can be made including extending 

forward from the known past and present to the unknown (prediction or statistical 

syllogism) and/or determining the causality by extending from the known data back to 

hypothesis (explanation or abduction) (Josephson & Josephson, 1994). 

Thus, every knowledge representation model requires a representation of time, of the 

temporal relationship between events and has to deal with uncertainty. In some systems, the 

time model is such that the actions should be considered instantaneous, and only one action 

can occur at some given time, while in others, where there is an association between an 

action and a time reference, the inference module can automatically derive other relations. 

In a more philosophical perspective (Overton, 1994) states that the cycle of time is a deep 

metaphor entailing a relational field of both nonclosed cycles (spirals) and direction that 

emerges in a broader sense across a several scientific disciplines. In the context of the 

organic narrative, the cognition and personality are understood as emerging from a 

fundamental relational theory of the embodied mind. In the context of the mechanical 

narrative, the development is understood as being limited to variation (and only variation), 

and cognition and personality emerge from a theory of the computational mind. 

In computing, a more practical approach on this subject has been addressed in research on 

intelligent agents. To illustrate, we selected two works in which the relationship between 

time and are intrinsic cognition although greater attention is devoted to the cognitive aspect. 

A promising approach called action awareness is based on to provide agents with reflective 

capabilities where agents can reflect on the effects and expected performance of their actions 

(Stulp & Beetz, 2006).  Another approach is based on an efficient thought concept (Hayes-

Roth, 2006) that is based on a list of eight steps that the most complex organizations, in 

general, perform in parallel. This approach states that the intelligent being: 

• observes what’s happening in the environment, 

• assesses the situation for significant threats and opportunities, 

• determines what changes would be desirable, 
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• generates possible plans to operate those changes, 

• projects the likely outcomes of those plans, 

• selects the best plan, and 

• communicates that plan to key parties before implementing it.  

Throughout the process, the intelligent being  validates and improves its model.  

3.4 Biological clock 

According to (Schmidt, Collette, Cajochen, & Peigneux, 2007) “… There is evidence that the 

interaction between homeostatic and circadian factors is not linear throughout the day and 

can affect a wide range of neuro behavioral events. However, the impact of potential time-

of-day variations on brain activity and cognitive performance remains largely ignored in 

cognitive psychology and neuropsychology, despite the fact that Ebbinghaus (1885/1964) 

already reported more than one century ago that learning of nonsense syllables is better in 

the morning than in the evening...”. 

According to (GSLC, 2010), “living organisms evolved an internal biological clock, called the 

circadian rhythm, to help their bodies adapt themselves to the daily cycle of day and night 

(light and dark) as the Earth rotates every 24 hours. The term 'circadian' comes from the 

Latin words for about (circa) a day (diem). Circadian rhythms are controlled by clock genes 

that carry the genetic instructions to produce proteins. The levels of these proteins rise and 

fall in rhythmic patterns. These oscillating biochemical signals control various functions, 

including when we sleep and rest, and when we are awake and active. Circadian rhythms 

also control body temperature, heart activity, hormone secretion, blood pressure, oxygen 

consumption, metabolism and many other functions. A biological clock has three parts: a 

way to receive light, temperature or other input from the environment to set the clock; the 

clock itself, which is a chemical timekeeping mechanism; and genes that help the clock 

control the activity of other genes”. 

People (and other animals) are able to perceive the duration of intervals between events 

however the organism’s internal clocks are not exactly 24 hours long.  Associative learning 

is dependent upon time perception, and the mechanisms of time perception are related to an 

internal clock. In situations in which there are many different time intervals, these can be 

combined for the assessment of the typical interval (Schmidt, Collette, Cajochen, & 

Peigneux, 2007).  

3.5. Situated agents 

“...unfortunately, programming situated agents is quite difficult. Interacting with a dynamic 

and largely unpredictable environment introduces a number of significant problems. Most 

of these problems are related to the way the agents use the plans that determine their 

behavior. Traditionally, plans were used literally; the agent did exactly what the plan said. 

