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1. Introduction      

Water resources systems analysis is the science of developing and applying mathematical 
operations research methodologies to water resources systems problems comprised of 
reservoirs, rivers, watersheds, groundwater, distribution systems, and others, as standalone 
or integrated systems, for single or multiobjective problems, deterministic or stochastic.  
The scientific and practical challenge in dealing quantitatively with water resources systems 
analysis problems is in taking into consideration from a systems perspective, social, economic, 
environmental, and technical dimensions, and integrating them into a single framework for 
trading-off in time and in space competitive objectives. Inherently, such problems involve 
modelling of water quantity and quality for surface water, groundwater, water distribution 
systems, reservoirs, rivers, lakes, and other systems as stand alone or combined systems. 
Numerous models for water resources systems analysis have been proposed during the past 
four decades. A possible classification for those is into: (1) methods based on decomposition 
in which an "inner" linear/quadratic problem is solved for a fixed low-dimension decision 
variables set, while that set is altered at an "outer" problem using a gradient or a sub-
gradient technique (e.g., Alperovits and Shamir, 1977; Quindry et al. 1979, 1981; Kessler and 
Shamir, 1989, 1991; Eiger et al., 1994; Ostfeld and Shamir, 1996), (2) methods which utilize a 
straightforward non-linear programming formulation (e.g., Watanatada, 1973; Shamir, 1974; 
Karatzas and Finder, 1996), (3) methods based on linking a simulation program with a 
general nonlinear optimization code (e.g., Ormsbee and Contractor, 1981; Lansey and Mays, 
1989), and (4) more recently, methods which employ evolutionary techniques such as 
genetic algorithms (e.g., Simpson et. al, 1994; Savic and Walters, 1997; Espinoza et al., 2005; 
Espinoza and Minsker, 2006), Cross Entropy (e.g., Perelman and Ostfeld, 2008), or the 
shuffled frog leaping algorithm (e.g., Eusuff and Lansey, 2003).  
Among the above classification ant colony optimization (ACO) belongs to category (4) of 
evolutionary techniques. Although some studies have already been conducted (e.g., Maier et 
al., 2003, Ostfeld and Tubaltzev, 2008; Christodoulou and Ellinas, 2010) in which ant colony 
optimization was utilized, the employment of ACO in water resources systems studies is 
still in its infancy.  
This book chapter reviews the current literature of ACO for water resources systems 
analysis, and suggests future directions and challenges for using ACO for solving water 
resources systems problems [parts of this Chapter are based on Ostfeld and Tubaltzev 
(2008), with permission from the American Society of Civil Engineers (ASCE)].  
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2. Ant Colony Optimization 

Proposed by Dorigo (1992), Ant Colony Optimization (ACO) is an evolutionary stochastic 
combinatorial computational discipline inspired by the behaviour of ant colonies. 
One of the problems studied by ethologists is to understand how ants which are almost 
completely blind could manage to establish shortest paths from their nest to their feeding 
sources and back. It was found that ants communicate information by leaving pheromone 
tracks. A moving ant leaves, in varying quantities, some pheromone on the ground to mark 
its way. While an isolated ant moves essentially at random, an ant encountering a 
previously laid trail is able to detect it and decide with high probability to follow it, thus 
reinforcing the track with its own pheromone. The collective behavior that emerges is thus a 
positive feedback: where the more the ants following a track, the more attractive that track 
becomes for being followed; thus the probability with which an ant chooses a path increases 
with the number of ants that previously chose the same path. This elementary behavior 
inspired the development of ACO (Dorigo, 1992).   
ACO has been already successfully applied to a number of NP hard combinatorial 
optimization problems such as the traveling salesman problem (TSP) or the quadratic 
assignment problem (QAP), but still to only a limited number of studies in water resources 
systems analysis. 
Consider a colony of ants moving on a graph G (N, E) where N is the set of nodes (decision 
points) i = 1, …, N and E is the set of edges (links) e = 1,…E, the basic scheme of ACO 
(following Dorigo et al., 1996), involves the following steps: 
1. The probability of the k-th ant situated at node i at stage t, to choose an outgoing edge e is:      

