
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1. Introduction

Automatic programming is the research field of generating computer programs automatically.
Genetic programming (GP) (Koza, 1992; 1994) is a typical example of automatic programming,
which was proposed by Koza. GP evolves computer programs with tree structure based on
genetic algorithm (GA). GP has, however, the problem of bloating (Langdon & Poli, 1998;
Poli, 2003), the growth of the average size of an individual in the population. This chapter
introduces a new method for automatic programming using ant colony optimization (ACO)
(Dorigo et al., 1999; Dorigo & Stutzle, 2004). ACO is a technique for solving combinatorial
optimization problems. ACO algorithm is inspired by the behavior of the ants.
Several automatic programming techniques using ACO were investigated (Engelbrecht,
2006). Typical examples are ant programming (AP) (Roux & Fonlupt, 2000), ant colony
programming (ACP) (Boryczka & Czech, 2002), AntTAG (Abbass et al., 2002) and generalized
ant programming (GAP) (Keber & Schuster, 2002). AP is similar to Probabilistic Incremental
Program Evolution (PIPE) (Salustowicz & Schmidhuber, 1997), and it was used to solve the
symbolic regression problems. PIPE generates successive populations from a probabilistic
prototype tree. ACP was used to solve the symbolic regression problems with two different
versions that are the expression approach and the program approach. AntTAG and GAP are
grammar-based work.
The method proposed in this chapter is named dynamic ant programming (DAP). DAP is
based on ACO and generates desired programs using the dynamically changing pheromone
table. The nodes (terminal and nonterminal) are selected using the value of the pheromone
table. The higher the rate of pheromone, the higher is the probability that it can be chosen. The
unnecessary node in DAP is deleted according to pheromone value. Therefore, the average
size of programs tends to be small, and it is possible to search desired programs effectively. In
order to verify the effectiveness, we applied the proposed method to the symbolic regression
problem that is widely used as a test problem for GP systems. We compare the performance of
DAP to GP and show the effectiveness of DAP. In order to investigate the influence of several
parameters, we compare experimental results obtained using different settings.
This chapter consists of five sections. Section 2 is an overview of some related works. Section
3 describes DAP. Several experiments are shown in Section 4. Section 5 is devoted to the
conclusions and the discussion of future works.

Shinichi Shirakawa, Shintaro Ogino, and Tomoharu Nagao
Yokohama National University

Japan

Automatic Construction of Programs Using
Dynamic Ant Programming

6

www.intechopen.com

2 Ant Colony Optimization

2. Related works

2.1 Genetic programming

GP is a method of automatic programming, which was introduced by Koza (Koza, 1992; 1994).
It evolves computer programs with tree structure, and searches a desired program using GA.
A population (a set of programs) will evolve by repeatedly selecting the fitter programs,
combining them, and producing new programs. In GP, individuals in the population are
computer programs. These programs are usually represented as trees. This tree-form
representation is a useful way of representing LISP expression (also known as S-expression).
The internal nodes represent the functions (non-terminal) and the leaves are the terminal
nodes. GP has the problem of bloating (Langdon & Poli, 1998; Poli, 2003) potentially, the
growth of the average size of an individual in the population. The general GP method can
be roughly described as follows:

1. Random generation of programs (trees);

2. Evaluation of programs (fitness measure);

3. Application of genetic operations to individuals: crossover, mutation;

4. Selection of individuals;

5. Go to step 2 until some termination criterion is satisfied.

2.2 Ant colony optimization

ACO (Dorigo et al., 1999; Dorigo & Stutzle, 2004) is a technique for solving combinatorial
optimization problems, and it was introduced in the early 1990’s. ACO algorithm is inspired
by the behavior of real ants. It has been applied to many combinatorial optimization
problems, e.g. Traveling Salesman Problems (TSP) (Dorigo et al., 1996; Stutzle & Hoos, 2000),
network routing problems (Schoonderwoerd et al., 1996; Caro & Dorigo, 1998), graph coloring
problems (Costa & Hertz, 1997), and so on. The first ACO algorithm, called ant system (AS)
Dorigo et al. (1996), was proposed by Dorigo et al. and applied to the TSP. Figure 1 shows the
AS algorithm.
An ant located at city i selects an edge between city i and city j by using the probabilities:

pkij(t) =

⎧

⎨

⎩

[τij(t)]
α·[ηij]