This placed a heavy burden on the plan maker, because it had to foresee all the possible 

ways in which the agent’s interaction with the environment might unfold. Today, it becomes 

clear that an agent should have the ability to interpret plans in a more sensible and context-

dependent way; it should be able to improvise, to interrupt, resume and sequence activities, 

to actively forage for information and to use the current situations to disambiguate 

references in its plans” (Schaad, 1998). 
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We find that statement important to resume the actual paradigm. In our point of view, the 
actual paradigm can be introduced as follows: “unfortunately, programming is quite 
difficult. Interacting with a dynamic and largely unpredictable environment introduces a 
number of significant problems. Most of these problems are related to the way the 
programmers develop programs that determine their behavior. Traditionally, programs are 
used literally; the program does exactly what was programmed to do. This place a heavy 
burden on the programmer, because he has to foresee all the possible ways in which the 
program’s interaction with the environment might unfold. 
Unfortunately, our programs, in general, continues to be forged as static pieces of 
instructions.  

3.6 World model 

One aspect of fundamental importance in the robotics research area, and one that it is 

neglected by the operating systems designers refers to the fact that in robotics projects there 

is always a mapping function between reality and an internal representation denominated 

"world model". In other words, there is some form of explicit environment representation 

where the robot will operate. And it is this world model that determines what decisions are 

made.  

It is important to make a distinction between two types of world models:  

i. those that only describe the current state of the agent’s surroundings, and  

ii. those that include more general knowledge about other possible states and ways of 

achieving these states. The first models are commonly referred as environment models and 

typically include some kind of spatial 3-D description of the physical objects in the 

environment. It contains dynamic and situation-dependent knowledge and can be used, for 

instance, in navigation tasks. The models of the second kind are referred as world models, 

and typically include more stable and general knowledge about: objects, properties of 

objects, relationships between objects, events, processes, and so on (Davidsson, 1994). 

Accordingly Grimm et. al (2001), the main requirements to be reached in this class of 

projects are: robustness; reliability; modularity; flexibility; adaptability; integration of 

multiple sensors; resolution of multiple objectives; global reasoning, and intelligent 

behavior. 

This aspect is also considered in autonomous agents research area. As stated in (Franklin & 

Graesser, 1996) “... Autonomous agent means a system situated in, and part of, an 

environment, which senses that environment and acts on it, over time, in pursuit of its own 

agenda. It acts in such a way as to possibly influence what it senses at a later time...”.  

That is, the agent is structurally coupled to its environment. If an operating system does not 

have an internal representation of its own relationship with surroundings, how can we 

suppose that it can make intelligent decisions? That is one of the main problems to be solved 

by the designers of new generation operating systems. It must be clear that by affirming that 

the operating system doesn't have an internal representation of its internal state we mean 

that it's not enough to collect statistical data about all the processes and other countable 

things that occur when the system is running. Instead, it has to collect them in order to be 

able to infer something about what is happening at some particular moment. This is a much 

more complex process that cannot be achieved by writing multitudes of scripts and building 

lots of administration tools.  
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3.7 Comments 

In this section, we presented a set of concepts for which there is no unanimity among 
researchers. It was not our intention to present a complete review of the disciplines, but 
point out a few aspects that we consider important in the context of this work. 
We followed a path starting from the more abstract concepts (knowledge, intelligence, time) 
towards the more concrete ones (biological clock). 
We are considering the biological clock as the starting point to establish a time unit 
compatible with that found in humans and over which we do our daily tasks (including 
learning, planning and dealing with uncertainties - requisites from Ubicom, AC, and OC) 
and that does  have no relationship with the real time clock used in machines. 
After these considerations we can conclude that the complex and dynamic nature of the 
environment were software solutions are developed (and where they will be executed) has 
the effect that the operating system:  

• does not have complete control over the environment;  

• does not have the capacity to devise complete models of its environment (not only its 
counters and pointers);  

• does not possess complete information about the environment, and  

• cannot completely trust the information it does have, because it is usually uncertain, 
imprecise, noisy, or outdated due to the nature of its perceptual processes. 