 ( ) ( ) [ ]
( ) [ ]

( )+

ǂ ǃ
e ek

e, i  ǂ ǃ
e e

e  i t

τ t  η  
P t  = 

τ t  η  
∈

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦∑

 (1) 

where: ( )k
e, iP t = the probability of the k-th ant at node i at stage t, to choose edge e; ( )eτ t  =  

the pheromone intensity (quantity per unit of length) present on edge e at stage t; i + (t) =  

the set of outgoing edges (i.e., all the outgoing allowable directions) from node i at stage t; 

eη , α, and β = parameters ( eη = visibility, α, β = parameters that control the relative 

importance of the pheromone amount present on edge e at stage t, see Dorigo et al., 1996). 

2. The pheromone intensity at τe (t  + 1) is updated using (2) – (4): 

 ( ) ( ) ( )e e eτ t + 1  = ρ τ t  + Δτ t + 1  (2) 

 ( ) ( )
A

k
e e

k = 1

τ t + 1  = τ t + 1Δ Δ∑  (3) 

 ( ) ( )k
ke

R
 if the k-th ant used edge e at stage t

C tτ t + 1  = 

     0                         otherwise

⎡ ⎤
⎢ ⎥Δ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (4) 

where: ρ = a coefficient less than one representing a pheromone evaporation intensity 

between consecutive stages; Α = total number of ants; R = a pheromone reward constant; 
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and ( )kC t = the solution cost generated by ant k during stage t [e.g., the length of a 

complete k-th ant tour at the traveling salesman problem (TSP) at stage t].  

3. Generation of one solution [i.e., ( )kC t ] by the k-th ant at stage t is termed an iteration 

while the completion of all ants' solutions at stage t denotes a cycle. Ants thus complete 

iterations by generating solutions, and once all ants have produced solutions, a cycle (i.e., a 

stage) has been completed. The algorithm parameters are: α, β, eη , ρ, R; the number of ants 

A, and a penalty induced for non-feasible solutions. 
A pseudo-code for an ant colony optimization algorithm as described above, can take the 
following form: 

Initialization 

• Set: t = 0; ( ) ( )e eτ 0 , τ 0  = 0  e EΔ ∀ ∈ ; distribute the A ants (indexed k) on the N 

nodes (decision points). 

• Set the ant colony parameters: α, β, eη , ρ, and R. 

• Compute ( )k
e, iP 0   e E∀ ∈  using (1). 

Main scheme 

REPEAT 

Repeat 

• For the k-th ant situated at node i generate a solution by performing a random 

walk on G (N, E) using ( )k
e, iP t  (e.g., for the TSP visit all towns exactly once). 

• Compute ( )kC t  - the solution cost produced by the k-th ant.  

Until A (total number of ants) 
Update the best cost solution found. 

Compute ( )eτ t + 1   e E∀ ∈  using (2) – (4). 

Compute ( )k
e, iP t + 1   e E∀ ∈ using (1). 

Set: t  t + 1←  

UNTIL Tmax, where: Tmax = maximum number of cycles (stages); or until no 
improvement of the best solution is encountered at some consecutive stages. 

3. Literature review 

Ant colony optimization is a new evolutionary computational discipline to the water 
resources systems community. Only few models were developed thus far. Attempts were 
made to employ ant colony for reservoir operation, groundwater long term monitoring, for 
some general water resources problems, and in particular for water distribution systems 
design and operation. This section incorporates a brief description of these efforts. 