β

∑
l∈Nk

i
(t)
[τil(t)]α·[ηil]β

if j ∈ Nk
i (t)

0 if j /∈ Nk
i (t)

(1)

definition m: the number of ants
Initialize
repeat
for k = 1 to m do

repeat
From current node i, select next node j with probability as defined in Equation (1);

until full path has been constructed;
end

Update pheromone using Equation (3);
until stopping condition is true;

Fig. 1. Ant system (AS) algorithm

76 Ant Colony Optimization - Methods and Applications

www.intechopen.com

Automatic Construction of Programs Using Dynamic Ant Programming 3

where τij(t) is the amount of pheromone trail on edge (i, j) at time t, a heuristic value ηij equals
to 1/dij, where dij is the distance between city i and j, α and β are parameters which control

the relative weight of the pheromone trail and the heuristic value respectively, where Nk
i is

the set of cities which remains to be visited. After every ant completes a tour, pheromone is
deposited:

∆τk
ij(t) =

{

Q
Lk

if (i, j) ∈ Tk

0 otherwise
(2)

where Q is a constant; Lk is the length of the tour generated by ant k; Tk is the tour generated
by ant k. The amount of pheromone is updated according to the rule:

τij(t+ 1) = (1− ρ)τij(t) +
m

∑
k=1

∆τk
ij(t) (3)

where m is the number of ants and ρ(0 < ρ < 1) is a parameter called evaporation rate. These
processes are repeated a predefined tmax number of times.
In addition to finding very good solutions to ‘static’ problems, the ACO algorithm is
also effective in ‘dynamic’ problems (Guntsch & Middendorf, 2001; Guntsch et al., 2001;
Caro & Dorigo, 1998; Schoonderwoerd et al., 1996). The ACO algorithm maintains portions
of solution as the pheromone trails, which can be especially useful when the problem is
dynamically changing (Bonabeau et al., 2000).
Several extended and improved versions of the original AS algorithm were introduced. For
instance, ant colony system (ACS) (Dorigo & Gambardella, 1997), elitist ant system (EAS)
(Dorigo et al., 1996), rank-based ant system (RAS) (Bullnheimer et al., 1999), and MAX-MIN
ant system (MMAS) (Stutzle & Hoos, 1997; 2000). One of the most successful ACO variants
is MMAS. MMAS limits the possible range of pheromone trail values to the interval
[τmin,τmax]. Additional difference is that only the best ant may reinforce pheromones, and
initial pheromones are set to the maximum allowed value. The pheromone update rule in
MMAS is:

τij(t+ 1) = (1− ρ)τij(t) + ∆τbest
ij (t) (4)

where ∆τbest
ij (t) is calculated on the basis of either the global-best path or the iteration-best

path.

2.3 Ant colony optimization for automatic programming

Several automatic programming techniques based on ACO were investigated (Engelbrecht,
2006). AP (Roux & Fonlupt, 2000) appears to be the earliest attempt at using ACO to
automatic programming. It is similar to PIPE (Salustowicz & Schmidhuber, 1997), and it was
used to solve symbolic regression problems. PIPE generates successive populations from a
probabilistic prototype tree. AntTAG (Abbass et al., 2002) and GAP (Keber & Schuster, 2002)
are grammar-based works. AntTAG is an ACO algorithm which constructs programs using
tree-adjunct grammar (TAG). GAP system uses context-free grammar.
The most related work to our proposed method is ACP (Boryczka & Czech, 2002). ACP
was used for solving the symbolic regression problems with two different versions that
are the expression approach and the program approach. The expression approach
constructs an expression in prefix notation, while the program approach constructs an

77Automatic Construction of Programs Using Dynamic Ant Programming

www.intechopen.com

4 Ant Colony Optimization

definition m: the number of ants
Initialize
repeat
for k = 1 to m do

repeat
From current node i, select next node j with probability as defined in Equation (5);

until full path has been constructed (Ant completely has reached terminal);
end

Update pheromone using Equation (7);
Deletion of nodes;
Insertion of nodes;

until stopping condition is true;

Fig. 2. Dynamic ant programming (DAP) algorithm

expression from a sequence of assignment instructions. Both approaches base on the ACS
(Dorigo & Gambardella, 1997). In expression approach, the components of graph G = (N,E)
have the following meaning: N is the set of nodes, where each node represents either a
terminal symbol (i.e. a constant or variable) or a non-terminal symbol (i.e. an arithmetic
operator or function). Each link in E represents a branch of the expression tree. The tabu list
is not used, since the multiple occurrences of a node in the expression are not prohibited.