At this point we have collected evidences pointing to the expectation that we need to build 
systems capable to export some kind of intelligent behavior. To achieve these goal artificial 
systems must have direct access to their environments beyond the information stored in logs 
It is not enough to have elaborated reasoning, learning and planning capabilities because 
such an intelligent entity has to be able to autonomously acquire its required information 
through perception and carry out contemplated actions. In other words, it is necessary to 
make those “intelligent entities” more sensitive to context, enabling them to sense their 
environment, decide which aspects of a situation are really important, and infer the user’s 
intention from concrete actions. Those actions may be dependent on time, place end/or even 
the past interactions with user.  
These limitations have been a central driving force behind the creation of a new operating 
system based on knowledge abstraction. The main goal is to bring together knowledge 
about artificial intelligence, robotics and physics in order to produce a new class of 
operating systems able to cope with the presented challenges. 

4. A Knowledge-based operating system model 

The novel concept introduced in Mattos (2003) says that a knowledge-based operating 
system (KBOS) is: “an embodied, situated, adaptive and autonomic system based on 
knowledge abstraction which has identity and intelligent behavior when executed”. The 
whole system is built inside a shell which gives the endogenous characteristic. A hyper 
dimensional world model enables the entire system to perceive evolving and/or fluctuating 
execution conditions.  
The endogeneity characteristic of the system insofar as the world model is surrounded by 
the hardware, i.e. the world model is the system. The world model can be characterized as 
the surrounding membrane of a biological cell. The nucleus is the hardware. Therefore, the 
membrane acts as an interface between the external environment and internal environment. 
Using the analogy of the cell, we cannot break through the membrane to access the inner 
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parts of it.  So any form of influence in the cell must occur in a process similar to osmosis, i.e. 
provide stimulus to the interface which will translate the stimulus to the internal 
representation of the cell. 

4.1 A KBOS World Model 

We have identified 3 dimensions over which such a new operating system paradigm has to 
be based:  

• physical dimension,  

• behavioral dimension, and  

• temporal dimension  
The physical dimension describes the physical hardware components and their structural 
relationship. The behavioral dimension is described by extended state machines. Each 
device has a state machine for describing is physical primary behavior we called this as: 
physical context of a device (PCD). A state machine describes the dynamic aspects of the 
component’s behavior. The current state of some device is represented by a string of bits 
(figure 2). 
 

 

Fig. 2. Physical context of a device 

Each device has a state machine that describes, in a more high level of abstraction, the 
functional aspects of it - we call it a logical context of a device (LCD) (figure 3). 
 

 

Fig. 3. Logical context of a device 

One aspect that we would like to point is that the LCD use a fuzzy notation to express 
functional aspects of a particular device like available space (i.e. a disk unit could express 
space availability ranging from completely full to completely empty), communication link 
availability and so on. 
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Merging all the PCD and LCD results in a bit mask that represents the current state of the 
world (figure 4). This world status word (WSW) is used to trigger the execution of plans that 
were conceived as context-sensitive. It can be observed that the status word may also to 
represent some world’s configurations for which yet there are no plans available. 
For example, we could have an action plan describing what TO do in a situation where the 
network connection is good and the disk space is at least 50% available - let's call it the ideal 
solution. In a situation where the network connection is bad and disk space is less than 20% 
could lead to bad behavior in the plan. Perceiving this, a KBOS can start the learning stage, 
where it will test whether the optimal solution will work well or it will fail at some point of 
the present situation. If the solution works well, the system learns and registers at its 
knowledge base that the ideal solution also works for this situation. If not, the system will 
take to choose alternative plans in order to cope with the situation. 
One could to observe that the bit mask is highly sensitive to fluctuations of the possible 
states of the world what can lead to a combinatorial explosion of states. Thus, a requirement 
for development of applications for a KBOS is explicitly to conceive exception conditions for 
each individual application. This characteristic leads to the development of more context-
sensitive applications. 
The description above characterizes one difference in designing software when compared 
with the traditional way of doing (figure 1). In our approach, the software development 
process should be guided by the dynamics of the application. Furthermore, we believe it 
should be abolished the phase of binary code generation - at the end of the compiling 
process as we always have done until now.  
In this new perspective, the process of building a program should to finish by delivering a 
set of technical information to be provided to the assimilation interface of a KBOS which is 
the module effectively responsible for to transform that information into execution plans. 
The act of transforming a program in an execution plan for a KBOS is a three-step process.  
The first step involves the traditional process of software development (conception, design, 
implementation, testing) - including the constraints demanded by the context of a KBOS 
environment. 
The second step involves generating, instead of an executable code, a meta-model 
containing: 

