
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



12 

Coherent Radiation Generation and 
Amplification in Erbium Doped Systems 

Sterian Andreea Rodica 
University Politehnica of Bucharest, 

 Romania 

1. Introduction  

The erbium doped fiber systems results into important advantages for information 

processing and transmission like: possibility of easy integration, highly efficiency and gain, 

immunity to crosstalk, low noise and high saturation output power (Agrawal, 1995 & 1997; 

Desurvire, 1995; Sterian, 2006).         

During the last years, they have been published many studies carrying out the improving 

and optimization of the coherent optical systems by "computer experiments". Based on some 

computational models known in the literature, this chapter proposes to present the main 

author's results obtained by numerical simulation concerning some coherent optical 

amplifier and laser systems. 

Will be presented firstly the computational model which govern the amplification regime of 

an uniform doped optical fiber under the form of a system of the nonlinear transport 

coupled equations, respectively for the signal and for the pumping. This system was used 

for numerical simulation of the amplification phenomena by a Runge - Kutta type method 

(Agrawal, 1995; Sterian, 2006; Press et al., 1992).     

The study continues with the computational model presentation used for numerical 

analyses of the laser system doped with Er3+ ions, both of the crystal type and of the optical 

fiber laser type (Pollnau et al., 1996; Maciuc et al., 2001; Sterian & Maciuc, 2003).     

The main problems studied by numerical simulation, using these models known in 

literature are: the amplification, the laser efficiency and threshold for different optical 

pumping wavelengths, the dependence of the output optical power on the levels life time, 

the influence of the host materials on the output power and the time dependent phenomena, 

stability and nonchaotic regime of operation (Maciuc et al., 2001; Pollnau et al., 1994).        

We realized the numerical simulation of the erbium doped fiber amplifier concerning the 

functional and constructive parameters. It was demonstrated that for the Er3+ doped fiber 

laser, the optimum operation condition are obtained for ǌ = 791 nm, when the upper  laser 

level is directly pumped but in the presence of the „colaser“ process which improves  two 

times the laser efficiency for ǌ = 3 µm. 

The Er3+ laser system functionment and optimization was studied for different host material, 

using 3D numerical simulation to take into account the characteristic parameters variations 

in the range of values resulting from experience; the material selection recommends  as 

efficient materials LiY F8 and BaY F8. 
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We also put into evidence the existence of a strong interdependence between active medium 

parameters having important role in the designing of the erbium laser systems with given 

functional parameters. 

We demonstrated the stable, nonchaotic operation of the analyzed laser systems and the 

modulation performance of them using the communications theory methods. 

For the erbium doped fiber laser we explained the complex dynamics of this type of device 

by simulating the time dependence of the output power correlated with the corresponding 

changes in the populations of the implied levels. 

Another author's numerical simulations refers to nonlinear effects in optical fibers systems 

(Sanchez   et al., 1995; Ninulescu & Sterian, 2005; Ninulescu et al., 2006;). Self - pulsing and 

chaotic dynamics are studied numerically in the rate equations approximation, based on the 

ion - pair formation phenomena (Sanchez et al., 1993; Sterian & Ninulescu, 2005; Press et al., 

1992). 

The developed numerical models concerning the characterization and operation of the 

EDFA systems and also of the laser systems, both of the "crystal type" or "fiber type" 

realized in Er3+ doped media and the obtained results are consistent with the existing data in 

the literature. 

That was possible due to the valences of the computer experiment method which permits a 

complex study taking into account parameters intercorrelations by simulating experimental 

conditions, as have been shown. 

The used fourth order Runge - Kutta method for the numerical simulation demonstrates the 

importance of the "computer experiments" in the designing, improving and optimization of 

these coherent optical systems for information processing and transmission (Stefanescu et 

al., 2000, 2002, 2005; Sterian, 2002; Sterian, 2007).                  

Some new feature of the computer modeled systems and the existence of new situations 

have been put into evidence, for designers utility in different applications (Petrescu, 2007; 

Sterian, 2008). Our results are important also for the optimization of the functioning 

conditions of this kind of devices. 

2. Fiber amplifier 

2.1 Transport equations for signal and pumping 

Let us consider an optical fiber uniformly doped, the concentration of the erbium ions being 

0N . The pumping is done with a laser radiation having pλ  wavelength and the pumping 

power pP , the absorption cross - section being a
pσ . The population densities of the atoms on 

each of the three levels involved in laser process are: ( ) ( )1 2, , ,N t z N t z  respectively ( )3 ,N t z  

which verify the equations: 

  ( )3 , 0N t z ≅   (1) 

  ( )1 ,N t z + ( )2 0,N t z N= . (2) 

The necessary condition for radiation amplification in this kind of systems is as in the laser 
case the population inversion. 

In the next presentation we refer to the energy levels diagram presented in figure 1 where: 
a
sσ  is the absorption cross-section for the signal; e

sσ  is the stimulated emission cross-section 
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corresponding to the signal; a
pσ  is the absorption cross-section for the pumping radiation 

and τ  is the relaxation time by spontaneous emission. 
 