3. Dynamic ant programming

DAP is a novel automatic programming method using ACO. GP has the problem of bloating,
potentially the growth of the average size of an individual in the population. In the
conventional method, ACP, the number of nodes is fixed beforehand, and the tabu list is not
used. Therefore, it tends to select the same node repeatedly and has the multiple occurrence
of the same expression in one program.
The unnecessary node in DAP is deleted according to pheromone value. The size of the
pheromone table in DAP changes dynamically in each iteration, and the number of nodes is
variable. Therefore, the average size of programs tends to be small, and it is possible to search
desired programs effectively. The tabu list is used in DAP; thus, it is possible to generate
various programs. Figure 2 shows the DAP algorithm.

3.1 Construction of tree structure

First, the ant starts at start node (start node is an initial node for ants). The ant chooses the
next node using pheromone values. The ant never selects a nonterminal node which was
already selected (i.e. the tabu list is used), whereas terminal node can be visited by the ants
repeatedly. If the selected node is a terminal node, the search is finished. The higher the rate of
pheromone, the higher the probability that it can be chosen. The ant located in node i selects
only the number of argument of node i using the pheromone value in the subsequent nodes.
Therefore, the pheromone table size in DAP is:

– column size
total number of nodes (terminal and nonterminal).

– row size
total number of arguments + 1 (start node).

78 Ant Colony Optimization - Methods and Applications

www.intechopen.com

Automatic Construction of Programs Using Dynamic Ant Programming 5

Arg No. x 1.0 + ∗ sin

Start − 1
+ 1 2

2 3
∗ 1 5

2 6
sin 1 4

Table 1. Example of pheromone table in DAP

Table 1 shows an example of the pheromone table, and Figure 3 illustrates how to construct
tree structure using the pheromone table. The ant visits the sequence of nodes {Start→ + →
x → sin→ ∗→ x → 1.0} and constructs a numerical formula ‘x+ sin(x ∗ 1.0)’.
The probability of ant k located in node i moving to node j through argument u at time t is:

pkiu j(t) =

⎧

⎨

⎩

τiu j(t)

∑
l∈Nk

i
(t)

τiu l(t)
if j ∈ Nk

i (t)

0 if j /∈ Nk
i (t)

(5)

where τiu j(t) is the amount of pheromone trail on edge (iu , j) at time t; Nk
i (t) is the set of nodes

that remains to be visited.

3.2 Pheromone update

The pheromone update rules in DAP is similar to MMAS (Stutzle & Hoos, 2000). To avoid
stagnation of search, a possible range of pheromone value is limited to an interval [τmin,τmax].
The parameters τmin and τmax are determined in advance. After each program (individual) is
evaluated, the pheromone table is updated according to:

∆τbest
ij (t) =

{

f ib if(i, j) ∈ Tib
0 otherwise

(6)

where f ib is a fitness of iteration-best ant and Tib is the tour (program) generated by
iteration-best ant. The amount of pheromone is updated according to the rule:

Fig. 3. An example of constructing tree structure in DAP. The ant visits the sequence of nodes
{Start→+→ x → sin→ ∗→ x → 1.0} and constructs a numerical formula ‘x+ sin(x ∗ 1.0)’

79Automatic Construction of Programs Using Dynamic Ant Programming

www.intechopen.com

6 Ant Colony Optimization

Terminal or function Arg No. x 1.0 + ∗ sin

Start - τmin

+ 1 τmin

2 τmin

∗ 1 τmin

2 τmin

sin 1 τmin

Table 2. An example of deletion of node. The node ‘+’ is deleted in this case

τij(t+ 1) = (1− ρ)τij(t) + ∆τbest
ij (t) (7)

where ρ(0 < ρ < 1) is a parameter called evaporation rate. Initial pheromones are set to the
maximum allowed value (τmax).

3.3 Deletion and insertion of nodes

Deletion and insertion of nodes are performed after pheromone update in each iteration.
So, the pheromone table changes dynamically in DAP. Table 2 illustrates an example of the
deletion of node, and Table 3 illustrates an example of the insertion of node.