• an extended state machine describing the dynamic behavior of the entire application 
and,  

• the source code associated with the effective implementation of the application logic for 
each state/sub-state.  

The third step involves submitting the meta-model to the KBOS assimilation interface for 

effective generation of a set of execution plans. 

Our contribution stems from the fact that we are recognizing the importance of providing 

for the KBOS more than binary code (executable) to manage. Figure 5 reinforces the fact that 

we are not arguing about how we use to obtain information about the domain of a particular 

application, or how we should map this information in terms of software architecture or 

even trying to change the current paradigm of programming. 

An execution plan is built in a parallel functional decision tree (Schaad, 1998) format and 

represents the lowest level of code that KBOS recognizes and executes. So, in a broader 

sense, of knowledge of a KBOS emerges from a library of execution plans and from the 

system’s experience in to execute them according to environment fluctuations. 
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Fig. 4. A KBOS world model in an overall perspective 

 

 

Fig. 5. Overview of the proposed software development process. 
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We should point some important characteristics: 

• Knowledge = source code + dynamic models: traditionally, the last phase of compiling 
process is the binary code generation. An executable code doesn’t carries additional 
information about the intentions of a particular program. In function of that, operating 
systems has to be prepared for both – well behavior and non-conforming programs; 

• Learning interface: in a KBOS environment the assimilation interface grabs the input 
pack (source code + dynamic models) and analyses its own knowledge base in order to 
identify similar procedures. If it finds two different solutions for the same problem  
it could produce plans to be evaluated by itself in order to identify which one is the  
best to be adopted. The outcome is a new set of plans to be inserted in its knowledge 
base. 

• Executable plans (Schaad, 1998) instead programs: in our point of view, at same time 
that the program represents the programmer’s knowledge about some domain, it also 
carries no additional information when executed by some computing device. In a 
KBOS, we bring to the environment that knowledge and make it available to the OS. 

Traditionally, a plan is regarded as an ordered collection of executable primitives, or 
macros, that are decomposable into primitives. We have chosen decision trees as a plan 
representation structure in KBOS in function of a number of distinct advantages over other 
representations for reactive plans (Schaad, 1998): 

• simplicity: decision trees are easy to implement in any programming language and the 
associated run-time system can also be simple; 

• efficiency: decision trees execute very efficiently.  

• stepped execution model: decision trees are a natural fit with the stepped, ex-ante 
arbitrated execution model and with the design principle of improvisation underlying it 

• transparency: decision trees are easy to understand and debug 

• layering: layering is important for expressing temporal coherence, such as persistence 
and sequences, and for code reuse. 

In this context, a plan is a data structure that maps a state machine and the program source 
code to a set of parallel functional decision trees (PFDT) using the notation described in 
(Schaad, 1998). A plan consists of a set of instructions expressed in the notation of PFDT - 
the steppables (figure 6a). Each plan is encapsulated by an envelope, which, among other 
things allows the recording of information about the context of the world (physical, 
behavioral and temporal) at any given time. 
 