 

Fig. 1. The diagram of the energy levels involved in radiation amplification 

For this system of energy levels on can write three rate equations: one for the population of 
the E2 level and two transport equations for the fluxes of the signal and pumping. These rate 
equations are respectively (Agrawal, 1995):           

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 22
2

, , , , , ,
, ;

a a e
p p s s s s

p s s

N t z I t z N t z I t z N t z I t zN
N t z

t h h h

σ σ σ
ν ν τ ν
⋅ ⋅ ⋅∂

= + − −
∂

 (3) 

 ( ) ( ) ( ) ( )1

1
, , , , ;a

p p p pI t z I t z N t z I t z
c t z

σ∂ ∂
⋅ = − − ⋅ ⋅
∂ ∂

 (4) 

  ( ) ( ) ( ) ( ) ( ) ( )2 1

1
, , , , , , ;e a

s s s s s sI t z I t z N t z I t z N t z I t z
c t z

σ σ∂ ∂
⋅ = − + ⋅ ⋅ − ⋅ ⋅
∂ ∂

 (5) 

where: 

( ),a
p p

p
p

I t z
W

h

σ

ν

⋅
=  is the absorption rate for the pumping; 

( ),a
s sa

s
s

I t z
W

h

σ
ν

⋅
=  - is the 

absorption rate for the signal; 
( ),e

s se
s

s

I t z
W

h

σ
ν

⋅
=  - is the stimulated emission rate; 

1

τ
 - is the 

spontaneous emission rate; a
pσ ( )1 ,N t z⋅  - is the rate of pumping diminishing by absorption; 

( )2 ,e
s N t zσ ⋅  - rising rate of the signal by stimulated emission and ( )1 ,a

s N t zσ ⋅  - is the rate of 

signal diminishing by absorption. (It admit that a e
s s pW W W= = ). 

In the same time the initial condition are: 

 ( ) ( ),0p pI t I t=  (6) 

Transfer of excitation
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 ( ) ( ),0s sI t I t= . (7) 

If the next conditions are fulfilled: 

 ( )2 , 0N t z
t

∂
=

∂
, (8) 

 ( ) ( ),0 , 0p pI t I t z
t t

∂ ∂
= =

∂ ∂
, (9) 

 ( ) ( ),0 , 0,s sI t I t z
t t

∂ ∂
= =

∂ ∂
 (10) 

one obtain the steady state equations: 

 
( ) ( ) ( ) ( ) ( ) ( )1 1 22

, , , , , ,
0

a a e
p p s s s s

p s s

N t z I t z N t z I t z N t z I t zN

h h h

σ σ σ
ν ν τ ν

⋅ ⋅ ⋅
+ − − = , (11) 

 ( ) ( ) ( )1, , ,a
p p pI t z N t z I t z

z
σ∂

= − ⋅ ⋅
∂

, (12) 

 ( ) ( ) ( ) ( ) ( )2 1, , , , ,e a
s s s s sI t z N t z I t z N t z I t z

z
σ σ∂

= ⋅ ⋅ − ⋅ ⋅
∂

. (13) 

By eliminating of the populations ( )1 ,N t z  and ( )2 ,N t z , it results the equivalent system of 

nonlinear coupled equations: 

 0

d

d 1

a a
p p s s

p p sa
p p a a e

p p s s s s

p s s

I I

I h h
I N

z I I I

h h h

σ σ
ν ν

σ
σ σ σ
ν ν τ ν

⋅ ⋅
+

= − ⋅ ⋅
⋅ ⋅ ⋅

+ + +

, (14) 

 0

d
1

d 1

a a
p p s s

e a
p sas s s

s s a a a e
s p p s s s s

p s s

I I

h hI
I N

z I I I

h h h

σ σ
ν νσ σσ

σ σ σ σ
ν ν τ ν

⎡ ⎤⋅ ⋅⎢ ⎥+
⎢ ⎥+

= ⋅ ⋅ ⋅ −⎢ ⎥
⋅ ⋅ ⋅⎢ ⎥+ + +⎢ ⎥

⎣ ⎦

. (15) 

In the upper equations, there are involved the parameters: 346,626 10 Jsh −= ⋅  - the Planck 

constant; 82,99 10 m/sc = ⋅  - the light velocity in vacuum; 210 sτ −=  - the relaxation time for 

spontaneous emission; 16 22 10 ma
pσ −= ⋅  -the absorption cross-section for pumping; 

16 25 10 ma
sσ

−= ⋅  -the absorption cross-section for signal; 15 27 10 me
sσ

−= ⋅  -the stimulated 

emission cross-section for signal; 9980 10 mpλ
−= ⋅  - the pumping radiation wavelength; 

91550 10 msλ
−= ⋅  - the signal radiation wavelength; L  - the amplifier length; 310 mz −Δ =  - 

the quantization step in the long of the amplifier. We consider also the parameters: 
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( )
1 1

18 18; ; 4,947 10 ; 7,824 10
p s

hc hcα β α β
λ λ

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟= = = ⋅ = ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. 

2.2 Numerical simulation 

Numerical modeling of the upper rate equations was realized using the MATHLAB 

programming medium. 

The base element of the program was the function ode 45, which realize the integration of the 

right side expressions of the nonlinear coupled equations using Runge - Kutta type 

methods, for calculation time reducing. 

The program was applied for many values of the amplifier length for each of them resulting 

different sets of results, for the photon fluxes, both for the signal and pumping as well as for 

the gain coefficients and signal to noise ratio. 

From the obtained results by numerical integration of the transport equations, it results that 

the intensity of the output signal rise with the amplifier length but the pumping diminish in 

the some time. The calculated gain coefficients of the amplifier have a similar variation as 

was expected. We observe also the rising of the signal to noise ratio, resulting an improving 

of the amplifier performances (Sterian, 2006).                          

The obtained value of the gain coefficient for the signal, of the 40 dB is similar to published 

values (Agrawal, 1995) So that, the results can be very useful for designers, for example, to 

calculate the optimum length of the amplifier for maximum efficiency. 

3. Laser system in erbium doped active media 

3.1 The interaction phenomena and parameters 

We analyze the laser systems with Er3+ doped active media by particularizing the models 

and the method of computer simulation for the case of the Er3+ continuous wave laser which 

operate on the 3Ǎm wavelength. This laser system is interesting both from theoretical and 

practical point of view because the radiation with 3Ǎm wavelength is well absorbed in 

water. 