– Deletion of node
If all pheromone values to the node j areminimumvalues τmin (if all τl j= τmin, l= {1, ...,n}),
the node j is deleted, where n is the number of row size of pheromone table).

– Insertion of node
The probability of inserting node in iteration i equals to:

p(i) =
1
m ∑

m
k=1 L

k
i

Ni
(8)

where Lk is the number of nodes generated by ant k; Ni is total number of nodes (column
size of pheromone table); and m is the number of ants. The type of node inserted is decided
randomly. The pheromone value of an inserted node is set to τins.

Although the search space (i.e. the pheromone table of DAP) is dynamically changing, the
ants find good solution using portions of solutions, which are pheromone trail values.

Terminal or function Arg No. x 1.0 + ∗ sin sin

Start - τins
+ 1 τins

2 τins
∗ 1 τins

2 τins
sin 1 τins
sin 1 τins τins τins τins τins τins

Table 3. An example of insertion of node. The node ‘sin’ is inserted in this case

80 Ant Colony Optimization - Methods and Applications

www.intechopen.com

Automatic Construction of Programs Using Dynamic Ant Programming 7

4. Experiments and results

In this section several experiments with DAP and GP are performed. We use the well-known
test problem, namely, the symbolic regression.

4.1 Symbolic regression

Symbolic regression is widely used as a test problem for GP systems. The problem is to search
for a function that fits sampled data points. The functions used in these experiments are:

f1(x) = x4 + x3 + x2 + x (9)

f2(x) = sin(x) + x2 + 1 (10)

f3(x) = sin(x3 + x) (11)

The set of sampled data points for these problems was generated using (for the variable x) 20
uniformly chosen values in the interval [-1, 1]. We use the mean error on the sampled data
points as a fitness function, which is defined as:

fitness =
1

1+ ∑
n
i=1 |Ccorrecti − Cestimatei |

(12)

where Ccorrecti is the correct value for the sampled data point i; Cestimatei is the value returned
by the generated program for the sampled data point i; and n is the size of the sampled data
points. The range of this fitness function is [0.0, 1.0]. A higher numerical value indicates better
performance. The common parameters between the two methods (DAP and GP) are identical.
The individual parameters of DAP and GP are given in Table 4 and Table 5 respectively.

4.2 Experimental results

Results are given for 100 different runs with the same parameter set. Table 6 shows the success
rate of 100 trials at the final generation. The success rate is computed as:

Success rate=
Number of successful runs

Total number of runs
(13)

According to the result, DAP obtains a better solution than GP for all test problems.
Figure 4 (a) shows the comparison of the success rate between DAP and GP for f1(x), with
the learning has been pursued on. We can see that DAP reaches 98% success rate in f1(x),
while the success rate of GP is 69% after 1000 generations. Figure 4 (b) shows the average
number of nodes of DAP and GP for f1(x). The average number of nodes in GP expands
in the evolutionary process. After 1000 generations, the average number of nodes in GP is
more than 100 nodes. So, the tree structural programs of GP bloat. However, DAP keeps the
average number of nodes between 10 and 20 in this experiment. It shows that DAP is more
efficient than GP.
The results for f2(x) and f3(x) are shown in Figure 5 (a), (b) and 6 (a), (b). For both test
problems, DAP has better results than GP, with a smaller average number of nodes.
Figure 7 is the relationship between the average number of column size of pheromone table
in DAP (total number of nodes) and the number of generations. The size of pheromone table
in DAP changes dynamically. The size is 20-28 for f1(x), 18-25 for f2(x), and 8-14 for f3(x). It
also shows that the size of the pheromone table does not bloat.

81Automatic Construction of Programs Using Dynamic Ant Programming

www.intechopen.com

8 Ant Colony Optimization

Parameter Value
Terminal set The variable x and the constant 1.0
Function set F = {+,−,∗,/,sin}
The number of generations 1000
Population size 50
ρ 0.50
τmax 1.0
τmin 0.01
τins τmax (= 1.0)

Table 4. The parameters of DAP algorithm for symbolic regression problems

Parameter Value

Terminal set The variable x and the constant 1.0
Function set F = {+,−,∗,/,sin}
The number of generations 1000
Population size 50
Crossover probability 1.0
Mutation probability 0.9 (for individual)
Selection Tournament selection
Tournament size 2

Table 5. The parameters of GP algorithm for symbolic regression problems

Incidentally, GP has a tendency to create redundant programs. In this experiment, GP does
not have a factor for restraining the redundancy. On the other hand, DAP has a function for
deletion of nodes. Therefore, the comparison between DAP and GP would not be fair. Figure
8 shows the comparison of the fitness between DAP and GP for f1(x). In terms of fitness
value, the performance of DAP and GP is comparable. However, GP cannot find an accurate
solution, while DAP has a higher success rate.