 

Fig. 6. An execution plan (a), and the plan tested in an ideal development environment (b) 

The development of applications for KBOS introduces a requirement that the developer use 
an ideal development environment – an environment where it is possible to implement 
plans without interference from other applications/tasks (equivalent to running a program 
in a single-TASK operating system). This ideal environment has an abstract clock unit which 
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is used only for purposes of temporal ordering of the plans. The recording the execution 
time of a plan is a matter of increment the time counter (figure 6b). 
If a plan is completely executed during an abstract interval, we register the value 1 as the 
time that plan needs to complete its task. Otherwise, if a plan requires more than one time 
unit, for each subsequent block of commands, that fits inside a time unit, we will increment 
this value until we get the end of the plan – observing that this procedure happens only at 
testing/debugging time.  
In the situation where some sub-plans (any path within a program) have not been validated 
by the testing phase, the time of this path is recorded as invalid (-1). This information will 
allow the KBOS to become aware that the path was not previously tested and makes the 
KBOS to switch to a stage of learning. 
At this stage, the plan being executed is monitored to assess effects on other plans being 
executed. As time passes and newer executions of this plan does not cause side effects, the 
plan starts  being promoted to a condition in which he is regarded as reliable. Thus, one of 
the ways the KBOS acquires knowledge about the effects of some plan's behavior is by 
reinforcement learning. 
If some error condition is detected, the system can provide to programmer the set of 
envelops with information about the environmental conditions at the error time. This adds 
important information about the timing in which the error occurred. Naturally it is not our 
expectation that a KBOS will develop the ability to correct programming logic errors. 

4.2 The time dimension 

Different definitions of time granularity have been proposed in the literature. All these 
definitions use partitions of a fixed temporal domain to represent temporal structures 
(Clifford & Rao, 1987), (Puppis, 2006). 
In the current paradigm of computing systems, the time is a variable that has to be explicitly 
read (get-time()/get-date() functions ) in order to enable software entities to perceive the time 
flow. The structure that we propose for the temporal domain is suitable for the needs of a 
KBOS  and it is represented by a quadtree-like bit structure which enables to represent since 
the smallest observable or interesting time unit as well as a very coarse granularity (fig. 7). 
 

 

Fig. 7. The quadtree-like structure for representing time units (sub-units) in KBOS. 

The term quadtree is used to describe a class of hierarchical data structures whose common 
property is that they are based on the principle of recursive decomposition of space. 
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Hierarchical data structures are useful because of their ability to focus on the interesting 
subsets of the data, resulting in an efficient representation and improved execution times, 
and it is thus particularly useful for performing set operations. Hierarchical data structures 
are attractive because of their conceptual clarity and ease of implementation (Samet, 1984). 
This model allows to record and check the occurrence of an event on various time scales 
(figure 8) using the same universal structure, and with a very small computational cost. In 
this context, the manipulation of events is just a matter of bitwise operations (AND, OR, 
XOR, NOT) against the structure. 
 

 

Fig. 8. Recording the occurrence of an event 

There is a single global structure to represent the time for all instances of execution plans. 
Each execution plan can use sub-structures of the overall structure to represent time units in 
the  application's domain. Thus, a reference to a specific unit of time is characterized as an 
index in this structure. 
Once we have identified an universal structure to represent time units, the next step was to 
define the machine biological clock (MBC) and its computational representation. 

4.3 Machine biological clock 

As seen before, living organisms have some sort of internal biological clock that helps to 
define what is called: the circadian rhythm - the rhythm used to synchronize the internal 
actions within the body. 
 

