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1. Introduction 

Efforts to reduce energy use and greenhouse gas emissions continue to place increasingly 
stringent requirements on the industrial sector of the economy. This tendency is especially 
pronounced in energy-intensive industries which use high temperature processing. 
Examples are chemical and metallurgical processes, power generation and waste treatment. 
In these areas, many chemical reactions involved in the material fabrication or treatment 
proceed under mass transfer control, meaning that rate-controlling step of the reactions is 
not a chemical reaction itself (termed kinetic control), but transport of the chemical reagents 
to or from the reaction zone. This is associated with the well-known fact that the rates of 
chemical reactions increase with temperature to a greater extent than those of mass transfer. 
In the mass transfer controlling regime, any enhancement of the mass transfer rate should 
raise productivity of the above-mentioned processes, that in turn provides an option to 
reduce the energy consumption and production cost. Another important point to note is that 
inadequate control of mass transfer between different regions of the reactors or furnaces 
often results in a local under- or overheating of the materials being processed. Both these 
phenomena are considered to be a major source of atmospheric pollutant emissions. Typical 
examples of such processes are solid waste incineration and fuel combustion.  
In most of the above-mentioned processes gaseous, liquid and solid phases coexist in one 
process. Nevertheless, in this chapter, we shall restrict our consideration to the gas-phase 
mass transfer. In gas, mass transfer can occur through the following two mechanisms:  
(1) convection which typically occurs in the gas bulk and (2) molecular diffusion which is 
the dominant near interfaces. In many cases, the rate of convective mass transfer can be 
relatively easily enhanced by blowing a gas into the media bulk or by applying some other 
method of increasing the forced convection. Therefore, the main resistance to the mass 
transfer is located usually in the boundary layers adjacent to the interfaces between different 
phases. Under these conditions, there is a very limited choice of techniques available for 
controlling the mass transfer at the interfaces. This is especially true in regard to those 
processes which involve high temperatures. 
In these circumstances, sound or ultrasound waves provide a unique tool making it possible 
to supply energy directly to the interfaces and, thus, to influence the interfacial mass 
transfer rates. Attractiveness of ultrasonics is associated with the following features of 
sound. First, sound waves have the ability to propagate through homogeneous elastic 
mediums including gas without significant losses, and thus to effectively transfer the 
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acoustic energy from a sonic generator to the materials being processed. Second, when the 
waves are incident upon an interface, the scattering or reflecting of the waves from the 
interface is responsible for a number of phenomena that occur at the interfaces. Examples of 
these phenomena include acoustic streaming, radiation pressure, forced turbulence and 
capillary waves. Most of them have a direct influence on the interfacial mass transfer 
process. Such effects are unachievable by any other methods. Third, along with the technical 
efficiency, sonic/ultrasonic treatment should be competitive as regards cost, because it 
provides an effective transmission of acoustic energy at a relatively low cost for ultrasonic 
equipment. 
The idea of using ultrasonics for improving process performance or for changing material 
structure is rather old. As early as the 1920s, Wood and Loomis (Wood & Loomis, 1927) had 
studied the effects of ultrasonics on the atomization of liquids, the emulsification of 
immiscible liquids, and the changes in the structure of crystallized organic substances. 
During the years which followed, ultrasonic effects have become the subject of numerous 
extensive studies. The studies have proved the benefits of using ultrasonics in a variety of 
technological processes. In the majority of them, sound waves of ultrasonic range are 
radiated into liquids through a submersible sonotrode under conditions in which acoustic 
cavitation occurs in the liquid. Ultrasonic sonochemistry, a relatively new field of chemistry, 
exploits the acoustic cavitation to influence chemical reactions. Acoustic cavitation is a 
phenomenon of nucleation, oscillation and implosion of countless bubbles in liquids. The 
last phenomenon, namely bubble implosion, is of great importance in many ultrasonic 
applications. Cumulative microjets and shock waves, which are generated at the last moment 
of bubble implosion are thought to be one of the main contributor to the effects observed 
during ultrasonic treatment. Also, the ultrasonic cavitation is a very efficient route to enhance 
mass transfer rates both in the bulk and at the interfaces in liquids (e.g. Margulis, 1995).  
However, the liquid-phase sonoprocessing has a number of serious limitations. As 
ultrasound waves are scattered on gas-liquid interfaces, the surface of cavitation bubbles has 
a screening effect on propagating acoustic energy. This leads to a significant decrease in the 
size of the zone that can be effectively treated by ultrasonic. This limits the ultrasonic 
applications for many processes proceeding in large-size reactors. Moreover, at higher 
temperatures, sonoprocessing through liquid phases requires designing a cooling system, 
choosing special materials for the waveguide components, and optimizing them under 
conditions of sharp temperature drops. Unfortunately, this is not always possible 
On the other hand, the gas-phase sonoprocessing possesses some advantages as compared 
to the treatment of liquid phases that make it very useful for applying to high-temperature 
processes. First, the sound generator can be positioned a safe distance away from the high 
temperature zone. Second, in gas, sound waves can propagate over a longer distance than 
that in liquids because the sound propagation in gas is not restricted by cavitation. The gas-
phase sonoprocessing is especially appealing for the processes that use gas blowing or 
injection. Typical examples are burners, solid waste incinerators, converters for making steel 
and cooper. In these processes, a sound wave can be relatively easily produced by passing a 
part of blown gas through a pneumatic-type sound generator that does not require any 
additional consumption of energy. In addition, the gas can serve as a coolant of the sound 
generator parts. 
The goal of this chapter is to give a deeper insight into the possibilities and limitations of 
airborne sound waves as a tool to enhance the rates of gas-phase mass transfer and its 
related phenomena. Following the introduction, the second section gives a brief theoretical 
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consideration on the sound related fundamental phenomena that is necessary for a better 
understanding of the following sections. The next, third section presents a short review of 
some recent studies that examined sound or ultrasound effects on the gas-phase mass 
transfer around spherical drops and particles, followed by a brief survey of recent efforts in 
applying acoustic oscillations to in a number of technological processes. The forth section 
provides a discussion of our results and some considerations for the enhancement of mass 
treansfer rates in pyrometallurgical processes. Finally, the last section concludes the chapter 
with some general remarks. 

2. Brief theoretical consideration 

Sound is a wave that is created by oscillating objects and that travels through an elastic 
medium from one location to another. The simplest type of sound wave is a plane travelling 
wave. The wavefront in such a wave is a plane surface meaning that the oscillating energy is 
transmitted in the form of parallel beam. When the oscillation amplitude is small enough 
(linear regime), one can neglect any interaction between the medium and wave, and 
consider that the wave propagates adiabatically.  
In actual practice this situation is very seldom realized. In the material sonoprocessing, sound 
waves of high intensity propagate inside reactor vessels filled with solid and/or liquid 
materials, and bounded by side walls and bottom. This suggests that the wave can be 
reflected or absorbed by surfaces belonging to the materials or vessels. In addition, processes 
often generate small particulates like solid particles, dust or liquid droplets. When the 
travelling wave impinge on their surfaces, a part of the wave energy can be scattered and 
lost. Moreover, propagation of high intense sound wave is non-adiabatic because a part of 
its energy is lost during the compression half cycle. This phenomenon is know as disspation. 
The dissipation and scattering are thought to be the main cause of the wave attenuation. 
Besides, scattering and dissipation of waves are responsible for so-called non-linear acoustic 
effects which have a direct bearing on the transfer of mass. The following sections introduce 
most important characteristics of sound waves and, then, briefly explain the non-linear 
effects to that extent which is necessary for understanding the matter of the present chapter. 