3.1 Reservoirs optimal operation 

Kumar and Reddy (2006) proposed an Ant Colony Optimization algorithm for a multi-
purpose reservoir system. To tailor the ACO algorithm for their problem, a finite time series 
of inflows, classification of the reservoir volume into several class intervals, and defining the 
reservoir releases for each time period with respect to a predefined optimality criterion, 
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were established. The ACO algorithm was compared to a real coded Genetic Algorithm 
(GA). It was shown that the ACO algorithm performed better than the GA. Moeini and 
Afshar (2009) used three max-min ant system formulations for optimal operation of 
reservoirs using two sets of decision variables – storage and releases, and three graph form 
representations. The max-min ant system results were compared to each other and to two 
traditional heuristic evolutionary algorithms: genetic algorithms (GA), and honey bee 
mating optimization (HBMO).  It was shown that the max-min ant system formulation was 
successful in solving the problem of optimal operation of reservoirs with the releases 
settings been better than the others. Dariane and Moradi (2009) used ant colony 
optimization for continuous domains (ACOR) to solve the optimal releases problem of 
reservoirs. The authors decreased substantially the computational effort required to run an 
ant colony based optimization problem, and compared their model to a genetic algorithm 
formulation. 

3.2 Groundwater long term (LTM) monitoring 

Li et al. (2004) developed a hybrid ant colony genetic algorithm model for groundwater long 
term monitoring to maximize sampling cost-effectiveness. Groundwater long term 
monitoring is required to evaluate the in-situ conditions of remedial system performances 
and for controlling post closure groundwater sites. Their formulation optimizes the 
groundwater-monitoring network (i.e., location and sampling schedules) as groundwater 
monitoring resources are expensive and thus limited. Li and Chan Hilton (2005, 2006a, 
2006b) extended Li and Chan Hilton (2004) by formulating the LTM optimization for 
minimizing the number of monitoring wells with constraints on estimation errors and data 
quality; and for reduction of a monitoring effort plan while minimizing distortions to the 
information received by the original monitoring set-up. Global optima or near-optimal 
solutions were received. 

3.3 Water resources applications 

Ali et al. (2009) used ant colony optimization to accelerate convergence of the differential 
evolution (DE) technique. Their methodology, entitled ant colony differential evolution 

(ACDE), initializes the ant population using based learning techniques, utilizes a random 
localization methodology, and simulates the movement of ants to refine the best solution 
found in each iteration. The ACDE was applied to different test problems including a 
simplified water resources system. Abbaspour et al. (2001) utilized ant colony optimization 

for calibrating an unsaturated soil hydraulic model. The use of ant colony replaced the 
traditional inverse modelling approach and was found to be successful in overcoming 
previous parameterization related optimization problems. Li et al. (2006) developed a 
hybrid ant colony-simulated annealing method for groundwater parameter estimation. The 

inverse problem of parameter identification was formulated as an optimization problem. 
Transmissivity and storage coefficients for a two-dimensional unsteady state groundwater 
flow model were calibrated with the proposed technique.  

3.4 Water distribution systems 

The first to introduce ant colony optimization for water distribution systems management 
were Maier et. al. (2003). Maier et al. applied a traditional ant colony settings for optimizing 
two benchmark gravitational one loading conditions water distribution systems. Zecchin et 
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al. (2005) studied parameterization of ant colony optimization for water distribution systems 
and suggested guidelines for selecting them. Christodoulou and Ellinas (2010) proposed an 
ant colony optimization algorithm for efficient routing of piping networks for improving its 
efficiency and resiliency. López-Ibáñez et al. (2008) used ant colony for optimizing the 
operation of pumping in water distribution systems. 
Ostfeld A. and Tubaltzev A. (2008) generalized the studies of Maier et al. (2003) and López-

Ibáñez et al. (2008) for mutually optimizing the design and operation of water distribution 

systems for extended loading conditions, pumps, and tanks. The algorithm of Ostfeld A. 

and Tubaltzev A. (2008) is based on Dorigo et al. (1996) and Maier et al. (2003), and is 

comprised of the following stages:  

1. Representation: the least cost design problem is discretized and symbolized in the form 

of a graph with the links representing decision variable values, and the nodes – decision 

points.  