 

Fig. 9. Machine biological clock and work capacity 

The MBC follows the same principle - a unit of time observable in the time’s system 
structure (figure 9). However, we should to highlight that the events and actions taken 
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during this time interval are considered as instantaneous in such a way that a KBOS can only 
to consider this timescale for inference purposes. For analogy, in general, people do not 
perceive time units smaller than 1 second but we know that the internal functioning of the 
body works in smaller fractions of a second. In the same way, a KBOS is still capable of 
performing operations in fractions of seconds according to the characteristics of hardware 
but it will only perceive the time flow from the MBC units. 
The MBC is a unit of time derived from the real time clock of the computing device. Thus, 
the size of the MBC (in units of fractions of seconds) is a matter of individual adjustment - 
each class of devices that share the same hardware characteristics should also share the 
same MBC. In the same way, different classes should have different MBC. 
From the MBC concept it is possible to derive the concept of work capacity (WC) - a unit that 
measures the device's ability to perform tasks, which is measured in units of MBC (fig.8). 
As more tasks needs to be executed by unit of MBC, less WC the device will present, and 
vice-versa.  
This characteristic allows the system perceive that it is in an overcharged situation and this 
"feeling" will be propagated for all active plans instantly- i.e. in the time interval between 
two MBC time units. In this moment, all plans automatically will start to adapt themselves 
to that fluctuation condition. In the current paradigm, this situation could be evidenced, for 
example, because the queue of processes is long, or because the rate of context switching is 
high. However, if all processes are not context-aware, the system cannot adapt easily.  
In a fairly high level of abstraction, this unit of work capacity enables a KBOS to make 
decisions when interacting with other devices in a community(Goumopoulos & Kameas, 
2009) and to discover "how good it is" when  comparing with the neighborhood devices - 
again, this characteristic could lead to some kind of measure of "social behavior" of the 
machine.  

4.4 Time perception  

Perceiving a time flow is a matter of to be situated. In order to achieve this goal, we had to 
conceive a complementary data structure to PFDT, refered before as envelop. We will depict 
a sample of how we made possible for plans to perceive the time flow without the need of 
explicitly asking it to the operating system. 
The figure 10a shows a plan previously tested at the development environment by the 

programmer. This plan when comes to the user’s machine and is assimilated will have the 

time units adjusted to the real MBC of the target device. 

The figure 10b shows the plan being executed in a real situation sharing the cpu time with 
other plans but running according the time units previously defined. 
The figure 10c shows a tipical situation where the availability of cpu is reduced by the fact 
the system needs to execute more plans. In this case, some part of the first envelop is sliced 
and scheduled to be executed in a time further. When the unfinished part of the first 
envelop starts running, its time recorded will be different from the actual MBC making with 
all further function calls be made with an indication of a delayed situation. 
To a better understanding, the figure 11 shows an example of a java program that is time 
dependent as a sample of how we deal with time in the current paradigm. 
 In general, the program needs to call the System.currentTimeMillis() function in order to 
discover the current time and make some calculation to discover if it is delayed, on time or 
ahead of time (when comparing with previous execution of the same plan). Also, in general,  
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Fig. 10. A tested plan (a), the plan running in a real environment (b), and a plan perceiving it 
is delayed (c). 
 

 

Fig. 11. Explicit time example 
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only some portions of the code running in a system have to deal with such constraints, so 
we have a mix of code dealing with time and code that was not conceived to deal with time 
running together in the same environment. For example, the method 
doSomethingExactlyOnTime() could be started exactly on time, but become late because the 
multitasking environment could be scheduled other code to run changing the time when  
doSomethingExactlyOnTime() will effectively receive the CPU. If the code structure of that 
method is not build as the sample code (lines 14-16), the late execution could cause the 
entire system to present some strange behavior. And we are not talking about real-time 
applications, but desktop ones.   
The figure 12 shows how a plan (in KBOS context) deal with time perception: each 
procedure/function has to explicitly declare sections where the time dimension has to be 
considered as a functional requisite.  
In this example we can observe that there are three methods implementing the logic for 
processChanges() each one ending with one of the reserved words: _Late, _OnTime and 
_AheadOfTime. 
During the execution of a  plan, the system activates the appropriated section (late, onTime or 
aheadOfTime) according to the situation of the world model as previously described. If the 
developer does not know what to do in some situation, he can explicitly use an 
IDoNotKnowWhatToDo clause and the KBOS run-time will start trying to learn how to deal 
with that situation. This leads to some possibilities: 

• the knowledge-base already have some other plan that already was tested before – this 
plan is activated; 

• the knowledge-base does not have other plan – then the KBOS starts to follow the 
execution of the plan verifying what happens, for example, if the plan is delayed or 
cancelled. 