2.1 General characteristics of sound waves 

In the case of a harmonic travelling wave, the oscillatory motion can be expressed in terms 
of displacement of the particle,ξ relative to their equilibrium position as follows  

 0 sin( )t kxξ ξ ω= −  (1) 

This equation is the basis for derivation of other equations which describe the wave 
propagation. Thus, the velocity of oscillations, V, and pressure, P can be given as  

 
0 cos( )V V t kxω= −  (2)  

                            
0 sin( )P P t kxω= −  (3) 

where x is the direction of wave propagation, angular frequency ω = 2πf and amplitudes 

ξ0,Vo,Po are related to each other as V0 = ξ0ω and P0 = ξ0ωρc. The wave number k can be 

simply defined as k = ω/c or as k = 2π/λ , where c and λ are the sonic velocity and wave 
length, respectively. Frequency, f is commonly subdivided into audible sonic and inaudible 
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ultrasonic ranges although physically there is no difference between sound and ultrasound 
waves. The boundary between these ranges lies at about 16 kHz. Note that if the travelling 

wave is plane and propagates without attenuation, all the amplitudes ξ0,Vo,Po are constant. 
Based on the above relationships, one can derive an expression of sound intensity, J, which 

is defined as the average rate of sound energy transmitted by a travelling wave through a 

unit area normal to the direction of sound propagation  

 2
0

1

2
J cVρ=  (4) 

In practice, since the sound intensity varies by several orders of magnitude, it is often 

expressed in logarithmic form known as sound intensity level,SIL 

 10log
ref

J
SIL

J
=  (5) 

where the reference intensity, Jref is equal to 10-12 W/m2. The unit of SIL is decibel, dB. 

There is no universally accepted criterion for distinguishing between low and a high-intense 

sound waves. However, many experimental results suggest that the sonic/ultrasonic effects 

can be obtained only if wave amplitude exceeds some threshold value. For gases, the 

threshold value of V0 can be estimated from the experimentally determined value of SIL at 

which ultrasonic effects become significant. This value is equal to 130 dB (Mednikov, 1965; 

Blinov, 1991). Thus, using Eqs.(4) and (5), one can estimate the threshold V0 for air (c=340 

m/s, ρ=1.2 kg/m3) to be approximately 0.2 m/s.  

2.2 Sound wave reflection. Standing wave. 

As mentioned above, in many applications, sound waves propagate inside vessels like 

combustion chambers, furnaces, etc. This results in an impingement of the waves upon the 

vessel walls and in a reflection from the wall surfaces. Moreover, the principle of 

sonoprocessing itself involves exposing the surfaces of treated materials to a sound wave 

which, in general, can reflect from the surfaces or pass through it. In this connection, it is 

important to know conditions of wave reflection. When a sound wave is incident from a 

medium 1 on a plate made of medium 2 at right angle, the reflection coefficient, R can be 

expressed by the following equation (Heuter & Bolt, 1966) 

 

2
2

2
2

2

2

1 1 2
sin

4

1 1 2
1 sin

4

d
m

m
R

d
m

m

π
λ

π
λ

⎛ ⎞−⎜ ⎟
⎝ ⎠=
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 (6). 

Here, d is the plate thickness, λ2 is the length of sound wave in medium 2, m is the ratio of 

acoustic impedances of the media 1 and 2. The acoustic impedance is a key parameter in 

understanding the behaviour of sound wave when incident on a surface. Generally, acoustic 

impedance implies resistance to the propagation of sound wave. Quantitatively, it can be 

expressed as the ratio of sound pressure generated in a point of medium to velocity of 

oscillations of the medium particles during sound propagation. Expressing the ratio in terms 
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of the appropriate amplitudes, one obtains the following relationship for acoustic 

impedance, Z  

 00

0 0

cVP
Z c

V V

ρ
ρ= = =  (7) 

where ρ and c have the same notations as above. A special feature of gas phases that their 
acoustic impedances are several orders of magnitudes smaller than those of liquid and solid 

phases. For example, values of Z for air, water and steel at 20°C are 406, 1.47×106 and 

4.56×107 kg/m2⋅c, respectively.  
Insertion of these values into equations (6) and (7) gives the results illustrated in Figure 1. 

This figure shows the reflection coefficients as a function of d/λ2 for two cases. In both the 
cases a sound wave propagates in air. However, in the first case the medium 2 is water 
while in the second one it is steel. As can be seen, decrease and following increase in R near 

d/λ2 = 0.5 and 1.0 occurs so sharply that the corresponding descending and ascending lines 
are indistinguishable in the figure. The inset (b) shows an enlarged view of variation of R in 

the vicinity of d/λ2 = 0.5. The data reveal that the sharp variation of R takes place within a 

very narrow range of d/λ2. Besides, it is clearly seen that this variation is steeper for steel 

plate than for water layer. Another region of sharp change in R appears at very small d/λ2 

close to zero. Here, it can be seen again that R for steel plate increases with d/λ2 significantly 

faster compared to that for water layer. 
 

 

Fig. 1. Dependence of reflection coefficient on d/λ2 for sound waves propagating in air and 
falling onto a water film (solid line) and a steel plate (dashed line).  

Thus, one can conclude that, except for very thin films (d/λ2 ≈ 0) , sound can pass through a 
bulk layer of liquid or solid only when the layer thickness is varied within a very narrow 
range around strictly fixed values. In practice, such cases, however, are few and far between. 
Therefore, it can be said that when a sound wave is introduced into a vessel filled with 
materials to be processed, the wave is completely reflected from all surfaces on which it is 
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incident. The interference between incident and reflected waves may result in formation of 
so-called standing wave. Since the standing waves play an important role in the airborne 
sonoprocessing, it is necessary to consider this problem in some detail.  
The simplest case of standing wave is one that forms when a travelling wave is incident 

upon a plane surface at right angle and completely reflected from the surface. In this 

standing wave, the oscillatory motion of fluid particles is expressed similarly to travelling 

waves in terms of displacement, oscillation velocity and sound pressure as given by 

Eqs.(8)~(10). 

 02 cos( )sin( )kx tξ ξ ω=  (8) 

 02 cos( )cos( )V V kx tω=  (9) 

 02 sin( )sin( )P P kx tω=  (10) 

where notations follow those of Eqs.(1)~(3). 

It is remarkable that the values of amplitudes in the standing wave are double those in the 

travelling one. The solution of the above equations, although not shown here, reveals that, 

in the standing wave, there are points at which no oscillations occur. These points are 

referred to as node. The nodes are evenly spaced at intervals of one-half wave length. The 

points where the amplitude of the standing wave is a minimum are called antinodes. The 

antinodes occur midway between the nodes.  

In standing wave, contrary to travelling one, there is no energy transfer. Instead, the energy 

is alternately transferred from kinetic to potential energy. By analogy with sound intensity 

level, SIL, the energy inside a standing wave can be evaluated by the sound pressure level, 

SPL in dB units as follows 

                              020log
ref

P
SPL

P
=  (11) 

here the reference pressure, Pref is equal to 2×10-5 Pa. 
A special type of the standing wave occurs when it is formed between parallel surfaces, one 

of which is a sound-radiating surface while the other one is a reflecting surface. The 

longitudinal distribution of sound pressure, P in such a wave obeys the following equation 

(e.g. Rayleigh, 1945) 

                           0 0

cos ( )
sin

sin

k L x
P c t

kL
ξ ω ρ ω−

= (12) 

where L is the distance between surfaces while the other notations are the same as above. Of 
most practical interest is the case when the distance L is an integer multiple of one-half 
wavelength according to Eq.(13) 

 , 1,2,3,...
2

n
L n

λ
= =  (13) 

Insertion of Eq.(13) into Eq.(12) gives sinkL=0 meaning that the sound pressure P should 
increase to infinity. Of course it is physically impossible because of dissipative effects, the 
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role of which increases with the oscillation amplitude. This kind of wave, called forced 
resonance standing wave, is very important for practical application because it allows to 
achieve very high levels of sound pressure with relatively small inputs of energy. In 
practice, the above resonance conditions can be realized either by fixing the sound radiator 
at a distance of L from the reflecting surface, or by adjusting the sound frequency in such a 
way to satisfy the relation (13).  
It is to be noted that, in practice, geometry of vessels can be more complicated than the 
above case of parallel surfaces. Therefore, the resonance conditions are often determined 
experimentally by measuring the sound pressure inside the vessel as a function of the sound 
frequency and vessel geometric parameters. 