For this type of laser system don't yet completely are known the interaction mechanisms, in 

spite of many published works. 

Quantitative evaluations by numerical simulations are performed, refering to the 

representative experimental laser with Er3+:LiYF4, but we analyse also the codoping 

possibilities of the another host materials: Y3Al5O12 (YAG), YAIO3, Y3Sc2Al2O12 (YSGG) and 

BaY2F8. 

The energy level diagram for the Er3+:LiYF4 system and the characteristics processes which 

interest us in that medium are presented in figure 2. 

The energy levels of the Er3+ ion include: the ground state in a spectroscopic notation 4
15/2I , 

the first six excited levels 4 4 4 4
13/2 11/2 9/2 9/2, , ,I I I F , the thermally coupled levels 

4 2
9/2 11/2S H+  and the level 4

7/2F . 
The possible mechanisms for operation in continuous wave on 3Ǎm of this type of 
amplifying media are (Pollnau et al., 1996):  

a. the depletion of the lower laser level by absorption in excited state (ESA) 
4 2

13/2 11/2I H→  for pumping wavelength of 795 nm; 
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Fig. 2. The energy diagram of the Er3+ ion and the characteristic transitions 

b. the distribution of levels excitation 4
3/2S  and 2

11/2H  between laser levels due to cross 

relaxation processes ( ) ( )4 2 4 4 4
9/2 11/2 15/2 9/2 19/2, ,S H I I I+ →  and multiphoton relaxation 

4 4
9/2 11/2I I→ ; 

c. the depletion of the lower laser level and enrichment of the upper laser level due to up-

conversion processes ( ) ( )4 4 4 4
13/2 13/2 15/2 9/2, ,H I I I→  and multiphoton relaxation 

4 4
9/2 11/2I I→ ; 

d. the relatively high lifetime for the upper laser level in combination with low branching 
ratio of the upper laser level to lower laser level. 

These mechanisms, separately considered can't explain satisfactory the complex behavior of 
the erbium doped system, as has been shown (Pollnau et al., 1996;  Maciuc et al., 2001).             
That is way it is necessary to put into evidence the most important parameters of the system 
and to clarify the influence of these non-independent parameters on the amplification 
conditions as well as the determining the optional conditions of operation. 

The levels 4
11/2H  and 4

3/2S  being thermally coupled, will be treated as combined a level, 

having a Boltzmann type distribution of the populations. 

For numerical simulation the parameters of the Er3+:LiYF4 were considered because that 

medium presents a high efficiency for 3Ǎm  continuous wave operation, if the pumping 

wavelength is 970nmλ =  on the upper laser level 4
9/2I , or on the level 4

11/2I  in the case of 

the pumping wavelength 970nmλ = . 

The Active Medium Parameters. Corresponding to the energy levels diagram presented in 

figure 2, the lifetimes of the implied levels, for low excitations and dopant concentrations 

have the values: 1 10msτ = ; 2 4,8msτ = ; 3 6,6 sτ μ= ; 4 100 sτ μ= ; 5 400 sτ μ=  and 

6 20 sτ μ= . 
Just the variations of these intrinsic lifetimes due to ion-ion interactions or ESA will be 
considered in the rate equations. 
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The radiative transitions on the levels 4
3/2S  and 2

11/2H  are calculated taking into account 

the Boltzmann contributions of these levels for 300K: 0,935 respectively 0,065 for each 

transition. 

The nonradiative transitions are described through the transition rates ,i NRA  of the level i, 

calculated with formula: 

 
1

1
,

0

i

i NR i ij
j

A Aτ
=−

−

=
= − ∑ , (16) 

where ijA  are the radiative transition rates from level i to level j. In the same time, the 

branching rations ijβ  of the level i through the another lower levels are given by: 

 ijβ  = ( ) 1
,ij i NR iA A τ −+ , for 1i j− =  (17) 

respectively: 

 ijβ  = 
1

ij

i

A

τ −
,  for 1i j− > . (18) 

The values of the branching ratios have been calculated (Desurvire, 1995; Pollnau et al., 
1996). 
The considered ion-ion interaction processes are: 

 

( ) ( )
( ) ( )
( ) ( )

4 4 4 4
13/2 13/2 15/2 9/2

4 4 4 4
11/2 11/2 15/2 7/2

4 2 4 4 4
3/2 11/2 15/2 9/2 13/2

, ,

, ,

, , , ,

I I I I

I I I F

S H I I I

↔

↔

↔

 (19) 

being characterized by the next values of the transition rates: 

1 23 3 1 1 23 3 1
11 11 22 223 10  m s ; 1,8 10  m s ;W W W W− − − − − −= = ⋅ = = ⋅  

1 23 3 1
50 50 2 10  m s ,W W − − −= = ⋅  

where the 50W  parameter take into account the indiscernible character of the corresponding 

relaxation processes. 

The Resonator Parameters. The resonator parameters used in the realized computer 

experiments are consistent with operational laser systems, as:  the crystal length:  l = 2 mm; 

the dopant concentration: 21 3
0 2 10 cmN −= ⋅ ; the pumping wavelength: 795nmpλ = ; we 

consider for ground state absorption (GSA) 4 4
15/2 9/2I I→  the cross section 

21 2
03 5 10 cmσ −= ⋅  and for excited state absorption (ESA), 4 4 2

13/2 3/2 11/2I S H→ + , the cross 

section 20 2
15 1 10 cmσ −= ⋅ .  

(The ESA contribution of the level 4
11/2I  was neglected for that wavelength.) 

Another considered parameter values are presented in literature, being currently used by 

researchers. 
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In the literature (Pollnau et al., 1996; Maciuc et al., 2001). we found also the values of the 

energy levels populations reported to the dopant concentration and the relative transition 

rates, for different wavelength used for pumping: 795nmλ =  and 970nmλ = . 