In the example (figure 10), the method processChanges1…() was developed dealing with the 
three situations but in the situation where method processChanges2…() is dispatched late, the 
programmer explicitly declared that iDontKnowWhatToDoInThisSituation() (on line 20). 
To support this model of function dispatch, the KBOS adopts a mapping function that 
makes possible to convert a n-dimensional world status to an one-dimensional status word 
The way we have implemented this functionality is changing the standard procedure call 
protocol:  

call [memory address]. 

Instead, we have adopted the protocol: 

 call [memory address [World Status Word, CurrentMBC ]]. 

When the destination address points to an iDontKnowWhatToDoInThisSituation, the system 
switches to a learning state. Under this condition, the KBOS can decide to let the 
procedure/function called run in one of the other possibilities programmed, or to cancel the 
call once the “programmer” doesn’t know how his program could behave under that 
condition.  
If the system let the procedure/function call to continue, the system will learn what happens 
and will register the behavior of that part of the code under inadequate conditions in the 
PLAN’S state machine. So that the system will develop the capacity of observing the way a 
module works in order to decide, in the future, if it will allow or not that code to run 
again. Notice that this cannot grant that the code will do it right in the future. 
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Fig. 12. Implicit time example. 

The possibility to deal with time perception information is made explicit to the programmer 
in development time so, it allows him to make decisions for building/conceiving self-
adaptive plans. On the other hand this introduces an additional level of difficulty because 
the programmers are not traditionally accustomed to thinking of time dimension in the 
conception of their programs. 
The time dimension also makes it possible to introduce the vague notion of space concept if 
two different plans perceive that both are delayed it is equivalent to say to each one that 
there is someone else sharing resources within the same MBC unit. This could leads, for 
example, that the logical path of some plan could be changed to another path that 
implements the same functionality but demands less resources. The self-adaptive and self-
reconfigurable characteristics of the system are based on this facility. 

5. Related work 

In general, the operating system designers are concerned primarily with problems of a 
purely quantitative nature (e.g. performance) (Hansen, 2000) (Peng, Li, & Mili, 2007) while 
qualitative aspects should receive more attention. Before continuing, it is important to look 
at the efforts already made towards changing the situation presented. We emphasize that 
we are excluding from this analysis those works aimed at improving the current model like 
(Hunt & Larus, 2007) (Lee, et al., 2010) mainly because we are interested in going deeper in 
the area of knowledge-based systems at operating system level.  
By reviewing the literature, it is possible to find some references to a knowledge-based 
operating system. ((Sansonnet, Castan, Percebois, Botella, & Perez, 1982),(Vilensky, Arens, & 
Chin, 1984),(Blair, Mariani, Nicol, & Shepherd, 1987),(Chikayama, Sato, & Miyazaki, 
1988),(Moon, 1985),(Larner, 1990),(Ali & Karlsson, 1990), (Xie, Du, Chen, Zheng, & Sun, 
1995),(Patki, Raghunathan, & Khurshid, 1997), (Jankowski & Skowron, 2007)). Other 
approaches involve the application of artificial intelligence techniques through kernel 
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implants6 to achieve better interfaces in traditional operating systems ((Pasquale, 1987), 
(Chu, Delp, Jamieson, Siegel, & Whinston, 1989), (Zomaya, Clements, & Olariu, 
1998);(Kandel, Zhng, & Henne, 1998); (Holyer & Pehlivan, 2000),(Lim & Cho, 2007)).  
However, all failed to achieve its objectives because the conceptual basis for the meaning of 
"knowledge" or "intelligence" was not properly established. In general, due to project's time 
constraints, prototypes are constructed using existing and proven technologies wherever 
possible, rather than implementing core technologies from scratch.  
In (Stulp & Beetz, 2006) was proposed a novel computational model for the acquisition and 
application of action awareness, showing that it can be obtained by learning predictive 
action models from observed experience and also demonstrating how action awareness can 
be used to optimize, transform and coordinate underspecified plans with highly 
parametrizable actions in the context of robotic soccer. The system works in two moments:  
i.  idle time, when the agent learns prediction models from the actions in the action library; and  
ii. operation time, when action chains are generated. 
In (Tannenbaum, 2009) we found that self-awareness means learned behaviors that emerge 
in organisms whose brains have a sufficiently integrated, complex ability for associative 
learning and memory. Continual sensory input of information related to the organism 
causes its brain to learn its (the organism’s) physical characteristics, and produce neural 
pathways, which come to be reinforced, so that the organism starts recognizing, several 
features associated to each reinforced pathway. The self-image characteristic provides a 
mechanistic basis for the rise of the concept of emergency of behavior that, on its turn, is 
connected to the concepts of self-awareness and self-recognition. On the basis of all that 
process there is the notion of time perception.  