2.3 Attenuation of sound waves.  

As has been mentioned, all the above phenomena are well described in the framework of 

linear acoustics without considering any influence of the surrounding medium on wave 

propagation. Actually, as a sound wave is propagated through a medium, its intensity is 

attenuated through a number of mechanisms. As a matter of fact, the wave attenuation is 

the main reason of non-zero net mass flux that is, in turn, a cause of the mass transfer in 

high-intense sound wave. 
The attenuation mechanisms include scattering and dissipation. Scattering refers to the 
reflection or refraction of sound waves when they impinge on an obstacle with dimension 
close to or less than the sound wavelength. Here, by an obstacle is meant any foreign 
substance on the second phase, for instance particulate, acoustic impedance of which differs 
greatly from that of the surrounding medium. Despite the fact that mechanism of scattering 
is very complicated, different theoretical considerations and experimental observations 
suggest similar relationships between the intensity of scattering and three key parameters: 
sound frequency, f, obstacle dimension, d and its mass fraction, Co. Thus, Landau and 
Lifshits (Landau & Lifshits,1986) derived a formula which suggests that the intensity of 
scattering,Is is proportional to the sixth power of d and fourth power of f for the case of rigid 
particles suspended in a gas. The reported dependences of Is on Co are linear for both the 
gaseous (Temkin, 1998) and liquid mediums (Carlson & Martinsson, 2002). Therefore, the 
intensity of scattering becomes significant only at higher frequencies, generally in the MHz 
range and/or at larger volume fractions of particulates. Since the commonly used frequency 
ranges in the airborne sonoprocessing do not exceed several tens kHz and because the 
fraction of particles, which can present in gas phases, is rather small, influence of scattering 
on the wave propagation will be neglected in the present discussion. However, it is to be 
noted that the scattering is of fundamental importance in considering the behavior of the 
particles themselves. 
Sound energy dissipation, or absorption, is assumed to be the main cause of sound intensity 

attenuation in most of the applications considered in the present chapter. Generally, there 

are two main mechanisms of sound energy absorption in fluids. These are viscous 

dissipation, that occurs due to the normal and shear stresses induced in fluids on sound 

wave propagation, and heat conduction, that results from non-adiabatic nature of heat 

transfer during compression and rarefaction cycles in sound wave. Both these mechanism 

contribute the sound energy dissipation that can be expressed quantitatively in terms of the 

absorption coefficient, α, that is the sum of the viscosity-related term, αV, and heat 

conduction-related term, αT. For low-amplitude oscillations, α is expressed by Eq.(14) 
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ω ωα α α η η κ
ρ ρ

⎛ ⎞⎛ ⎞′= + = + + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (14) 

where ω = 2πf, η is the shear viscosity, η’ is the bulk viscosity, κ is the thermal conductivity, 

CV and CP are the specific heats at constant volume and pressure. In this case, attenuation of 

sound intensity due to absorption follows the exponential law according to Eq.(15).  

 
2 x

x oJ J e α−=  (15) 

where J0 and Jx are the intensities of sound waves at two points spaced each other by a 

distance of x in the direction of wave propagation. As readily seen from Eq.(14), energy 

absorption varies in proportion to the square of the frequency, f.  

Attenuation of high-amplitude sound oscillations occurs more vigorously than that of low-

amplitude oscillations. The stronger attenuation is associated with the conversion of a part 

of initial sinusoidal wave into the energy of arising high-frequency harmonics, rather than 

with absorption energy. Therefore, the attenuation coefficient of high-amplitude sound 

wave can exceed the absorption coefficient of low-amplitude sound wave by two orders of 

magnitude. There are also the other reasons but their detailed consideration is beyond the 

scope of this chapter. The relevant information on this topic can be found in books 

(Abramov, 1998; Hamilton & Blackstock, 1998).  

2.4 Acoustic streaming.  
The sound energy attenuation is responsible for a number of non-linear effects which serve 
as the basis for many ultrasonically based technologies. The main acoustic nonlinear effects 
arising in gas-phase systems are acoustic streaming, forced vorticity, and radiation pressure. 
 There is a great body of literature devoded to investigations of the above effects. Detailed 

discussion on the results of these investigations can be found in a variety of books,e.g.( 

Rayleigh, 1945; Mason & Thurston, 1965; Hamilton & Blackstock, 1998; Lighthill, 2001) and 

reviews,e.g (Makarov & Ochmann, 1996,1997; Leighton, 2004). This section briefly outlines 

the acoustic streaming which is of primary importance in understanding the matter 

presented in the following sections. 

Acoustic streaming is the steady flow that is generated in a fluid medium due to momentum 

transfer associated with the attenuation of a sound wave. The physical origin of acoustic 

streaming was best explained by Lighthill (Lighthill, 1978). Briefly, the explanation is as 

follows. Propagation of a sound wave causes fluctuations of the medium fluid particles at 

certain time scale and amplitude which are governed by the wave frequency and intensity. 

By applying the Reynolds stress approach to express the mean momentum flux due to the 

wave in the same manner as it does for turbuent pulsations, one can derive Reynolds 

stress,τ, in a sound wave as  

 i ju uτ ρ=  (16) 

where ui,j are the fluctiating velocity in the sound wave. The bar signifies a mean value. The 

wave attenuation results in a spatial variaton of the Reynolds stress that can cause a non-

zero net force exerted on the fluid. This force is capable of generating a steady flow termed 

acoustic streaming. 
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It is generally recognized that there three types of acoustic streamings. They differ each 

other by the spatial scale on which they can spread. The acoustic streaming of the first type 

is generated in an unbounded body of fluid. In this case, the streaming is a steady flow 

directed away from the sonic generator in the direction of wave oscillations. As its scale can 

be larger compared to the sound wavelength, it is called large-scale streaming. It is generally 

agreed that the large-scale streaming originates from the sound energy absorption briefly 

considered above. Under some conditions, the velocity of this type of streaming can be as 

high as several m/s (Lighthill, 1978).  

The acoustic streamings of the second and third types are generated in the presence of solid 

obstacles (walls, particulates, etc.) placed in an acoustic field. In this case, the attenuation 

occurs because of frictional dissipation between an oscillating gas volumes and solid surface 

within the resulting boundary layer. The acoustic streaming of the second type is generated 

outside the boundaly layer. The scale of such an outer streaming is much smaller than that 

of the first type, and is equal approximately to the wavelength. The acoustic streaming of 

the third type is called inner small-scale streaming because it is induced within the bounday 

layer, the dimension of which is much smaller than wavelength. The effective thickness of 

the boundaly layer is about 5 times larger than that of acoustic boundaly layer which is 

given by the following expression 
 

  δ = (ν/ω)0.5 (17) 
 

where ν is the kinematic viscosity of fluid, ω is the angular frequency of sound, ω=2πf 

(Zarembo, 1971).  

3. Combustion and environmental control applications.  

3.1 Mechanisms of mass transfer enhancements 

As pointed in the above section, application of acoustic oscillations can lead to the 

occurrence of several phenomena responsible for improvements in the gas-phase mass 

transfer characteristics. The persistence of the acoustic effects and their magnitude should 

vary from process to process depending on the gas flow pattern inside the vessel, the 

presence of solid or liquid particulates as well as their size, temperature and so on. 

Numerous studies have shown that when acoustic oscillations are imposed on 

homogeneous flames or gas jets, the mass transfer enhancement is achieved through an 

intensification of turbulent mixing and improvement in entrainment characteristics of gas 

flames and jets. When a process involves chemical reactions proceeding at the surfaces of 

particulate or bulk materials of another phase, both the turbulent mixing in the gas bulk and 

flow at the surfaces have been found to be important in enhancing the mass transfer.  