3.2 Computational model 

The presented model, include eight differential equations which describes the population 

densities of each Er3+ ion energy levels presented in figure 2 and the photon laser densities 

inside the laser cavity. 

We take iN  for 1,2,...,6i =  to be the population density of the i level and 0N  the 

population density of the ground state, the photonic density being φ . 
That model consisting of eight equation system is suitable for crystal laser description 

(Pollnau et al., 1994). For the fiber laser, the model must be completed with a new field 

equation to describe the laser emission on 1,7Ǎmλ =  between the fifth and the third 

excited levels. 

The rate equations corresponding to energy diagram with seventh levels, for Er3+ systems 

are presented below: 

 

 ( )
5

1 26
6 6 6 22 2 0 6

0

d
;

d
i i

i

N
R N N W N N N

t
τ −

=
= − + −∑  (20) 

 ( )
4

1 1 5 35
5 56 5 5 5 56 6 6 50 5 0 3 1

0

d
;

d
i i SE

i

N
R N R N N N W N N N N R

t
τ β τ− − →

=
= − − + − − −∑  (21) 

 
3 6 6

1 14
4 4 4 4 4 4

0 5 4

d

d
i i j i i i

i j i

N
R N R N N N

t
τ β τ− −

= = =
= − − +∑ ∑ ∑ ;  (22) 

 

( ) ( )

3 6
13

3 3 3 3 3
0 4

6
1 2 5 3

3 50 5 0 3 1 11 1 0 3
4

d

d

            ;

i i j
i j

i i i SE
i

N
R N R N N

t

N W N N N N W N N N R

τ

β τ

−

= =

− →

=

= − − +

+ + − + − +

∑ ∑

∑
 (23) 

 

( )

1 6
12

2 2 2 2 2
0 3

6
1 2

2 22 2 0 6
3

d

d

       2 ;

i i j
i j

i i i SE
i

N
R N R N N

t

N W N N N R

τ

β τ

−

= =

−

=

= − − +

+ − − −

∑ ∑

∑
 (24) 

           

( ) ( )

6
11

01 0 1 1 1 1
2

6
1 2

1 50 5 0 3 1 11 1 0 3
2

d

d

         2 ;

j
j

i i i SE
i

N
R N R N N

t

N W N N N N W N N N R

τ

β τ

−

=

−

=

= − − +

+ + − − − +

∑

∑
 (25) 
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( )

( ) ( )

6 6
10

0 0 0 50 5 0 3 1
0 1

2 2
11 1 0 3 22 2 0 6

d

d

            .

j i i i
j i

N
R N N W N N N N

t

W N N N W N N N

β τ −
= =

= − + − − +

+ − + −

∑ ∑
 (26) 

 ( )( ){ }1
21 21 2 2

d
ln 1 1 2

d 2
l

SE r
opt opt

Pl c
N R T L l

t l P l

φ φγ β τ κ−⎛ ⎞ ⎡ ⎤= + − − − − +⎜ ⎟ ⎣ ⎦⎝ ⎠
; (27) 

 ( )( ){ }
5 3 5 3

1 5 3
53 53 5 5

d
ln 1 1 2 .

d 2
l

SE r
opt opt

Pl c
N R T L l

t l P l

φ φγ β τ κ
→ →

− →⎛ ⎞ ⎡ ⎤= + − − − − +⎜ ⎟ ⎣ ⎦⎝ ⎠
 (28) 

A similar models are given in the references ( Pollnau et al., 1996;  Maciuc et al., 2001,a & b).                    

In the field equations (27) and (28), the parameters , , , , . /r opt lL T L l P Pκ  are considered the 

same for the two type of laser studied. In the equations system (20) ÷ (28) the parameters 

are: R is the pumping rate from lower levels to the higher ones; τ  is the life-times for each 

corresponding level; W  is associated with the transition rates of the ion-ion up-conversion 

and the corresponding inverse processes; - ijβ  are the branching ratios of the level i through 

the other possible levels j; SER  is the stimulated emission rate; l and optl  are the crystal 

length and the resonator length; 21γ  is an additional factor for the spontaneous radiative 

transition fraction between the levels: 4
11/2I  and 4

13/2I ; /lP P  is the of spontaneous 

emission power emitted in laser mode; , , ,rT L cκ  are the transmission of the output 

coupling mirror, the scattering losses and the diffraction - reabsorption losses respectively, c 

being the light speed in vacuum. 
The pumping rates depend on the corresponding cross-section and of the other parameters 
(Maciuc et al., 2001).                
The parameters for the lasing in an Er:LiYF4 crystal system are considered the same and for 
the fiber laser. 

3.3 Crystal laser simulation 

Laser Efficiency for Different Pumping Wavelength. In the simulation were used for 

pumping the radiations having λ = 795, 970 and 1570 nm, which are in resonance with the 

energy levels in diagram of Er3+ ion presented in figure 2. 

The pumping radiation for 795nmλ =  connect the ground state level 4
15I  with the third 

excited level 4
9/2I  and also the second level with the fifth one ( )4 4 2

13/2 3/2 11/2,I S I+ , 

processes. 

In the case of pumping radiation having 970nmλ =  the ground state absorption (GSA) 

corresponds to transition 4 4
15 11/2I I→  and excited state absorption (ESA) to 

transition 4 4
11/2 7/2I F→ . Similarly the pumping for 1530nmλ =  determine a single 

transition GSA that is 4 4
15/2 13/2I I→ . 

The dependence of the output power versus input power for different pumping wavelength 

(795 nm, 970 nm and 1530 nm) were plotted resulting the functioning thresholds and the 

slope efficiencies for each situation. 

