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Continuous Dynamic Optimization

Walid Tfaili
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1. Introduction

In this chapter we introduce a new ant colony algorithm aimed at continuous and dynamic
problems. To deal with the changes in the dynamic problems, the diversification in the ant
population is maintained by attributing to every ant a repulsive electrostatic charge, that
allows to keep ants at some distance from each other. The algorithm is based on a continuous
ant colony algorithm that uses a weighted continuous Gaussian distribution, instead of the
discrete distribution, used to solve discrete problems. Experimental results and comparisons
with two competing methods available in the literature show best performances of our new
algorithm called CANDO on a set of multimodal dynamic continuous test functions.
To find the shortest way between the colony and a source of food, ants adopt a particular
collective organization technique (see figure 1). The first algorithm inspired from ant colonies,
called ACO (refer to Dorigo & Gambardella (1997), Dorigo & Gambardella (2002)), was
proposed as a multi-agent approach to solve hard combinatorial optimization problems. It
was applied to discrete problems like the traveling salesman, routing and communication
problems.

(a) When the foraging starts, the probability that
ants take the short or the long path to the food
source is 50%.

(b) The ants that arrive by the short path return
earlier. Therefore, the probability to take again the
short path is higher.

Fig. 1. An example illustrating the capability of ant colonies of finding the shortest path, in
the case there are only two paths of different lengths between the nest and the food source.
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2 Ant Colony Optimization

Some ant colony techniques aimed at dynamic optimization have been described in the
literature. In particular, Johann Dréo and Patrick Siarry introduced in Dréo & Siarry (2004);
Tfaili et al. (2007) the DHCIAC (Dynamic Hybrid Continuous Interacting Ant Colony)
algorithm, which is a multi-agent algorithm, based on the exploitation of two communication
channels. This algorithm uses the ant colony method for global search, and the Nelder &
Mead dynamic simplex method for local search. However, a lot of research is still needed to
obtain a general purpose tool.
We introduce in this chapter a new dynamic optimization method, based on the original ACO.
A repulsive charge is assigned to every ant in order to maintain diversification inside the
population. To adapt ACO to the continuous case, we make use of continuous probability
distributions.
We will recall in section 2 the biological background that justifies the use of metaheuristics,
and more precisely those inspired from nature, for solving dynamic problems. In section 3
some techniques encountered in the literature to solve dynamic problems are exposed. The

principle of ant colony optimization is resumed in section 4. We describe our new method in
section 5. Experimental results are reported in section 6. We conclude the chapter in section 7.

2. Biological background

In the late 80’s, a new research domain in distributed artificial intelligence has emerged,
called swarm intelligence. It concerns the study of the utility of mimicking social insects for
conceiving new algorithms.
In fact, the ability to produce complex structures and find solutions for non trivial problems
(sorting, optimal search, task repartition . . . ), using simple agents having neither a global view
of their environment nor a centralized control or a global strategy, has intrigued researchers.
Many concepts have then been defined, like auto-organization and emergence. Computer
science has used the concepts of auto-organization and emergence, found in social insects
societies, to define what we call swarm intelligence.
The application of these metaphors related to swarm intelligence to the design of methods
and algorithms shows many advantages:

– flexibility in dynamic landscapes,

– better performance than with isolated agents,

– more reliable system (the loss of an agent does not alter the whole system),

– simple modeling of an agent.

Nevertheless certain problems appear:

– difficulty to anticipate a problem solution with an emerged intelligence,

– formulation problem, and convergence problem,

– necessity of using a high number of agents, which induces conflict risks,

– possible oscillating or blocking behaviors,

– no intentional local cooperation, which means that there is no voluntary cooperative
behaviors (in case of emergence).

One of the major advantages of algorithms inspired from nature, such as the ant colony
algorithm, is flexibility in dynamic environments. Nevertheless few works deal with
applications of ant colony algorithms to dynamic continuous problems (see figure 2). In the
next section, we will briefly expose some techniques found in the literature.

14 Ant Colony Optimization - Methods and Applications
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Continuous Dynamic Optimization 3

3. Some techniques aimed at dynamic optimization

Evolutionary algorithms were largely applied to the dynamic landscapes, in the discrete case.
Jürgen Branke (refer to Branke (2001), Branke (2003)) classifies the dynamic methods found in
the literature as follows:

1. The reactive methods (refer to Grefenstette & Ramsey (1992), Tinos & de Carvalho (2004)),
which react to changes (i.e. by triggering the diversity). The general idea of these methods
is to do an external action when a change occurs. The goal of this action is to increase
the diversity. In general the reactive methods based on populations loose their diversity
when the solution converges to the optimum, thus inducing a problem when the optimum
changes. By increasing the diversity the search process may be regenerated.