(a) Success rate (b) Average number of nodes

Fig. 4. The comparison of the success rate and the average number of nodes between DAP
and GP for f1(x), with the learning has been pursued on

82 Ant Colony Optimization - Methods and Applications

www.intechopen.com

Automatic Construction of Programs Using Dynamic Ant Programming 9

(a) Success rate (b) Average number of nodes

Fig. 5. The comparison of the success rate and the average number of nodes between DAP
and GP for f2(x), with the learning has been pursued on

(a) Success rate (b) Average number of nodes

Fig. 6. The comparison of the success rate and the average number of nodes between DAP
and GP for f3(x), with the learning has been pursued on

Fig. 7. The curves show the relationship between the number of column size of the
pheromone table in DAP (total number of nodes) and the number of generations. Each curve
is an average over 100 runs

83Automatic Construction of Programs Using Dynamic Ant Programming

www.intechopen.com

10 Ant Colony Optimization

Fig. 8. The comparison of the fitness between DAP and GP for f1(x). Each curve is an
average over 100 runs

DAP (%) GP (%)
f1(x) 98 69
f2(x) 100 55
f3(x) 59 28

Table 6. Success rate of DAP and GP at final generation

4.3 Pheromone evaporation rate ρ
To examine the influence of the values of the pheromone evaporation rate ρ, we compare
the experimental results obtained using different settings of ρ. The pheromone evaporation
rate ρ is varied between 0.10 and 0.90. Results are given for 100 different runs with the same
parameter set and using f1(x) as a test problem.
Table 7 shows the success rate of 100 trials at the final generation. Figure 9 showa the
transitions of the success rate for f1(x) when different values have been set for the parameter
ρ. In Table 7, it can be observed that better solutions are found when using higher values of
ρ=0.50-0.70. This is due to the fact that the pheromone trail values decrease faster when the
values of ρ are higher; hence, the size of the pheromone table tends to be small. Figure 10
shows the relationship between the average number of column size of pheromone table in
DAP (total number of nodes) and the number of generations. The size of the pheromone table
is small (about 10-25) when using the higher values of ρ, while the size is large (about 30-50)
using the lower values of ρ. If ρ is low, it is difficult for the pheromone trail values to reach
minimum value (τmin).

4.4 Parameter of τins
In order to investigate the influence of the values of τins, we compare the experimental results
obtained using different settings of τins. τins is the pheromone value of an inserted node, and it
varies between 0.20 and 1.00. Results are given for 100 different runs with the same parameter

ρ 0.10 0.30 0.40 0.50 0.60 0.70 0.90

Success rate (%) 45 92 96 98 99 98 93

Table 7. Success rate of DAP at final generation

84 Ant Colony Optimization - Methods and Applications

www.intechopen.com

Automatic Construction of Programs Using Dynamic Ant Programming 11

set using f1(x) as a test problem. The parameter of the pheromone evaporation rate ρ used is
0.50 in this experiment.
Table 8 shows the success rate of 100 trials at the final generation. The transitions of the
success rate for f1(x) are shown in Figure 11. In Table 8, the success rate reaches 100% using
τins=0.80, 0.60, 0.40. In Figure 11, earlier convergence has been obtained when using a lower
value of τins. When the value of τins is low, the inserted node has little chance to be visited,
and the node will be deleted soon. Therefore, we can consider the value of τins to be related
to diversity. Figure 12 shows the transitions of the total number of nodes. The size of the
pheromone table is between 20 and 30 for all parameter of τins. There is little relationship
between the size of pheromone table and the parameter of τins although the size of pheromone
table is dynamically changing.