For the crystal laser Er3+ doped, the optimum efficiency results for the direct pumping on 

the upper laser level. 
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The output power variation with the level lifetimes. The output power variation on the 

lifetimes for the upper levels having 4 5 6, ,τ τ τ  was studied for an input pump power 

5WpP =  and 795nmpλ = . 
We found that radiative and nonradiative transitions from the fifth and the sixth levels, 
improve the population difference for the laser line and determine the raising of the output 
power of them, the variation of the fourth level lifetime, being without influence for the 
output power. 

The influence of the Er3+ ion doped host material on the output power. A three 

dimensional study was done to investigate the influence in the laser output power due to 

parameters variations for the host material, using 795nmpλ = . 
The relative spontaneous transition rates were considered the same for all simulations. 
To determine the host material change influence on the laser output power the next 
variation scale of the lifetimes have been considered: 

( ) ( )1 21 15 ms, 0,4 9,6 ms,τ τ= ÷ = ÷  ( )3 0,22 22 s,τ μ= ÷  ( )4 3 300 sτ μ= ÷ , ( )5 12 1200 sτ μ= ÷  

and ( )6 0,6 60 sτ μ= ÷ . 

Similarly, the variations of the transition rates corresponding to up-conversion processes for 
different host materials are considered to span the intervals given bellow:  

( ) 21 3 1
11 0,1 300 10 cm msW − −= ÷ ⋅ , ( ) 21 3 1

22 1,8 180 10 cm msW − −= ÷ ⋅ , 

( ) 21 3 1
50 0,02 200 10 cm msW − −= ÷ ⋅ . 

For the other parameters used in the numerical simulation the published data was the main 
source of reference. 
 

 

Fig. 3. Output laser power dependence on parameters 2τ  and 11W for two values of 1τ  
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The graphs in figure 3  give the three-dimensional (3D) output power dependence versus 
lifetime of the higher level 2τ  and the "up-conversion" parameter  11W   associated to 
studied transition for two values of the 1τ  parameter: 1τ =.10 ms and 1τ = 1 ms. 
In figure 4  we show the dependence of the output power on the life time of the second 
excited level, the "up-conversion" parameter 11W and "up-conversion parameter 22W  for 
two values of this parameter: 24 3 1

22 1,8 10 m sW − −= ⋅  and 22 3 1
22 1,8 10 m sW − −= ⋅ . 

 

Fig. 4. Output laser power dependence on parameters 2τ  and 11W  for two values of 22W  

The graphs in figure 5 give a three-dimensional representation of the function 

( )3 11 1, ,laserP Wτ τ  for two values of the 1τ  parameter: 1τ =.10 ms and 1τ = 1 ms. 
The three-dimensional study of the parameters variation to increase laser output power 
showed the role of host material for high laser efficiency, checking that the decisive 
parameter is the time of life associated with the upper laser level. Selection of the materials 
having parameters in the areas of variation adopted in the analysis recommend as efficient 
solutions the fluorides: LiYF4 and BaY2F. 
Stable, non-chaotic behavior of the laser systems. A time dependence of the photon 
density in the cavity of the output power and of the implied level populations in the laser 
process was analyzed by the input parameters variations that is pumping power and the 
interaction cross-sections. For the pumping power differently step functions was 
considered. The analysis represents a satisfactory temporally description of the crystal laser 
to verify the used computational model. 
Our simulation for the time dependence confirm the stability of the continuous wave regime 
of operation of the crystal laser, after an initial transitory regime of the milliseconds order, 
which is gradually droped, from the moment we switch on the pump. 
This stable non-chaotic behavior is similar for different host materials, the used method not 
being time prohibitive for such studies. 
To understand better the obtained results, we indicate below some of the graphs plotted in 
that simulation: 3d analysis ( )11 1 2, ,P W τ τ  with 1 10msτ = ; 3d analysis ( )15 2 11, ,P Wσ τ  with 

19 2
15 10 cmσ −= ; 3d analysis ( )50 2 22, ,P W Wτ  with 24 3 1

22 1,8 10 m sW − −= ⋅ ; 3d analysis 

( )50 1 3, ,P W τ τ  with 1 10msτ = , etc. 
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Fig. 5. Output laser power dependence on parameters  3τ and 11W  for two values of 1τ   

In conclusion, the 3D study of the parameters variations to rise the output laser power put 
intro evidence the important role of the host materials, the decisively parameter being the 
lifetime associated with the upper laser level. 
By selection, other the parameters variations limits, the most efficiently media are the 
fluorides: LiYF4 and LiY2F8. 
In spite of the fact we have analyzed the problems by an original method, the results are 
consistent with the published data. 
A special mention must be made concerning the used "step-size" Runge - Kutta method which 
is rapidly and don't alterate the results obtained by classical Runge - Kutta method. 
In case of 3d analysis we used a 7 order precision and a 6 order stopping criteria. 