Experimental difficulties, encountered in high-temperature measurements, have motivated 

researchers to conduct cold model and numerical investigations. Other studies, although not 

focusing specifically on high temperature processes, have attempted to clarify the effects of 

acoustic oscillations on mass and heat transfer at room temperatures. The results of both 

groups of studies are of great importance for elucidating the mechanisms of mass transfer 

enhancement. Of special interest are studies that examine the mass transfer at curved 

surfaces like spheres and cylinders.  
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In one of the earlier study (Larsen & Jensen, 1977), evaporation rate for single drops of 
distilled water was measured under sound pressure of 132~152 dB and frequency of 82~734 
Hz. The drops were suspended in dry air in upward motion and subjected to a horizontal 
standing wave sound field. The range of drop diameter was 0.8~2 mm. The authors used 
two dimensionless numbers, the drop diameter based Reynolds number, Re and the 
Strouhal number, S to correlate them with the experimentally determined Sherwood 
numbers, Sh defined on the basis of drop diameter, d. The expressions for the dimensionless 
numbers are given below.  

 0Re
V d

ν
=  (18) 

 
0

d
S

ξ
=  (19) 

      Mk d
Sh

D
=  (20) 

Here, kM is mass transfer coefficient, D is the diffusion coefficient. The other notations are 

the same as above. The Strouhal number is a dimensionless number describing the 

oscillation flow around the sphere. At S < 1, Sherwood number was found to be increased 

proportionally to the 0.75 power of Re/S. Since, if V0 is kept constant, the displacement ξ 

should increase with a decrease in frequency ω, these data suggest that lower frequencies 

are preferable for the mass transfer enhancement at S < 1. However, as S > 1, Sherwood 

number increased only with the 0.2 power of ReS2. This suggests that higher frequencies are 

more desirable to enhance mass transfer rate at S > 1. The perhaps most interesting finding 

of this work was that flow around the drops at S < 1 and S > 1 is different. In the first case, 

gas flows completely around the sphere during a half-cycle of acoustic oscillation. If Re is 

high enough, the gas oscillations result in separation of boundary layer followed by buildup 

and shedding of eddy structures downstream of the separation points. It is assumed that 

these phenomena are the main cause of the mass and transfer enhancement at S < 1. On the 

other hand, when S > 1, the gas particles perform relatively small oscillations around drop 

causing an acoustic streaming to occur at its surface.  

In one of the recent investigations (Kawahara et al.,2000), a small glass sphere 

(diam.1.6mm), covered by 0.4 to 0.6 mm thick layers of camphor or naphthalene, was 

positioned at a pressure node of a ultrasonic standing wave field to determine a distribution 

of the mass transfer rate over the sphere surface. Since the experiments were performed 

under a very high frequency of 58 kHz, a strong acoustic streaming was generated around 

the sphere that was found to be the main reason of the mass transfer enhancement. It was 

shown that the mass transfer due to the acoustic streaming is a strong function of the 

location on the surface being a maximum at the equator and a minimum at the poles. The 

authors derived the following expression to calculate the averaged Sherwood number, Sh as 

a function of the r.m.s. amplitude of gas particle velocity, Brms, ω and D.  

 1.336Re; Re rmsB
Sh

Dω
= =  (21) 
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The other notations are the same as above. Notice that in their study the Reynolds number, 
Re is based on the acoustic streaming velocity. Here the Strouhal number, when defined by 
Eq.(19) , can be estimated to be much more than 1.  
In another experimental study (Sung et al., 1994), the authors investigated mass transfer 
from a circular cylinder of 25 mm in diameter positioned in a steady flow on which acoustic 
pulsations were superimposed. The cylinder surface was precoated by a thin layer of 
naphthalene. Contrary to the above mentioned paper (Larsen & Jensen, 1977), in this study 
the directions of the steady and oscillatory flows were parallel to each other. The pulsation 
frequency was ranged from 10 to 40 Hz. The main conclusion from their results is that the 
enhancement of mass transfer rate is more effective at larger pulsation amplitudes and 
higher frequencies due the vortex shedding. Estimates show that the Strouhal number in 
these experiments is more then 1.  
A detailed analysis, both experimental and theoretical, of evaporation from acoustically 
levitated droplets of various liquids was provided by Yarin et al. (Yarin et al., 1999). In their 
investigation, the frequency was 56 kHz. Therefore, the Strouhal number was assumed to be 
much more than unit. By plotting the Sherwood numbers against the Reynolds numbers, the 
authors showed that all data fall well on a straight line that is in agreement with their 
theoretical predictions. Both the Sherwood and Reynolds numbers were defined according 
to Eqs.(21). It was concluded that the effect of the acoustic field on droplet evaporation 
appears to be related to the acoustic streaming and squeezing of the drop by the acoustic 
radiation pressure. 
A great body of experimental studies has been performed regarding the effects of acoustic 
oscillations on heat transfer from various geometries and surfaces. Taking into consideration 
the analogy between heat and mass transfers, a brief mention of some results of these 
studies will be made here. As before, our main interest is to clarify the effects of sound 
intensity and frequency on the heat/mass transfer characteristics.  
One of the earlier study (Fand & Cheng, 1962) examined the influence of sound on heat 
transfer from a circular cylinder in the presence of a mean crossflow. In the experiments, air 
was blown onto the surface of the cylinder having a diameter of 3/4 inch. Simultaneously, 
the cylinder surface was exposed to high-intense acoustic oscillations at two frequencies, 

1100 and 1500 Hz. The experimental data were presented as plots of α=Nuv/Nu0 against the 
crossflow Reynolds number, Recf based on the cylinder diameter and crossflow velocity. 
Here, Nuv and Nu0 are the Nusselt numbers measured in the absence and presence of 
acoustic oscillations, respectively. They are given as follows 

 0
0

v
v

h d h d
Nu Nu

λ λ
= =  (22) 

where hv and h0 are the heat transfer coefficients from the cylinder in the absence and 

presence of acoustic oscillations, respectively, d is the cylinder diameter and λ is the thermal 
conductivity. Although the authors did not mention the Strouhal number, S in their paper, 
using the equations of the above sections, one can estimate S to be much more than 1. 
The results of this study showed the following. At Recf about 1000, which was the lowest 

Recf examined, a 20 per cent augmentation of α was obtained at a SPL of 146 dB regardless 
of frequency. The augmentation mechanism was assumed to be an interaction similar to 

thermoacoustic streaming. As Recf increased to about 5000, α was reduced to 1. Then, α 
increased again with Recf reaching a maximum value at Recf = 8000~9500 on frequency of 
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1100 Hz and at Recf = 9000~11000 on frequency of 1500 Hz. In these ranges of Recf, the 
increase in heat transfer appears to be the result of two different interactions: (1) a resonance 
interaction between the acoustic oscillations and the vortices shed from the cylinder; (2) a 
modification of the flow in the laminar boundary layer on the upstream portion of the 

cylinder similar to the effect of free stream turbulence. Here, the augmentation of α was 
more pronounced for the case of lower frequency. 
In a more recent heat transfer study (Gopinath & Harder, 2000), a preheated 5-mm cylinder 
was exposed to acoustically imposed low-amplitude zero-mean oscillatory flows to 
investigate the mechanisms of heat transfer from the cylinder at frequencies of 585 to 1213 
Hz. Two distinct flow regimes were found to be important. The first one is the attached flow 
regime which show the expected square root dependence of the Nusselt number, Nu on the 
appropriate Reynolds number, Re. The second regime is predicted to be an unstable regime 
in which vortex shedding is prevalent, contributing to higher transfer rates so that the Nu 
number becomes proportional to Re0.75. These findings are in good agreement with those 
reported in the above mass transfer studies.  
The similar relationship between Nu and Re results has been obtained in another recent 
study (Uhlenwinkel et al., 2000) on much higher frequencies, 10 and 20 kHz. The heat 
transfer rate was determined by using cylindrical hot-film/wire probes positioned in the 
acoustic field of strong standing waves. The Nusselt number was found to increase as the 
0.65 power of the Reynolds numbers. The experiments revealed a 25-fold increase in the 
heat transfer rate compared to that of free convection regardless of frequency in the range 
examined. Because the authors used rather high displacement amplitudes of sound waves 
and very small probes, the Strouhal number in their experiments should be more than unit 
suggesting the above- mentioned vortex formation and shedding. This is assumed to be the 
main reason of why the acoustic effect was so great in this study.   
The above results can be summarized as follows. The amplitude of acoustic oscillations 
plays a crucial role in the enhancement of mass transfer from objects like particles and 
cylinders. That was the main reason why most of the above-mentioned effects were 
observed under the resonance acoustic oscillations. The mass transfer coefficient is increased 
in proportional to the 0.5~1.0 power of the velocity amplitude with a tendency for the power 
to become close to 0.5 at larger Strouhal numbers (acoustic streaming controlling regime) 
and to increase up to 1 at smaller Strouhal numbers (vortex shedding controlling regime). 
The effect of frequency was less pronounced. Moreover, there is a lack of agreement in the 
literature on the sign of this effect. There are reports showing increase, decrease and no 
effect of frequency on the mass- heat transfer rates.  
It is to be noted that all the above studies dealt with the objects which were fixed in position 
in the acoustic fields. In actual practice, particles, no matter whether they are purposely 
added or generated during a process, can be entrained in the flow of the surrounding gas. 
Moreover, when the airborne particles are exposed to an acoustic field, they can be forced to 
oscillate on the same frequency as the acoustic field. Both types of particle motion can affect 
the mass transfer rate remarkably. However, because of the great experimental difficulties, 
to the best of our knowledge there have not been any experimental studies in this area.  