2. Initialization: a colony of A ants "starts walking" from node START (see Fig. 1) to node 

END with each ant having an equal probability to choose a specific link at each node 

(i.e., each link has an equal initial pheromone intensity of 1 unit). Each ant entire trail 

(i.e., from START to END) comprises one possible design solution. At the end of this 

stage a set of random design solutions (i.e., random routes) equal to the number of ants 

is generated. (2a) Each solution is evaluated using EPANET (USEPA, 2002) with a 

penalty induced to non-feasible solutions [i.e., solutions violating minimum allowable 

pressure constraints at consumer nodes are penalized linearly as a function of the 

pressure head deficiency at the nodes (following Maier et al., 2003)]. (2b) A set (denoted 

Δ) of the least cost solutions are selected for pheromone updating (e.g., the best twenty 

ant solutions out of an initial set A of thousand). 

3. Pheromone updating: each of the links participating at the i-th best solution ( )i  ∈ Δ is 

added a pheromone amount equal to:  Cost
B

max B/Cost
B

iB where Cost
B

max B is the highest cost 

among the best set (i.e., Δ) of ants, and Cost
B

iB is the solution cost of the current i-th best 

solution. Using this mechanism links which participated at lower solutions will receive 

a higher pheromone quantity (i.e., their likelihood to be chosen at subsequent iterations 

will increase).  

4. Probability updating: update the links outgoing probabilities out of node j: p 
B

iB = 
Nj

i i
i = 1

ph  / ph∑  = where: p 
B

iB = the probability of choosing link i; Nj = number of links out 

of node j; and ph 
B

i = pheromone amount on link i. 

5. Iterate: go back to stage (2b) with a fraction γ of the initial number of ants A (i.e., γA), 

while keeping the best solution (i.e., Elitism), if a predefined number of iterations has 

not yet attained. 

A complete formal description of the suggested algorithm is given in Fig. 2. It incorporates 
the following steps:  

Initialization:  

1. The ant colony iteration counter t is set to one.  

2. The pheromone intensity ( )eτ 1  present on each edge e {1, 2,...,E}∈  at t = 1 is set to one. 
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Fig. 1. Water distribution systems representation for Ant Colony Optimization (Ostfeld and 
Tubaltzev, 2008, with permission from the American Society of Civil Engineers (ASCE)) 
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3. The ant colony parameters are defined: tmax = total number of ant colony iterations;  
α = a parameter controlling the relative importance of pheromone (set to one);   
β  = a parameter controlling the relative importance of local heuristics (set to zero);  
ρ = a parameter of pheromone persistence (set to one); A = initial number of ants; γ = a 
fraction of the initial number of ants used for t > 1 (i.e., use of γΑ ants for t > 1) ;  
Δ = number of best ants used for pheromone updating; nmax = upper bound of the 
relative pumping stations speed number; σ = discretized nmax  number (i.e., the 
discretization resolution of nmax); and PC = linear penalty cost coefficient. 

4. The initial number of ants A are placed at node START (see Fig. 1). 

5. The probability ( )e, iP t to select the outgoing edge e at node i at iteration t (t = 1) is 

computed: 

 ( ) ( ) [ ]

( )
+

 ǂ ǃ
e e

e, i  i  ǂ ǃ
j j

j = 1

τ t  η  
P t  =   e {1, 2,...,E}

τ t  η  

⎡ ⎤⎣ ⎦ ∀ ∈
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑

 (5) 

where: i + = the set of outgoing edges out of node i; eη = visibility of edge e (not used as β = 0).  

6. The ant's trials counter k is set to 1 

7. The solution of the first ant (k = 1) trial ( )k 1φ [ ( )e, iP 1 ] is generated through a random 

walk to node END (see Fig. 1). 

8. The trial solution cost of the first ant (k = 1) ( )kC 1  ( )k 1φ⎡ ⎤⎣ ⎦  is computed;  

Stages (9) and (10) guarantee that all ants will perform their trails. The initialization stage 

concludes with keeping the best Δ solutions out of the initial number of ants A.  