Fig. 9. The transitions of the success rate for f1(x) (ρ = 0.30,0.40,0.50,0.60,0.70)

Fig. 10. The curves show the relationship between the number of column size of the
pheromone table (total number of nodes) and the number of generations. Each curve is an
average over 100 runs

85Automatic Construction of Programs Using Dynamic Ant Programming

www.intechopen.com

12 Ant Colony Optimization

τins 1.00 0.80 0.60 0.40 0.20
Success rate (%) 98 100 100 100 99

Table 8. Success rate of DAP at final generation

Fig. 11. The transitions of the success rate for f1(x) (τins = 1.00,0.80,0.60,0.40,0.20)

Fig. 12. The curves show the relationship between the number of column size of the
pheromone table (total number of nodes) and the number of generations. Each curve is an
average over 100 runs (τins = 1.00,0.80,0.60,0.40,0.20)

5. Conclusions

A novel automatic programming method based on ACO, which is DAP has been proposed
in this chapter. We tested the performance of DAP against GP using the symbolic regression
problems. In all test cases, DAP performed better than GP, and the search space of DAP was
more compact. The size of the pheromone table of DAP is maintained at 10-30, while the tree
size of GP bloats. From these tests, we can say that DAP has an advantage against GP. We also
investigated the influence of the parameters of DAP. The parameter of ρ relates to the total
number of nodes, and the parameter τins relates to diversity.

86 Ant Colony Optimization - Methods and Applications

www.intechopen.com

Automatic Construction of Programs Using Dynamic Ant Programming 13

In order to clarify the effectiveness of DAP, more experiments have to be run on a variety of
test problems. In future works we plan to extend tests to other problems. We applied DAP to
the construction of tree structural programs automatically in this work. In recent years other
structures have been investigated in GP (e.g. linear structure (Brameier & Banzhaf, 2001),
graph structure (Miller & Smith, 2006; Mabu et al., 2007; Shirakawa & Nagao, 2009)). We plan
to apply DAP to construct other structures automatically as well.

6. References

Abbass, H., Hoai, N. & McKay, R. (2002). AntTAG: A new method to compose computer
programs using colonies of ants, Proceedings of the 2002 IEEE Congress on Evolutionary
Computation (CEC ’02), Honolulu, HI, USA, pp. 1654–1659.

Bonabeau, E., Dorigo, M. & Theraulaz, G. (2000). Inspiration for optimization from social
insect behavior, Nature 406: 39–42.

Boryczka, M. & Czech, Z. J. (2002). Solving approximation problems by ant colony
programming, Late Breaking Papers at the Genetic and Evolutionary Computation
Conference 2002 (GECCO ’02), New York, pp. 39–46.

Brameier, M. & Banzhaf, W. (2001). A comparison of linear genetic programming and neural
networks in medical data mining, IEEE Transactions on Evolutionary Computation
5(1): 17–26.

Bullnheimer, B., Hartl, R. F. & Strauss, C. (1999). A new rank based version of the ant system:
A computational study, Central European Journal for Operations Research and Economics
7(1): 25–38.

Caro, G. D. & Dorigo, M. (1998). Antnet: Distributed stigmergetic control for communications
networks, Journal of Artificial Intelligence Research 9: 317–365.

Costa, D. & Hertz, A. (1997). Ants can colour graphs, Journal of the Operational Research Society
48: 295–305.

Dorigo, M., Caro, G. D. & Gambardella, L. M. (1999). Ant algorithm for discrete optimization,
Artificial Life 5(2): 137–172.

Dorigo, M. & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach
to the traveling salesman problem, IEEE Transactions on Evolutionary Computation
1(1): 53–66.

Dorigo, M., Maniezzo, V. & Colorni, A. (1996). Ant system: Optimization by a colony
of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics -Part B
26(1): 29–41.

Dorigo, M. & Stutzle, T. (2004). Ant Colony Optimization, MIT Press, Cambridge, MA.
Engelbrecht, A. P. (2006). Fundamentals of Computational Swarm Intelligence, John Wiley & Sons,

New York.
Guntsch, M. & Middendorf, M. (2001). Pheromone modification strategies for ant algorithms

applied to dynamic tsp, Proceedings of the EvoWorkshops on Applications of Evolutionary
Computing, Vol. 2037 of LNCS, Springer, London, pp. 213–222.

Guntsch, M., Middendorf, M. & Schmeck, H. (2001). An ant colony optimization approach to
dynamic TSP, Proceedings of the Genetic and Evolutionary Computation Conference 2001
(GECCO ’01), San Francisco, pp. 860–867.