2. The methods that maintain the diversity (refer to Cobb & Grefenstette (1993), Nanayakkara
et al. (1999)). These methods maintain the diversity in the population, hoping that, when
the objective function changes, the distribution of individuals within the search space
permits to find quickly the new optimum (see Garrett & Walker (2002) and Simões & Costa
(2001)).

3. The methods that keep in memory ”old” optima. These methods keep in memory the
evolution of different optima, to use them later. These methods are specially effective when
the evolution is periodic (refer to Bendtsen & Krink (2002), Trojanowski & Michalewicz
(2000) and Bendtsen (2001)).

4. The methods that use a group of sub-populations distributed on different optima (refer to
Oppacher & Wineberg (1999), Cedeno & Vemuri (1997) and Ursem (2000) ), thus increasing
the probability to find new optima.

Michael Guntsch and Martin Middendorf solved in Guntsch & Middendorf (2002a) two
dynamic discrete combinatorial problems, the dynamic traveling salesman problem (TSP),
and the dynamic quadratic assignment problem, with a modified ant colony algorithm. The
main idea consists in transferring the whole set of solutions found in an iteration to the next
iteration, then calculating the pheromone quantity needed for the next iteration.
The same authors proposed in Guntsch & Middendorf (2002b) a modification of the way in
which the pheromone is updated, to permit keeping a track of good solutions until a certain
time limit, then to explicitly eliminate their influence from the pheromone matrix. The method
was tested on a dynamic TSP.
In Guntsch & Middendorf (2001), Michael Guntsch and Martin Middendorf proposed three
strategies; the first approach allows a local re-initialization at a same value of the pheromone
matrix, when a change is detected. The second approach consists in calculating the value
of the matrix according to the distance between the cities (this method was applied to the
dynamic TSP, where a city can be removed or added). The third approach uses the value of
the pheromone at each city.
The last three strategies were modified in Guntsch et al. (2001), by introducing an elitist
concept: the best ants are only allowed to change the pheromone at each iteration, and when
a change is detected. The previous good solutions are not forgotten, but modified as best as
possible, so that they can become new reasonable solutions.
Daniel Merkle and Martin Middendorf studied in Merkle & Middendorf (2002) the dynamics
of ACO, then proposed a deterministic model, based on the expected average behavior of ants.
Their work highlights how the behavior of the ants is influenced by the characteristics of the
pheromone matrix, which explains the complex dynamic behavior. Various tests were carried

15Continuous Dynamic Optimization
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4 Ant Colony Optimization

out on a permutation problem. But the authors did not deal with really dynamic problems.
In section 5 we will present a new ant colony algorithm aimed at dynamic continuous
optimization.

4. From nature to discrete optimization

Artificial ants coming from the nest pass through different paths until all paths are visited
(figure 1). Pheromones have equal value initially. When coming back from the food source,
ants deposit pheromone. The pheromone values are updated following the equation:

τi = τi +
Q

li

with Q a constant and li the length of the path, which means that the new pheromone value is
inversely proportional to the path length. A single trajectory from the nest to the food source
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(b) time t2 > t1

Fig. 2. Plotting of a dynamic test function representing local optima that change over time.
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Continuous Dynamic Optimization 5

(a) At the beginning. (b) Choosing a path. (c) A complete path.

Fig. 3. An example showing the construction of the solution for a TSP problem with four
cities.

is a complete construction of a solution. The process is iterated. The choice of a path is done
following the probability :

Pei =
τi

∑
n
i=1 τi

Let us consider an example (figure 3); an ant will choose its path according to three
probabilities :

Pe1 =
τ1

τ1 + τ2 + τ3
Pe2 =

τ2

τ1 + τ2 + τ3
Pe3 =

τ3

τ1 + τ2 + τ3

If we suppose that l1 < l2 < l3, then τ1 > τ2 > τ3, which implies that Pe1 > Pe2 > Pe3 . The chosen
path will be e1. To prevent the pheromone value from increasing infinitely and to decrease the
importance of some solutions, the pheromone values are decreased (evaporated) with time
following the equation:

τi = τi.(1 − ρ) with ρ ∈ [0,1]

where ρ is a pheromone regulation parameter; by consequence this parameter will influence
the convergence speed towards a single solution.
Ant colony algorithms were initially dedicated to discrete problems (the number of variables
is finite), in this case we can define a set of solution components; the optimal solution for
a given problem will be an organized set of those components. We consider the Traveling
Salesman Problem “TSP” : the salesman has to visit all the N cities and must not visit a city
more than once, the goal is to find the shortest path. In practice, the TSP can be represented
by a connected graph (a graph where nodes are interconnected). Nodes represent the N cities
with i = {1, ..., N} and N the total number of nodes. A path between two nodes (i.e. Ni and Nj)
is denoted by eij. So a solution construction consists in choosing a starting node (city), adding
to the current partial solution a new node according to a certain probability and repeating the
process until the components number is equal to N. In discrete problems, solutions are not
known in advance, which means that pheromones cannot be attributed to a complete solution,
but to solution components.