3.4 Fiber laser simulation 

In the fiber laser functioning, were studied almost the same problems as in the crystal laser 
case, that are: 
a. The output power thresholds and efficiencies for different values of the "colaser" 

process and in the absence of this effect. 
b. The relevance and the implications of the "colaser" process, which is specific to fiber laser 
c. The dependence of the output power on host material Er3+ doped, by variation of the 

characteristic parameters. 
d. The description of the time depended phenomena for the Er3+ doped fiber laser, 

inclusively the population dynamics. 
The principal differences between the crystal laser and fiber laser were taken into 
consideration, the most important being: 
- the existence of an extra field equation (Maciuc et al., 2001), which describes the 

colasing process in the fiber laser; 
- the absence of the “up-conversion” processes due to the low concentration of the Er3+ 

dopant. 
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The role played by the up-conversion in crystal is taken in fiber laser by pumping from the 
first and second excited level. 
The analyzed physical system was the optical fiber with ZBLAN composition, having the 
next characteristic parameters: 

- the dopant concentration: 19 3: 1,8 10 cmdN −⋅ ; the amplifier length, : 480cml ; the laser 

mod radius, mode : 3,25Ǎmr ; the pumping wavelength, : 791nmpλ ; the ground state 

absorption cross-section, 22 2
03 : 4,7 10 cmσ −⋅ ; the excited state absorption cross-section 

from the level 4
13/2 ,I  21 2

15 : 10 cmσ − ; the excited state absorption cross-section from the 

level 4
11/2 ,I  22 2

27 : 2 10 cmσ −⋅ ; the laser wavelength, : 2,71ǍmLλ ; the "colaser" 

wavelength, : 1,7Ǎmclλ ; the emission cross-section, 21 2
21 : 5,7 10 cmσ −⋅ ; the "colaser" 

cross section, 20 2
53 : 0,5  or 0,1 10 cmσ −⋅ ; the Boltzmann, 14b  and 22 : 0,113b  respectively 

0,2; the mirror transmission T: 68%; the optical resonator length, : 720cmoptl . 

The "colaser" process was studied for three different values of the "colaser" cross section: 
2 20 2

53 530 cm ; 0,5 10 cmσ σ −= = ⋅  and 20 2
53 0,1 10 cmσ −= ⋅ . 

The most important conclusions resulting from the fiber laser analysis are: 

- The optimum operating conditions are obtained for 791nmpλ = , so that the pumping 

is realized directly on the upper laser level with the cross - section 03σ . 

- The presence of the "colaser" process, improves the laser efficiency on 3Ǎm , by a 2 

factor in that cascade laser situation. The three - dimensional (3D) analysis shows the 

determinant role of the 2τ  for laser power similarly to the crystal laser, the parameters 

15σ  and 27σ  being strong correlated with the laser process, for the high values of the 

11τ . 
 

 

Fig. 6. Dependence of the output laser power both on  15σ  and  03σ  cross sections for  two 

values of  27σ .                               

The graphs  in Figure 6 shows a strong dependence of the laser power both on  15σ  and  

03σ  cross sections in terms of the high life time of the lower laser level 1τ  and a sufficiently 
low value of the effective cross section, 23 2

27 2 10 cmσ −= ⋅ . Increasing the value of the second 
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process(ESA) (Fig. 7) on obtain the same  behavior of the output power with the difference 
of a rapid increase from zero to a high value of a laser power, followed by a slow saturation.  
 

 

Fig. 7. Dependence of the output laser power both on  15σ  and  2τ  for  two values of  27σ                                

The dependence ( )15 2 27, ,P σ τ σ  represented by the graphs in figure 7, leads to the conclusions: 
- increasing of 2τ  the  laser power increases;  

- the rising  of 15σ  is favorable to laser power for 1τ = 10 ms;  

- high values of 27σ  causes low laser powers, due to the depopulation of the upper laser 

level. The study of the "colaser" process was made for three different values of effective 

"colaser" cross-section: 2
53 0 cm ;σ = 20 2

53 0,5 10 cmσ −= ⋅ and 20 2
53 0,1 10 cmσ −= ⋅ . (Note 

that ZBLAN fiber optic amplifiers require more pumping power than EDFA's  based on 
silicon dioxide.)  

Another important result is represented by the time dependent analysis of the output power 
and of the level populations, which shows a stable non - chaotic behavior as in the crystal 
laser case. 
All obtained results by numerical analysis are consistent with the data from the literature 
(Shalibeik, 2007).  

4. Nonlinear effects in optical fibers systems. 

4.1 The model 

In recent years much attention has been paid to the study of nonlinear effects in optical fiber 
lasers (Agrawal, 1995 & 1997; Desurvire, 1995).  
Self-pulsing and chaotic operation (Baker & Gollub, 1990; Abarbanel, 1996) of the EDFLs has 
been reported in various experimental conditions (Sanchez et al., 1993; Sanchez et al., 1995) 
including the case of pumping near the laser threshold. We present firstly a model for the 
single-mode laser taking into account the presence of the erbium ion pairs that act as a 
saturable absorber. 
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The nonlinear dynamics of an erbium-doped fiber laser is explained based on a simple 
model of the ion pairs present in heavily doped fibers. The single-mode laser dynamics is 
reducible to four nonlinear differential equations. Depending on the ion pair concentration, 
the pumping level and the photon lifetime in the laser cavity, numerical calculations 
predicts cw, self-pulsing and sinusoidal dynamics. The regions of these dynamics in the 
space of the laser parameters are determined. 

A modeling of the erbium laser operating around 1.55 µm has been proposed (Sanchez et al., 

1993). This considers the amplifying medium as a mixture of isolated erbium ions and 

erbium ion pairs. For an isolated ion, the laser transition takes place between the energy 

levels 4
13/2I  and 4

15/2I  (Fig. 8). The ion is pumped on some upper energy levels and it 

fastly relaxes to the level 4
13/2I . It is noteworthy that energy level 4

9/2I  is positioned above 

level 4
13/2I  at a separation approximately equal to that of the laser transition. Two 

neighboring ions interact and form an ion pair. The strength of this interaction is small (due 

to the screening effect of the 104d  electrons on the 4 f  electrons) so that the energy levels 

are practically preserved and the pair energy is the sum of the two ions energy. Because of 

the quasiresonance of levels 4
9/2I  and 4

13/2I  with the laser transition, up-conversion in an 

ion pair has a significant probability. This is followed by a fast transition back to the 4
13/2I  

level. As a result of these processes, the population inversion decreases by one without the 

emission of a photon. Thus, the laser effect due to the ion pair is explained based on three 

ionic levels. 
Based on the above picture of the active medium, in the rate equation approximation the 
laser is described by the population inversion d  of the isolated ions, the sum d+  and the 
difference d−  of populations of levels 22 and 11, and the normalized laser intensity I , that  
verify equations (Flohic et al., 1991; Sanchez et al., 1993):          
 

 

Fig. 8. Laser energy levels: (a) an isolated erbium ion and (b) an ion pair. 