3.2 Improvements in fuel combustion efficiency  

These above-mentioned and other findings have motivated extensive research on the 
application of acoustic oscillations to improve the process performances in combustion, 
environmental and waste treatment technologies. The results obtained have strongly 
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suggested that acoustic oscillations offer very attractive possibilities for designing novel 
processes with improved combustion efficiency and low pollutant emission. These findings 
would be of considerable interest for experts dealing with such energy intensive industrial 
processes as metallurgy, material recycling and waste treatment. Below is a brief survey of 
some recent results presenting the acoustic effects on the combustion efficiency and 
pollutant emission.  
The results of one of the first study in this field (Kumagai & Isoda, 1955) revealed that an 
imposition of sound vibrations on a steady air flow yields about 15% augmentation of a 
single fuel droplet burning rate compared to the conventional one. The sound effects was 
found to be independent of the vibration frequency. More recently, Blaszczyk (Blaszczyk, 
1991) investigated combustion of acoustically distributed fuel droplets under various 
frequencies. The conclusion was that about 14% increase in fuel combustion rate can be 
achieved at the 120~300 Hz frequency range despite the sound intensity was relatively low, 
100~115 dB.  
The influence of acoustic field on the evaporation/combustion rates of a kerosene single fuel 
droplet was investigated experimentally under standing wave conditions (Saito et al., 1994). 
The authors concluded that the rate increased by 2~3 times when the droplet was fixed at a 
velocity antinode position of the wave at frequencies < 100 Hz and relatively low sound 
pressure levels of 100 ~110 dB.  
Effects of acoustic oscillations on evaporation rate of methanol droplets (diam.50~150 μm) at 
room temperatures were investigated in another study (Sujith et al., 2000). The authors 
found that a 100% increase in the evaporation rate can be obtained only in the presence of a 
high intense acoustic field at a SPL of 160 dB. There was a weak tendency toward an 
increase of the effect with frequency ranging from 410 to 1240 Hz. It is to be note that most 
of the above data support the mechanism in which the obtained enhancement of liquid fuel 
combustion occurs due to a better mixing between the fuel vapor and oxidant at the droplet 
interface.   
Approximatelly the same effects of acoustics were found on the combustion of solid fuel 
particles. Yavuzkurt et al. (Yavuzkurt et.al., 1991a) investigated the effect of an acoustic field 
on the combustion of coal particles in a flame burner by injecting the particles of 20~70 μm 
into the burning gas stream and by monitoring the light intensity emitted from the flame. 
Averaged values of light intensity were 2.5~3.5 times higher at SPL of 145~150 dB and 
frequency of 2000 Hz compared to those without sound application. Additionally, the 
authors performed a numerical simulation of combustion phenomena of 100-μm coal 
particles, the results of which revealed 15.7 and 30.2 percent decreases in the char burn-out 
time at frequency of 2000 Hz and sound intensity levels of 160 and 170 dB, respectively 
(Yavuzkurt et.al., 1991b). The main reason for the char burning enhancement is that the 
high-intensity acoustic field induces an oscillating slip velocity over the coal particles which 
augments the heat and mass transfer rates at the particle surface.  
Four loudspeakers were used to apply an acoustic field to 125-μm black liquor solid 
particles, injected into a reactor tube at a gas temperature of 550OC (Koepke & Zhu, 1998). 
The intensity of the field was 151 dB, frequency was ranged from 300 to 1000 Hz. The results 
revealed a 10 percent reduction of char yield compared with that obtained without acoustic 
field application. Besides, significantly increased yields of product gases CO and CO2 were 
also observed with acoustic treatment. On the whole, the results revealed that the acoustic 
effects were more pronounced for the initial period of particle heat-up. The above two 
works (Yavuzkurt et.al., 1991a; Koepke & Zhu, 1998) also include brief overviews of earlier 
publications on the acoustically improved fuel combustion.  
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3.3 Reduction of combustion-related pollutant emission 

In parallel with the combustion enhancement, forced acoustic oscillations provide a way to 
significantly reduce emission of such pollutions as NOx,CO and soot particulates. Especially, 
a large body of literature has been published on suppressing the NOx formation due to 
acoustically or mechanically imposed oscillations. Good reviews on this topic can be found 
in the relevant literature, for example (Hardalupas & Selbach, 2002; Mcquay et al., 1998; 
Delabroy et al., 1996). NOx reduction level was found to be strongly dependent on the 
experimental conditions. The reported values are ranged from 100%( Delabroy et al.,1996) to 
15% (Keller et al.,1994) decrease in NOx emission rate as compared with that for steady flow 
conditions. The suppression mechanism has been well established. A sound wave, being 
propagated through a gas, can be thought as turbulent flow fluctuations of certain scale and 
amplitude which are governed by the wave frequency and intensity, respectively. Thus, 
imposing acoustic oscillations on flame front enhances the turbulent mixing resulting in 
reduced peak temperatures at the front that, in turn, is the reason of reduced emission of 
thermal NOx. When acoustic field is imposed upon flame containing liquid/solid particles, 
oscillations of gas around the particles provide an additional mechanism of the peak 
temperature reduction due to convection. One more reason of low NOx emission is that high 
amplitude acoustic oscillations induce a strong recirculation of flue gas inside the 
combustion chamber. This results in entrainment of the already formed NOx into the flame 
zone where NOx is reduced by hydrocarbon radicals homogeneously or heterogeneously on 
the surface of carbonaceous solid particles.  
The same mechanism causes lowering of emission of CO and other gaseous pollutants 
although the literature on this subject is much less than that on the NOx emission control. 
For example, a large decrease in NO and CO emissions was observed in the presence of 
acoustic oscillations imposed to an ethanol flame in a Rujke tube pulse combustor (Mcquay 
et al., 1998). Taking concentration values at steady conditions as a reference, the decreases 
were 52 ~100% for NO and 53~90% for CO depending on SPL (136 to 146 dB), frequency(80 
to 240 Hz) and excess air (10 to 50%). Another example is the work (Keller et al., 1994) the 
authors of which obtained emissions levels of a premixed methane-air flame below 5 ppm 
for NOx and CO.  
Few studies examined the effect of forced acoustics on soot emission from different types of 
flame: a spray ethanol flame of a Rijke tube combustor (Mcquay et al., 1998), acetylene (Saito 
et al.,1998) and methane diffusion flames (Demare & Baillot, 2004; Hertzberg, 1997). The 
oscillation frequencies were also different: 200 Hz (Demare & Baillot, 2004), 40~240 Hz 
(Mcquay et al., 1998), < 100 Hz (Saito et al., 1998) and 40~1000 Hz (Hertzberg, 1997). In spite 
of such different conditions, all the authors reported full disappearance of soot emission 
from the flames with acoustic excitation. The results of these studies suggested that acoustic 
oscillations enhance the mixing of fuel and ambient gas that causes a re-oxidation of soot 
particles at the flame zone.  