17Continuous Dynamic Optimization
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6 Ant Colony Optimization

Fig. 4. Every ant constructs a complete solution which includes n dimensions.

5. CANDO: charged ants for continuous dynamic optimization

For problems with discrete variables, problem components are finite, therefore the pheromone
values can be attributed directly to solution components. A deterministic solution to a discrete
problem exists, even if its search may be expensive in calculation time. But for continuous
problems, pheromone values cannot be attributed directly to solution components. The
approach that we use is a diversification keeping technique (refer to Tim Blackwell in

Blackwell (2003)), that consists in attributing to each ant an electrostatic charge, ai =
k

∑
l=1;l �=i

ail

ail =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

QiQl

|xi − xl |3
(xi − xl) if Rc ≤ |xi − xl | ≤ Rp

QiQl

Rc
2|xi − xl |

(xi − xl) if |xi − xl | < Rc

0 if Rp < |xi − xl |
where Qi and Ql are the initial charges of ants i and l respectively, |xi − xl | is the Euclidean
distance, Rp and Rc are the ”perception” and the ”core” radius respectively (see figure ??).
The perception radius is attributed to every ant, while the core radius is the perception radius
of the best found ant in the current iteration. These charge values can be positive or negative.
Our artificial ants are dispersed within the search space (see figure ??), the values of charges
change during the algorithm execution, in function of the quality of the best found solution.
The adaptation to the continuous domain that we use was introduced by Krzysztof Socha
Socha (2004). The algorithm iterates over a finite and constant ant population of k individuals,
where every ant represents a solution or a variable Xi, with i = {1, ...,n}, for a n dimensional
problem. The set of ants can be presented as follows (see figure 4) :
k is the ants number and n is the problem dimension. At the beginning, the population
individuals are equipped with random solutions. This corresponds to the pheromone

18 Ant Colony Optimization - Methods and Applications

www.intechopen.com



Continuous Dynamic Optimization 7

initialization used for discrete problems. At each iteration, the new found solutions are added
to the population and the worst solutions are removed in equal number; this corresponds to
the pheromone update (deposit / evaporation) in the classical discrete case, the final goal is
to bias the search towards the best solutions.
The construction of a solution is done by components like in the original ACO algorithm. For
a single dimension (for example dimension j), an ant i chooses only one value (the jth value of
the vector < Xi

1, Xi
2, . . . , Xi

j, . . . , Xi
n >). Every ant has a repulsive charge value, and a weighted

Gaussian distribution. The choice of a single ant for a given dimension is done as follows: an
ant chooses one of the Gaussian distributions according to its perception radius following the
probability :

pi
j =

wi
j

∑
k
l=1 wi

l

Once a single Gaussian distribution is chosen, the ant i generates a random value according
to the distribution:

G(Xi
j) =

1

σj

√
2π

· e
− (x−µj )

2

2.σ2
j

where µ and σ are the mean and the standard deviation vectors respectively. For a problem
with n dimensions, the solution construction is done by dimension, which means that every
solution component represents exactly one dimension. While the algorithm proceeds on a
dimension, other dimensions are left apart.
The final algorithm is presented in Algorithm 1:

Algorithm 1 Continuous charged ant colony algorithm

While stop criteria are not met do
For 1 to m ants do

Calculate the ai value for the ant i
Ant movement based on the charges values of neighbors
s0 = φ

Repeat for each of n dimensions

Choose a single distribution G(Xi
j) only among neighbors according to pi

j

Choose randomly the Xi
j value using the chosen G(Xi

j)

si = si ⋃{Xi
j}

End
Update ant charge based on the best found solution
Update the weight (pheromone) based on the best found solution

End
Choose the best solution among the m ants
Choose the best solution among current and old solutions

End while
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8 Ant Colony Optimization

6. Experimental results

CANDO eACO DHCIAC

AbPoP 4.27(4.02) 4.34(4.15) 4.09(3.86)
AbVP 11.54(5.2) 12.03(5.45) 9.73(3.49)
APhL 0.29(4.07) 0.39(4.1) 0.38(4.18)
OVP 1.78(8.09) 1.84(9.11) 1.97(9.14)
OPoL 12.3(0.37) 13.61(0.42) 10.62(0.14)
AVP 4.77E-005(0) 5.43E-005(0) 6.54E-005(0)

APoL 2.87(2.24) 2.91(2.4) 2.42(2.05)

Table 1. Comparison of the error and, in brackets, the standard deviation related to the value
for CANDO, eACO and DHCIAC (best results are in bold).