 2(1 ) 2d a d dI= Λ − + −$ , (1a) 

 2 22(1 ) ( / 2)( ) (2 3 ) ,d a d a d d y d I+ + + − += − − + + −$  (1b) 

 2 22(1 ) ( / 2)( ) ,d a d a d d yd I− + + − −= Λ − − − + −$  (1c) 

www.intechopen.com



 Advances in Optical Amplifiers 

 

270 

 (1 2 )I I A x dI Axyd I−= − + − +$ . (1d) 

In the above, the time variable is expressed in units of the photon lifetime in the cavity ( Lτ ). 

The quantity x  is the fraction of ion pairs in the active medium, Λ  is the pumping 

parameter, 2 L 2/a τ τ=  and 22 L 22/a τ τ= , where 2τ  and 22τ  are the lifetimes of level 2 and 

22, respectively. The other parameters are L L/y σ σ′= , where Lσ  and Lσ ′  are the 

absorption cross-section for the laser transition in isolated ions and pairs, respectively, and 

L 0 LA Nσ τ= , where 0N  is the erbium concentration. The normalization of the laser intensity 

I  is performed in the form L L L/I i σ τ= . 

4.2 Stability analysis 

Apart from the nonlasing state (zero intensity state), the intensity Li  in a stationary state 
satisfies the third-order polynomial equation: 

 3 2
L 1 L 2 L 3 0i c i c i c+ + + = ,  (5) 

where: 

 1 22 2 2 22 2 2( 2 ) / 3 ( 2 ) / 3 / 2 (2 ) / 2c Ax a a a a y a A a= − + + + − Λ − , (6) 

2 2 2 22 22 2 2 22[ ( /6 /6 ) / ( ) / 3 ]c x a A a a a A y a A a a y= + − Λ + Λ − +  

 2
2 2 22 2 22 2 22 2( 2 ) /6 / 3 ( 2 )(2 ) /6a a a y a a y A a a a y+ + + − + Λ − , (7) 

 2 2 2
3 2 2 22 2 22 2 22 2 22 2( 2 ) /6 /6 (1 2 )(2 ) /6c a Ax a a a a y a a y a a A x a y= − Λ − Λ + − − Λ − . (8) 

The laser threshold is derived from the condition 3 0c =  that implies: 

 0
th th

2 22

1 (2 ) /( 1)

1 (2 / 2 / )

Ax y A

y a y a x

− − +
Λ = Λ

− − −
, (9) 

where: 

 0
th 2(1 1 / ) / 2A aΛ = +  (10) 

is the pumping parameter at laser threshold in the absence of the ion pairs. Numerical 

solution of eq. (5) is performed for typical parameters. We take 2 10 msτ = , 22 2τ = µs, 
24 -3

0 5 10 mN = × , 16 2
L 1.6 10 mσ −= ×  and 0.2y = . The dependence of the threshold 

pumping level on the concentration of the ion pair for two values of photon lifetime in the 

cavity is presented in Fig. 9. The increase of the laser threshold due to the presence of the ion 

pairs limits the use of the fibers in such conditions. 

Above threshold there exists one steady-state intensity given by eq. (5), the other two 

solutions being unphysical (negative). The numerical calculation of the intensity in a 

significant range of the pumping parameter (Fig.10) gives a laser intensity following a 

straight line dependence. The influence of the ion pairs is again disadvantageous and 

manifests in reducing the slope of the characteristics. 
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Fig. 9. Threshold pumping parameter vs. ion pair percentage 

 

 

Fig. 10. Laser intensity in the steady state versus the pumping strength 

 

 

Fig. 11. (a) Calculated stability diagram for EDFL. 8
L 10 sτ −= ; (b) The influence of the 

photon lifetime on the margins of the stability domains. 
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Fig. 12. Long term temporal evolution of laser intensity at the fraction 0.1x =  of ion pairs 

and the pumping level (a) 1.5r = , (b) 2.5r = , and (c) 6.6r = . 8
L 10 sτ −= . 

Linear stability investigation of the steady states (Crawford, 1991, Press, 1992) reveals the 
existence of a critical value of the ion pair percentage under which the steady state (cw) 
solution is stable whatever the pumping level. At larger concentrations of the ion pairs, the 
laser is in a steady state or self-pulsing, depending on the value of the pumping parameter 
(Fig. 11.a). The transition from the cw dynamics to a self-pulsing one takes place when two 
complex conjugate eigenvalues of the linearized system cross the imaginary axis from left to 
right, i.e., a Hopf bifurcation occurs.( Crawford, 1991). In such conditions the steady state 
solution becomes unstable and the long-term system evolution settle down on a stable limit 
cycle in phase space. 
The photon lifetime contribution to the stability diagram is presented in Fig. 11.b. This 
proves that a cavity with low losses makes it possible to preserve the cw dynamics at larger 
doping levels. 
Fig.12 clarifies the quantitative changes of the laser intensity inside the self-pulsing domain. 
At a fixed value of the ion pair concentration, the increase in pumping gives rise to pulses of 
a higher repetition rate and close to the bifurcation point the intensity becomes sinusoidal. 
Besides, pulse amplitude reaches a maximum approximately in the middle of the self-
pulsing domain. 