4. Pyrometallurgical applications 

Another promising area of airborne sonoprocessing is pyrometallurgy. As has been 
mentioned in the introductory section, several important chemical reactions in 
pyrometallurgical processes occur at the interface between gas and molten bath under gas-
phase mass-transfer control. An important feature of these processes is that many of them 
use a high speed gas jet to promote the chemical reactions between the gas and molten 
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metal. Taken together, these features provide the basis for designing a low-cost and high-
performance method of sonoprocessing.  
The first attempt to use the energy of sound waves for enhancing the rates of 
pyrometallurgical processes was made in the former Soviet Union in the steelmaking 
industry. High-intense acoustic oscillations were applied to a basic oxygen converter, that is 
the most powerful and effective steelmaking process. For a better understanding of the 
following discussion, the main features of converter process will be explained in more 
details.  
A schematic diagram of a converter process is shown in Figure 3. Iron-based solid scrap and 
molten pig iron containing 4%C, 0.2~0.8%Si, minor amount of P and S, are charged into a 
barrel-shaped vessel. Capacity of the vessel can be as large as 400 tons. Fluxes (burnt lime or 
dolomite) are also fed into the vessel to form slag, which absorbs impurities of P and S from 
scrap and iron. A supersonic jet of pure oxygen (1) is blown onto the molten bath (2) 
through a water-cooled oxygen lance (3) to reduce the content of carbon, dissolved in the 
molten metal, to a level of 0.3~0.6% depending on steel grade. For a high efficiency of the 
process, the oxygen flow rate must be very high, several normal cubic meters per minute per 
ton of steel. Impingement of such a high-speed jet upon the molten metal bath is attended 
by deformation of its surface producing a pulsating crater in the molten metal and causing 
splashing of the metal at the crater zone as schematically shown in Fig. 3. Typically, the 
process takes about 20 minutes. 
 

 

Fig. 3. A schematic representation of converter process. 

The oxidation of carbon, which is often termed decarburization, is the main reaction in 
converter process. The decarburization reaction can proceed in two possible ways. The first 
one is the direct oxidation by gaseous oxygen according to 

 [C] + 0.5O2 = CO (23) 

The second way is the indirect oxidation via formation of iron oxide according to 

 [Fe] + 0.5O2 = (FeO) (24) 

 (FeO) + [C] = [Fe] + CO (25)  

Here, parentheses and square brackets denote matters dissolved in the slag and metal, 
respectively. The reactions (23) occurs under the gas-phase mass transfer control. The 
reaction (24) is controlled by mass transfer of oxygen in both the gas and liquid phases. The 
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decarburization reaction occurs with a vigorous evolution of CO gas. As a results the slag 
is foamed and the lance tip becomes submerged into the metal-slag emulsion. 
In an attempt to enhance the gas-phase mass transfer rate, an acoustically assisted converter 
process has been tested. In the process, a pneumatic sonic generator of the Hartmann type 
was built in the tip of a oxygen lance of a 10-t pilot converter (Blinov, 1991; Blinov & 
Komarov, 1994). Hence, the sound waves (4) propagated to the molten bath through the gas 
phase inside the converter as shown in Fig. 3. Design and operating principle of the 
Hartmann generators was briefly described in our previous review (Komarov, 2005). For the 
more details, the reader is referred to the earlier publications (Borisov, 1967; Blinov, 1991). 
The working frequency of sonic generator was 10 kHz. The intensity measured at a distance 
of 1 m from the generator was 150 dB. 
 

 

Fig. 4. Dependence of decarburization rate on carbon content (a) and relationship between 
actual and equilibrium content of phosphorus in the melt after completing the blowing 
operation. 

Figure 4(a) presents the decarburization rate as a function of carbon content for two oxygen 

flow rates, 4(1,2) and 7(3,4) Nm3/min⋅t and two oxygen lances: 1,2 - conventional lance, 3,4 - 

acoustic lance. The shape of the curves is typical for the decarburization rate in converter 

process: at the beginning, the rate increased as the carbon content reduced, passed through a 

maximum and then decreased. As can be seen from this figure, there is a significant effect of 

the acoustic oscillations on the decarburization rate. This effect seems to be stronger in the 

intermediate stage of the process while the carbon content is ranged from 0.5 to 2.5%. In the 

first and final stages of oxygen blowing operation, the effect of acoustic oscillations becomes 

less pronounced. The average enhancement of decarburization rate due to the acoustic lance 

application was about 40% under the given test conditions.   

It is interesting to note that, in parallel with the enhancement in decarburization rate, there 

also has been a rise in the efficiency of phosphorus removal from the metal as well when the 

acoustic oscillations are applied. This reaction can be expressed as follows (Oeters, 1994) 
 

 [P] + 2.5(FeO)+1.5(CaO) = 0.5Ca3(PO4)2 + 2.5[Fe] (26) 
 

The controlling mechanism of this reaction is more complicated compared to the 
decarburization reaction, however, it is well known that higher concentrations of FeO in 
slag is promote the reaction (26). Figure 4(b) is a plot of actual phosphorus concentration, 
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[P]a versus equilibrium one, [P]e for conventional and acoustically assisted process. The 
values of [P]a were measured by analyzing metal samples taken at the end of oxygen blow. 
The equilibrium values were determined according to the theory of regular solution based 
on the measurements of slag composition at the final stage of the blowing operation (Ban-
Ya, 1993). Figure 4(b) shows that equilibrium for the phosphorous distribution between the 
metal and slag is not attained in the conventional process. This implies that a considerable 
amount of phosphorus remains in the metal. However, the use of the acoustic lance for 
blowing operation makes the phosphorous distribution closer to the equilibrium state, as 
can be seen from Fig. 4(b). Thus, acoustic oscillations were found to be capable of improving 
the efficiency of both the decarburization and phosphorus removal reactions.          
To elucidate possible mechanisms of these improvements, two sets of laboratory scale 
experiments have been performed. In the first one, an effect of acoustic oscillations on the 
generation of drops in the above-mentioned crater zone was investigated by using cold 
models. The second set was aimed at clarifying the gas-phase mass transfer mechanism 
when the free surface of a liquid is exposed to acoustic oscillations. Below is some details on 
the experimental procedure and results.  

4.1 Generation of drops 

It has been known that the intensive drop formation occurs when a gas jet impacts with the 
gas-liquid interface. To investigate the drop formation a number of lances was designed to 
perform cold model experiments taking into consideration of the acoustic, aerodynamic and 
hydrodynamic similarity. In the experiments, the lances were installed vertically at a 0.1-m 
distance from the free surface of a 0.1-m depth water bath filled in a cylindrical vessel of 0.28 
m in inner diameter. Air was blown onto the bath surface to cause a crater formation and 
drop generation. The drops were detached from the crater surface and carried away from 
the crater by the gas flow towards the vessel wall where they were trapped by a helical 
spout. Acoustic oscillations were generated using a specially designed small-scale 
pneumatic sonic generator of the Hartmann type operating at a frequency of 10 kHz. The 
generator was positioned above the water bath surface at such a distance that to obtain 
approximately the same sound pressure level at the crater as that during the pilot converter 
tests. Magnitude and frequency of turbulent oscillations was measured by using hot wire 
anemometry. The sensor was fixed close to the gas-liquid interface at the places free of the 
drop generation. Besides, a small hydrophone was used to measure frequency of oscillations 
generated in the water bath near the crater. The hydrophone was fixed in the water bath at a 
depth of 5 cm from the undisturbed free surface. More details on the experimental setup, 
procedure and results can be found in the following references (Blinov, 1991; Blinov & 
Komarov, 1994).  Below is a brief description of the experimental results. 
Magnitude of turbulent oscillations, εt was in direct proportion to the gas jet speed. The 

generation of drops began as εt reached a threshold value, irrespective of whether the 
acoustic oscillations are applied or not. There was a tendency for the threshold value to 
slightly reduce with the sound wave application. In either case, once begun, the drop 

generation continues with the rate rising proportionally to εt. On the whole, the application 
of acoustic oscillations caused the drop generation rate to increase by 20~50% depending on 
the lance design.  
One possible explanation for the drop generation mechanism and the acoustic effect on it is 
as follows. A gas flow reflected from the interface enhances the horizontal component of 
flow velocity in the liquid near the impact zone. As the gas flow velocity is very high, a high 
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level of turbulent oscillations are generated in the flow. The turbulent oscillations disturb 
the gas-liquid interface that results in the formation of capillary waves. The separation of a 
drop happens at the instant at which the wave amplitude exceeds a threshold value, Ac. This 
is schematically shown in Figure 5, where A denotes the amplitude of the first largest crest 

of the wave. This amplitude is the following function of kinematic viscosity, ν and wave 

length, λ (Tal-Figiel, 1990) 
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=  (27) 