CANDO eACO DHCIAC

AbPoP 0.043(4.29) 0.06(4.50) 0.04(3.99)
AbVP -0.29(2.98) -0.37(3.01) -0.21(2.54)
APhL -3.04(1.56) -3.37(1.9) -3.29(1.7)
OVP 24.01(43.14) 28.8(47.9) 31.49(52.76)
OPoL -98.01(55.43) -98.9(56.2) -92.95(50.1)
AVP -17(19.6) -17.39(19.7) -18(21.34)

APoL -7.02(3.13) -7.19(3.25) -5.8(2.96)

Table 2. Comparison of the error and, in brackets, the standard deviation related to the
position X1 value for CANDO, eACO and DHCIAC (best results are in bold).

Tests (figures 5, 6 and 7) were performed using the Open Metaheuristic project platform (see
Dréo et al. (2007) and Dréo et al. (2005) for more information). We used a set of dynamic
continuous test functions that we introduced in Dréo et al. (2007). Adding electrostatic charges
to the ants has enhanced the found solution on the totality of the dynamic test functions (see
tables 1, 2 and 3). We tested the competing algorithm eACO on the same dynamic functions to
make a comparison with our approach. Our algorithm outperformed the classical algorithm
eACO. This is due mainly to the continuous diversification in the search space over time. Ant
electrostatic charges prevent ants from crowding around the found solutions thus preventing
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Fig. 5. Value and position errors results on the dynamic function AbPoP (All but Position
Periodic), based on the static Morrison function.
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CANDO eACO DHCIAC

AbPoP -0.91(2.74) -0.97(2.81) -0.8(2.56)
AbVP -0.36(2.69) -0.39(2.64) -0.27(2.62)
APhL -3.02(1.51) -3.24(1.63) -3.18(1.79)
OVP 13.7(28.4) 14.02(30.05) 15.55(31.36)
OPoL -98.1(43.06) -98.9(45) -97.91(40.16)
AVP -16.5(18.3) -18.84(21.3) -18.79(20.15)

APoL -6.7(3.05) -7.04(3.27) -5.9(2.88)

Table 3. Comparison of the error and, in brackets, the standard deviation related to the
position X2 value for CANDO, eACO and DHCIAC (best results are in bold).

from a premature convergence. We also notice that CANDO shows better performance than
DHCIAC on the functions having many optima, due to the fact that charged ants form groups
around different optima, which permits a better tracking of the changing optima, while
DHCIAC converges more quickly on the dynamic functions with single optimum, due to
the local search (through the Nelder-Mead simplex method). We notice that CANDO unlike
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10 Ant Colony Optimization

DHCIAC does not use communication between ants and constructs the solution iteratively,
which is the essence of the ant colony algorithms.

7. Conclusion

We presented in this chapter a new ant colony algorithm aimed at solving dynamic continuous
optimization problems. Very few works were performed until now to adapt the ant colony
algorithms to dynamic problems, and most of them concern only the discrete case. To deal
with dynamic problems, we chose to keep ants simple and reactive, the final solution being
obtained only through a collective work. The new algorithm consists in attributing to every
ant a repulsive electrostatic charge, that is a function of the quality of the found solution.
The adaptation of the ant colony algorithm to the handling of continuous problems is done
by replacing the discrete probability distribution by a continuous one. This approach is
interesting because it is very close to the original ACO. Experimental results on a set of
dynamic continuous test functions proved the effectiveness of our new approach.
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pheromone on the ground to mark its way. While an isolated ant moves essentially at random, an ant

encountering a previously laid trail is able to detect it and decide with high probability to follow it, thus

reinforcing the track with its own pheromone. The collective behavior that emerges is thus a positive feedback:

where the more the ants following a track, the more attractive that track becomes for being followed; thus the

probability with which an ant chooses a path increases with the number of ants that previously chose the same

path. This elementary ant's behavior inspired the development of ant colony optimization by Marco Dorigo in

1992, constructing a meta-heuristic stochastic combinatorial computational methodology belonging to a family

of related meta-heuristic methods such as simulated annealing, Tabu search and genetic algorithms. This

book covers in twenty chapters state of the art methods and applications of utilizing ant colony optimization

algorithms. New methods and theory such as multi colony ant algorithm based upon a new pheromone

arithmetic crossover and a repulsive operator, new findings on ant colony convergence, and a diversity of

engineering and science applications from transportation, water resources, electrical and computer science

disciplines are presented.
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