Keber, C. & Schuster, M. G. (2002). Option valuation with generalized ant programming,
Proceedings of the Genetic and Evolutionary Computation Conference 2002 (GECCO ’02),
New York, pp. 74–81.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural

87Automatic Construction of Programs Using Dynamic Ant Programming

www.intechopen.com

14 Ant Colony Optimization

Selection, MIT Press, Cambridge, MA.
Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press,

Cambridge, MA.
Langdon, W. B. & Poli, R. (1998). Genetic programming bloat with dynamic fitness, Proceedings

of the First EuropeanWorkshop on Genetic Programming (EuroGP ’98), Vol. 1391 of LNCS,
Springer, Paris, France, pp. 96–112.

Mabu, S., Hirasawa, K. & Hu, J. (2007). A graph-based evolutionary algorithm: Genetic
network programming (gnp) and its extension using reinforcement learning,
Evolutionary Computation 15(3): 369–398.

Miller, J. F. & Smith, S. L. (2006). Redundancy and computational efficiency in cartesian genetic
programming, IEEE Transactions on Evolutionary Computation 10(2): 167–174.

Poli, R. (2003). A simple but theoretically-motivated method to control bloat in genetic
programming, Proceedings of the 6th European Conference on Genetic Programming
(EuroGP ’03), Vol. 2610 of LNCS, Springer, Essex, UK, pp. 204–217.

Roux, O. & Fonlupt, C. (2000). Ant programming: Or how to use ants for automatic
programming, in M. D. et al. (ed.), Proceedings of ANTS ’00, Brussels, Belgium,
pp. 121–129.

Salustowicz, R. P. & Schmidhuber, J. (1997). Probabilistic incremental program evolution,
Evolutionary Computation 5(2): 123–141.

Schoonderwoerd, R., Holland, O. E., Bruten, J. L. & Rothkrantz, L. J. M. (1996). Ant-based
load balancing in telecommunications networks, Adaptive Behavior 5(2): 169–207.

Shirakawa, S. & Nagao, T. (2009). Graph structured program evolution: Evolution of loop
structures, in R. L. Riolo, U.-M. O’Reilly & T. McConaghy (eds), Genetic Programming
Theory and Practice VII, Springer, pp. 177–194.

Stutzle, T. & Hoos, H. (1997). The MAX-MIN ant system and local search for the traveling
salesman problem, Proceedings of the IEEE International Conference on Evolutionary
Computation (ICEC ’97), IEEE Press, Indianapolis, IN, USA, pp. 308–313.

Stutzle, T. & Hoos, H. (2000). MAX-MIN ant system, Future Generation Computer Systems
16(8): 889–914.

88 Ant Colony Optimization - Methods and Applications

www.intechopen.com

Ant Colony Optimization - Methods and Applications

Edited by Avi Ostfeld

ISBN 978-953-307-157-2

Hard cover, 342 pages

Publisher InTech

Published online 04, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Ants communicate information by leaving pheromone tracks. A moving ant leaves, in varying quantities, some

pheromone on the ground to mark its way. While an isolated ant moves essentially at random, an ant

encountering a previously laid trail is able to detect it and decide with high probability to follow it, thus

reinforcing the track with its own pheromone. The collective behavior that emerges is thus a positive feedback:

where the more the ants following a track, the more attractive that track becomes for being followed; thus the

probability with which an ant chooses a path increases with the number of ants that previously chose the same

path. This elementary ant's behavior inspired the development of ant colony optimization by Marco Dorigo in

1992, constructing a meta-heuristic stochastic combinatorial computational methodology belonging to a family

of related meta-heuristic methods such as simulated annealing, Tabu search and genetic algorithms. This

book covers in twenty chapters state of the art methods and applications of utilizing ant colony optimization

algorithms. New methods and theory such as multi colony ant algorithm based upon a new pheromone

arithmetic crossover and a repulsive operator, new findings on ant colony convergence, and a diversity of

engineering and science applications from transportation, water resources, electrical and computer science

disciplines are presented.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shinichi Shirakawa, Shintaro Ogino, and Tomoharu Nagao (2011). Automatic Construction of Programs Using

Dynamic Ant Programming, Ant Colony Optimization - Methods and Applications, Avi Ostfeld (Ed.), ISBN: 978-

953-307-157-2, InTech, Available from: http://www.intechopen.com/books/ant-colony-optimization-methods-

and-applications/automatic-construction-of-programs-using-dynamic-ant-programming

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