Note that here f is the frequency of oscillations generated in water. 
The drop formation becomes possible at a threshold amplitude of capillary wave, Ac 

 (4 ~ 7)CA A≥  (28) 

The length of a capillary wave can be found from the following equation (Tal-Figiel, 1990) 
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where σ is the surface tension of liquid. Substituting this expression into formula (27) 
Eq.(30) can be obtained. 
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The frequency, f was measured by means of the above-mentioned hydrophone.  
In the absence of acoustic oscillations, f varied over a wide spectrum from 12.5 to 230 Hz, 
with the fundamental frequency ranging from 135 to 200 Hz. It was found that the 
fundamental frequency increases twice and more under the application of acoustic 
oscillations. This phenomenon is assumed to be the main reason for the observed 
enhancement in drop generation rate due to acoustic oscillations. 
 

 

Fig. 5. A shematical representation of gas jet impact. 
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4.2 Mechanism of acoustically enhanced mass transfer 
This section presents results of a cold model study concerning the possible effects of acoustic 
oscillations on the mass transfer characteristics with special emphasis on the influences of 
the oscillation frequency. In the experiments, the rates of the following gas-liquid absorption 
reactions were measured under different experimental conditions 

 2NaOH(aq) + CO2 = Na 2CO3(aq) + H2O (31) 

 2Na2SO3(aq) + O2= 2Na2SO4(aq) (32) 

 O2 = O2(aq) (33) 

In these equations, aq denotes aqueous solution. A distinguishing characteristic of these 
reaction is that they proceed under different controlling regimes. The controlling 
mechanisms of these reactions were examined experimentally. The rate of the first reaction 
was found to be controlled by the interface mass transfer in both the liquid and gas phases. 
The second reaction proceeded under mixed control, the chemical reaction and interface 
gas-phase mass transfer. The rate of the third reaction, physical absorption of O2 by water, 
was under the interface liquid-phase mass transfer control.  
Figure 6 gives some details on the experimental setup used. This figure was reproduced 
from our previous paper (Komarov et al., 2007). The above-mentioned aqueous solutions or 
distilled water were filled into a cylindrical acrylic vessel 0.28 m in diameter and 0.47 m in 
height covered with an acrylic lid. The depth of the liquid bath was 0.2 m through all 
experiments. Gas, CO2-N2 mixture (reaction 31), air-N2 mixture (reaction 32) or pure oxygen 
(reaction 33), was blown onto the liquid bath surface through a vertical tube (I.D.3 mm) 
fixed at the lid so that the distances between the axis lines of vessel and tube, and between 
the tube end and bath free surface was 0.02 and 0.13 m, respectively. The liquid bath was 
agitated by a 6 blade rotary impeller. The impeller was installed vertically at the vessel axis 
line. The flow rates of blown gas and the rotation speed of impeller were relatively low 
throughout these experiments. Hence, no drop generation ocurred and the area of the free 
surface of liquids was assumed to remain unchangeable regardless of the experimental 
conditions. 
 

 

Fig. 6. Experimental setup for investigation of the acoustic effects on the mass transfer 
characteristics. 
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Sound waves were generated by using a powerful loudspeaker with the following 
characteristics: frequency range 70 ~ 18000 Hz, maximum input electrical power 50 W. The 
loudspeaker was fixed at the vessel lid so that the its vibrating diaphragm was inclined to 
the liquid free surface at an angle of about 27° as shown in Fig.6. Two broken lines show 
approximately the sound beam boundaries. The probe shown in the figure was used in 
order to measure the rates of reactions (31), pH probe, and (33), DO probe. Details on the 
measurement procedure can be found in our earlier publication (Komarov et al., 2007). 
Exposing the gas-liquid interfaces to sound waves resulted in enhancement of the rates of all 
the above reactions, however the effect was different depending on the sound frequency, 
sound intensity, conditions of blowing gas and impeller rotation speed. For the reaction of 
CO2 absorption, there was a tendency for the decrease in effect of acoustic oscillations as the 
velocity of blown gas increases and the rotation speed of impeller decreases. At the same gas 
velocity and rotation speed, the effect of sound for this reaction at a higher frequency was 
greater than that at a lower one. The largest enhancement in the mass transfer coefficient 
was 1.8 times at frequency of 15 kHz and gas velocity of 5 m/s. However, the frequency 
influence was rather complicated. There were frequencies at which the mass transfer 
coefficient peaked. Additional measurements of sound pressure level in the working space 
showed that the peaks originated from resonance phenomena occurring inside the vessel at 
certain frequencies.  
The rate of Na2SO3 absorption was also enhanced with frequency. The measurements were 
performed at those frequencies where no resonance phenomena was observed. A 70% 
augmentation in the absorption rate was obtained within the frequency range of 0~7 kHz at 
a relatively high velocity of blowing gas, Ug =20 m/s. Therefore, the effect of sound 
application on this reaction appears to be stronger than that on the CO2 absorption reaction.  
The effect of acoustic oscillations on reaction (33) was significantly smaller as compared to 
those of reactions (31) and (32). The mass transfer coefficient rose appriximately by 20% as 
the oscillation frequency increased from 0 to 3 kHz. Notice that such a small effect was 
obtained at the velocity of blowing gas as low as 2.4 m/s. 
Therefore, these three reactions can be arranged in order of increasing effect of sound on the 
reaction rates in the following way: physical absorption of oxygen by water, CO2 absorption 
by NaOH aqueous solution and oxygen absorption by Na2SO3 aqueous solution. Thus, the 
above experimental results suggests definitely that the main reason of the increase in the 
absorption rates is an acoustically enhanced gas-phase mass transfer. 
An analogy between turbulent and acoustic oscillations is thought to provide the best 
explanation for the mechanisms causing the observed mass transfer enhancement. Lighthill 
(Lighthill, 2001) was one of the firsts who noticed this analogy. In turbulent flows, fluid 
particles perform oscillations the amplitude and frequency of which are governed mainly by 
the flow velocity and the surrounding geometry. Propagation of a sound wave in a fluid 
medium causes fluctuations of the fluid particles too, with the only difference that they are 
oscillated at frequencies and amplitudes which are governed by the sound frequency and 
intensity (or pressure), respectively. This was confirmed by the following measurement 
results. Figure 7 shows the results of Fourier analysis of turbulent fluctuations generated 
near the air-water free surface exposed to a sound wave at a frequency of 880 Hz. This 
figure was reproduced from our previous paper (Komarov et al., 2007). The results make it 
clear that the fluctuation at the frequency of sound has much higher amplitude than 
fluctuations at the other frequencies. The measurements were performed at a distance of 2 
mm above the surface using a highly sensitive hot-wire anemometry. 
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Fig. 7. Fourier analysis results of fluctuations imposed by a sound wave 

Based on the above analogy, an attempt was made to explain the effects of sound frequency 
and intensity using relationships obtained for turbulent fluctuations. Omitting the 
intermediate transformations, the final expression for mass transfer coefficient, k can be 
written as follows 

 