6. Conclusion 

We have given an overview of an endogenous self-adaptive and self-reconfigurable 
approach to operating system design that we call: knowledge-based operating system.  
In order to get there, we presented some evidences that lead us to go back in the origins of 
the modern computing and figure out what could be the reasons why we still are dealing 
with problems identified a long time ago. 
In our point of view, the concepts of program, multitasking and operator are strong 
candidates to be considered. 
A program is a rigid expression of the programmer’s knowledge acquired during the 
software development life cycle that is transformed into a string of bits and expected to be 
managed by the OS. As the hardware was expensive, the OS designers found in the 
multitasking a way to better share the computational resources between different users. The 
operator was needed in order to make the installation ready for all users demanding 
computational resources.  
We do not eliminate the concepts of program multitasking and operator, but instead, 
repositioned these concepts in the perspective of: 

• a program shall be replaced by a plan of execution, whose code is generated internally 
by the system and externally to the user's environment by the traditional process of 
generating executable code; this changes the perspective of software setup towards a 
software learning; 

                                                 
6 See  (Seltzer, Small, & Smith, 1995) for a kernel implant explanation. 
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• The concept of multitasking becomes a tool to support the concept of MBC in that it 
now plans are explicitly able to: (a) perceive when they were sliced, and (b) perceives 
the fluctuation of resources availability of the computing device. 

This characteristic allows the conception and development of really context-aware 
applications. 
Insofar as the characteristics of adaptability become part of the system, the characteristics of 
the user-machine relationship become enriched. 
We demonstrate that the concept of knowledge in this phase of the project is a matter of self-
knowledge, or the computing device knowledge about its ability to perform tasks and to 
self-adapt to the fluctuations of resource availability in the environment. 
To the extent that context-aware applications begin to take into account these characteristics, 
a new concept of intelligence and perception of intelligent behavior becomes evident. 
In the context of this work, the role of the programmer now has a double function: 

• on the one hand, it continues to map the knowledge of some application's domain for 
an encoding tool; 

• on the other hand, it assumes the role of teaching the system how to perform the 
application's role. 

This relationship expands the possibilities of what we call today the reuse of code for the 
reuse of knowledge. 
Based on what was presented we could start thinking in terms of the machine's identity 
concept, which is resultant from the embodiment, situatedness, adaptiveness and autonomic 
characteristics of a KBOS. This leads to the emergence concept - a property of a total system 
which cannot be derived from the simple summation of properties of its constituent 
subsystems.  
In this sense, the set of characteristics enables the system to perceive, in an individualized 
manner, a set of events occurring in some instant of time. Thus, the intelligent behavior 
emerges from the previous characteristics plus the relationship between the system and the 
surrounding environment (Müller-Schloer, 2004). 
We believe that the major contribution of this work has been to present a new way of 
designing systems that can evolve in a natural way for the machines (Costa, 1993) opening 
an avenue for research in conceiving really embodied software artifacts on the context of 
ubiquitous computing environment. 
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