Main scheme:  

11. The pheromone intensity ( )eτ t + 1  present on edge e at iteration t + 1 is computed 

using Eqs. (2) and (3): 

 ( ) ( ) ( )k
e e e

k = 1

τ t + 1  = ρ τ t  + τ t + 1      e {1, 2,...,E}
Δ

Δ ∀ ∈∑  (6) 

 ( )
( )

( ) ( )
max , 

k
k ke

C t
  if the k-th ant (k ) used edge e at iteration t 
C t  τ t + 1  = 

     0                         otherwise

tφ
Δ⎡ ⎤

∈ Δ⎢ ⎥⎡ ⎤Δ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

 (7) 

where: ( )k
eτ t + 1  =Δ  pheromone intensity addition by the k-th ant on edge e at iteration t + 

1; and ( )max , C tΔ  = the maximum cost solution out of the best Δ  ants at iteration t. At stage 

(12) the probability ( )e, iP t + 1  to choose the outgoing edge e at node i at iteration t + 1 is 

computed. 

At stage (13) χA ants are placed at node START (see Fig. 1). Stages (14) to (18) correspond to 

(6) to (10); at stage (19) Elitism is invoked (i.e., keeping unchanged the best solution obtained 

at all iterations); stages (20) and (21) guarantee that all iterations are performed. The 

algorithm finishes off with the best ant colony solution obtained ( )*
maxtφ , and its 

corresponding cost ( )*
maxtC . 
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Fig. 2. Ant Colony Optimization flow chart (Ostfeld and Tubaltzev, 2008, with permission 
from the American Society of Civil Engineers (ASCE)) 
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4. Future research 

Ant colony optimization for water resources systems analysis is in its early stages of 

exploitation as depicted from the literature review described above.  

Applications to optimal reservoir operations, long term monitoring, some general water 

resources problems, and water distribution systems design and operation were developed.  

Still, most of the water resources systems community has not yet utilized the potential of 

using ant colony optimization, as occurred in other research disciplines such as structural 

engineering. Research is thus almost completely open for developing and applying ant 

colony optimization algorithms for water resources systems problems and analysis.  

The challenges of using ant colony optimization in water resources systems analysis vary 

with the specific theme and objective of interest. Yet, commonly to water resources systems 

analysis is the inherent probabilistic complex nature of the physical systems such as 

groundwater, watersheds, distribution systems, and others. Those yield non-linearity and 

non-smoothness in describing the systems physical behavior. As a result, almost any water 

resources systems model which obviously needs to capture its physics as model constraints, 

is highly complex. Traditional non-linear algorithms such as gradient type algorithms are 

thus very much limited. 

As every problem has its unique structure and tradeoff among its decision variables and 

formulations, the challenge of developing ant colony algorithms for water resources systems 

analysis is mainly in tailoring the specific problems characteristics with an ant colony 

formulation. This requires the modeler to explore different avenues of formulations such 

that the resulted model will be computationally feasible. This is a tremendous challenging 

task which captures most of the innovativeness aspects of new modeling and application. 

Below are the major fields of water resources systems analysis for which new ant colony 

optimization models could be developed and applied: 

Climate change: climate variability and change, adaptive management, decision making 

Groundwater: parameter estimation, operation, contamination, remediation 

Reservoirs: operation, design, inclusion of water quality considerations 

Water distribution systems: network models – optimization, calibration and verification, 

development and application; network hydraulics – steady state, transients; leakage – leak 

detection, leak management, field studies; water use – monitoring, estimation and 

simulation, end users; field work – tracer studies, pressure tests, case studies; contaminant 

intrusion and water security – detection, source identification, response; network 

vulnerability – security assessments, network reliability, disaster response, emerging issues; 

network water quality – real-time monitoring and modeling, dose exposure, mixing and 

dispersion, storage tanks, asset management, Maintenance, system expansion and 

rehabilitation; sustainable water distribution systems – design and operation, water reuse 

and supply, dual distribution systems 

Water economics: water demand – household, commercial; water supply – cost of production, 

efficiency studies, technological change, industry studies; valuing water services – ecological 

services, sanitation navigation, recreation, irrigation, industrial. 

Water policy: transboundary, drought, flood, navigation, recreation, irrigation, industrial, 

climate, energy 

Watersheds and river basins: watershed management, water and energy systems, application 

of hydrologic predictions and forecasts, best management practices, stormwater 
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