2 1 1

3 2 4
ak Sc V ω

−
∝  (34) 

where Sc is the Shmidt number (=ν/D), ν and D is the kinematic viscosity and diffusion 
coefficient, respectively, Va is the average amplitude of velocity oscillations in acoustic 

boundary layer and ω is the angular frequency (=2πf). The thickness of acoustic boundary 

layer,δ is determined from Eq.(17). The underlying assumptions in deriving expression (34) 
were that, firstly, a viscous dissipation of acoustic oscillations occurs within the acoustic 
layer; secondly, the dissipation mechanism in gas phases at the gas-liquid interface is the 
same as that at the gas-solid interface. Readers interested in more detals are referred to the 
above-cited paper (Komarov et al., 2007) 
Thus, expression (34) shows that the gas-phase mass transfer coefficient should increase 
with the one-forth power of the sound frequency. When this prediction is compared with 
the above experimental results, it becomes clear that the experiments show a little weaker 
frequency dependence. For example, according to the experimental results, the absorption 
rates of CO2 and O2 increased by 1.36 and 1.44 times within frequency ranges of 3 ~15 kHz 
and 1~7 kHz, respectively. However, for these frequency ranges, relationship (34) predicts 
enhancement in k by 1.5 and 1.63 times, respectively. The reason of why the experiments 
show less enhancement effect as compared with the predictions is that the above two 
reactions are controlled by the gas-phase mass transfer rate only in part as it has been 
explained in the previous sections.  
Also, relationship (34) reveals that mass-transfer coefficient is proportional to the square 
root of oscillatory velocity amplitude, Va, that is considered to be a characteristic of sound 
field pressure. However, experimental verification of this prediction presents a considerable 
difficulty under the present experimental conditions. The reason is that, since sound waves 
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propagate inside the vessel, they experience multiple reflections from both the free surface 
of liquid and vessel wall that causes resonance-like phenomena. This results in appearance 
of the above-mentioned maximums of mass transfer coefficient at certain frequencies, and 
makes it difficult to measure the sound pressure at the free surface of water bath.  
As it has been briefly mentioned above, the effect of acoustic oscillations on mass transfer 
rate reduces with increasing the velocity of gas blown onto the free surface. This tendency is 
readily apparent from the finding that both the gas flows and sound waves produce 
turbulent oscillations at the gas-liquid interface. In high temperature processes, which use 
high velocity gas jets, the turbulence level in the gas phase should be very high. Under such 
conditions, the acoustic effects should be weak. Therefore, it would be interesting to 
estimate the threshold amplitudes of sound waves at which they are still effective in 
enhancing the gas-phase mass transfer for a given magnitude of the gas turbulent 
oscillations. 
These estimates were made by considering two types of turbulent diffusion coefficients at 
the gas-liquid interface: that which originates from natural turbulent fluctuations of high 
speed gas flow, Dt and that which results from imposed acoustic oscillations, Da. The 
expressions for these coefficients have been derived in the following form (Komarov et al., 
2007) 

 
3

20.4 t
t

v
D z

ρ
σ

=  (35) 

 2
00.8aD V kz=  (36) 

where ρ is the density of gas, σ is the surface tension of liquid, vt is the characteristic 
turbulent velocity, V0 is the amplitude of oscillation velocity, k is the wave number of sound 
wave and z is the distance from the liquid surface.  

By equating Dt with Da, one can obtain a threshold velocity amplitude of sound wave, *
0V  at 

which the effects of natural turbulence and acoustically imposed oscillations on the gas 
phase mass-transfer rate are equal. 
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This expression suggests the following. First, in high intensity turbulent flows, the sound 
waves should have very high oscillation amplitudes in order to be effective. Second, the 
threshold velocity amplitude decreases with increasing the sound frequency if the other 
parameters are fixed. Recall that the wave number is proportional to sound frequency as 
described in the section 2.1. 

Using Eq.(37), one can estimate *
0V  for conditions of the present cold model experiments 

and pilot converter tests. The estimate results are shown in Fig. 8 as plots of *
0V  versus vt for 

the cold model at frequencies of 1 (line 1) and 10 kHz (line 2), and for the pilot converter at a 
frequency of 10 kHz (line 3), respectively. Two right vertical axes indicate the sound 
intensity level (SIL) in decibel units determined according to Eq.(5). This figure was 
reproduced from our previous paper (Komarov et al., 2007). 
The following values of the physical properties were used in the estimates: ρ = 1.2 kg/m3 

and σ = 0.07 N/m for air-water system at 20°C, and ρ = 0.18 kg/m3 and σ = 1.4 N/m for the 
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converter process including a CO gas atmosphere and molten steel at 1600°C. The sonic 
speeds were taken to be equal to 340 and 860 m/s for room and high temperatures, 
respectively. The shaded areas indicate the approximate ranges of the variation in vt and 

*
0V . The characteristic turbulent velocity was determined assuming a 5 % level of turbulence 

relative to the gas velocity at the nozzle exit. For the cold model conditions, the values of SIL 
were estimated to be 110~130 dB. 
 

 

Fig. 8. A plot of V0 versus vt: 1 and 2 – cold model, 3 – pilot converter 

Estimates of *
0V  for the pilot converter process, assuming that vt is varied in the range of 10 

to 35 m/s, suggest that the acoustic oscillations can be capable of enhancing the mass-
transfer rate at sound pressure levels of 145~160 dB and frequency of 10 kHz. These 
estimates appear to be consistent with the above experimental observations.  
Thus, the results presented in this section allow the following conclusions to be drawn. 
Application of high-intense acoustic oscillations causes the rate of decarburization reaction 
to enhance. A few mechanisms appear to exist that can result in this enhancement. The first 
one is the acoustically enhanced generation of drops at the crater zone where the high speed 
oxygen jet impact with the molten metal bath. The metal drops are oxidized by gaseous 
oxygen to FeO when flying through the crater zone. The acoustically imposed oscillations 
enhance the oxidation rate of drops through the above considered intensification of 
turbulent fluctuations and acoustic streaming at the drop surface. When such oxidized 
drops are delivered into the slag, its oxygen potential is assumed to become higher as 
compared with conventional blowing operation. As a result, the rates of decarburization 
and phosphor removal are enhanced.   

4. Concluding remarks 

Recently, considerable research efforts have been devoted to the investigation of acoustic 
oscillations for improving the performance of processes involving high and elevated 
temperatures. The research results have strongly suggested that the acoustic oscillations 
have the potential to enhance the efficiency of those processes, the rate of which is 
controlled by gas-phase mass transfer. Examples include, but not limited to, combustion of 
liquid and solid fuels, treatment of high temperature exhaust gas, steelmaking converter and 
Peirce–Smith converter for the refining of cooper. At higher temperatures, attractiveness of 
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sonic and ultrasonic waves is associated with its ability to propagate through gas, and thus 
to transfer the acoustic energy from a gas or water cooled ultrasonic generator to a higher 
temperature area for material processing. Furthermore, if the wave intensity is high enough, 
its propagation initiates such non-linear phenomena as acoustic streaming, forced 
turbulence and capillary waves which are the prime causes of acoustic effects, especially at 
the gas-liquid or gas-solid interfaces.  
A survey reveals that amplitude of acoustic oscillations plays a crucial role in the 
enhancement of gas-phase mass transfer from objects like particles and drops, while the 
effect of frequency is less pronounced. According the reported results, the mass transfer 
coefficient is increased in proportional to the 0.5~1.0 power of the velocity amplitude. Two 
controlling regimes were found to be important: 1- acoustic streaming controlling and 2 - 
vortex shedding controlling regime.  
Experimental results have showed that the high-intense acoustic oscillations are capable of 
enhancing the rate of gas-phase mass transfer controlling reactions in steelmaking converter 
process. The following two mechanisms were found to play an important role in this 
enhancement: 1- acoustically enhanced generation of molten metal drops, 2 – acoustically 
intensified turbulent fluctuations and acoustic streaming at the drop surface.  
Industrial competitiveness of the ultrasonic-based technologies is reinforced by relatively 
low cost of the power-generating equipment. In some special cases, the acoustic energy can 
be produced without any additional energy consumption by means of a comparatively 
simple device. An example is the pneumatic sonic generator applied to a process which uses 
gas blowing or injection.  
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