4.3 The two-mode erbium-doped fiber laser 

A further step in the study of the laser dynamics considers a dual wavelength operation at 
1.550 µm and 1.556 µm, treated as a two coupled laser modes (Sanchezet al., 1995).         
The nonlinear dynamics of a two-mode fiber laser is explained in terms of a classical two-
mode laser model and two additional equations for the ion-pair quantum states.  
The laser is described through six coupled differential equations. There are analyzed the 
steady-states, their dependence on the laser parameters, and the onset of the self-pulsing 
and chaotic states is pursued. 

The two modes of the laser are coupled via a cross-saturation parameter ( β ). The system is 

described through the set of coupled equations: 

 1 2 1 1 1 2(1 ) 2 ( )d a d d I Iβ= Λ − + − +$ , (2a) 

  2 2 2 2 1 2(1 ) 2 ( )d a d d I Iγ β= Λ − + − +$ ,  (2b) 
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 2 22 1 2(1 ) ( / 2)( ) (2 3 )( ),d a d a d d y d I I+ + + − += − − + + − +$   (2c) 

 2 22 1 2(1 ) ( / 2)( ) ( ),d a d a d d yd I I− + + − −= Λ − − − + − +$  (2d) 

 1 1 1 2 1 1(1 2 )( )I I A x d d I Axyd Iβ −= − + − + +$ , (2e) 

  2 2 1 2 2 2(1 2 )( )I I A x d d I Axyd Iβ −= − + − + +$ . (2f) 

In the above, 1,2I  are the normalized intensities and 1,2d  are the normalized population 
inversions of the two modes. The supplementary parameter γ  takes into account the 
anisotropy in pumping for the two modes. 

System (2) is to be investigated for typical parameters: 200Lτ = ns, 2 10τ = ms, 22 2τ = µs, 
18

0 5 10N = × cm 3− , 10
L 1.6 10σ −= × cm 3 s 1− , 0.2y = , 0.5β =  and 0.9γ = . 

There are three types of interesting stationary states: 1 2 0I I= =  (laser below threshold), 
( 1 0I > , 2 0I = ), i.e., the single-mode laser, and 1,2 0I >  (the two-mode state). The complete 
determination requires the solving of a fourth-order polynomial equation for intensity in the 
single-mode case, and a third-order polynomial equation in the two-mode case. The 
treatment of the steady-state stability is performed through the linearization of the system 
(2) around the steady-states and searching of the eigenvalues of a six-order matrix ( 
Crawford,1991; Abarbanel,1996; Ştefănescu,2002). The results are showed in Fig 13(a) for the 
parameters above and a range of ion-pair concentration in accordance with all practical 
cases. Here, (1)

thΛ  denotes the pumping parameter at the laser threshold and (2)
thΛ  is the 

pumping parameter at the switching of the weak mode (mode 2, here). We focus here on the 
two-mode operation. The pumping strength is usually expressed in the form (1)

th/r = Λ Λ .  
The steady-state intensities versus the pumping parameter are presented in figure 14. The 
straight-line dependence is followed for a large range of pumping strengths. 
The way to a stable steady-state is always through relaxation oscillations (Fig. 15).  
 
 

 

Fig. 13. Threshold pumping parameter for the laser action and two-mode states vs. ion pair 
percentage 
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Fig. 14. Steady-state intensities of the two-mode laser versus the pumping parameter, 0.1x =  

 

 

 
 

Fig. 15. (a) Transitory regime to a two-mode stationary state. 0.03x =  and 1.5r = . 

A thorough investigation of the laser dynamics in the domain where both modes are active 
seems to be a hard task. Instead, we try to find out the basics of this. For sufficiently low 
doping level, the asymptotic dynamics is a steady-state whatever the pumping parameter. 

For larger values of x , there is a range of self-pulsation dynamics. In Fig.16(a) this is 
showed by means of a bifurcation diagram, i.e., the maxima of one mode intensity is plotted 
against the pumping parameter. The dynamics in Fig. 16(a) has also been encountered in the 
case of the one-mode model (Sanchez et al., 1993) and the change from a stationary stable 
state to a self-pulsing one at 1.8r ≈  is a Hopf  bifurcation  ( Crawford, 1991).     
There exists a region of two maximum intensities, i.e., a period doubling. Temporal 
dynamics in such a case (Fig. 17) exhibits antiphase dynamics of the two laser modes. 
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A small increase of the ion-pair concentration to the value of 7% [Fig.16(c)] leads to the 
appearance of a window of a tripled period [Fig. (17c)]. Further increase of the ion-pair 
concentrations leads to a more complicated bifurcation diagram, including regions with 
multiple stable states (generalized bistability) and routes to chaotic dynamics such as the 
period-doubling route or a quasi-periodic one. 
 
 

 
 

Fig. 16. Bifurcation diagram of the strong mode intensity for relatively small ion-pair 

percentages: (a) 0.065x = , (b) 0.068x = , and (c) 0.070x = .  Figure 16(b) shows the maxima 

of intensity 1I  at a slightly larger ion-pair concentration.  

       
 

 
 

Fig. 17. Long-term temporal evolution of the laser for 1.45r =  and ion-pair concentrations 

in Fig. 6: (a) 0.065x = , (b) 0.068x = , and (c) 0.070x = . Solid line is used for the strong mode 

( 1I ) and dotted line for the weak mode ( 2I ). 

5. Conclusions 

The developed numerical models concerning the characterization and operation of the 

EDFA systems and also of the laser systems, both of the "crystal type" or "fiber type" 

realized in Er3+ doped media and the obtained results are consistent with the existing data in 
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the literature. Our results put into evidence the existence of the new situations which are 

important for the optimization of the functioning conditions for this kind of devices. 

That was due to the valences of the computer experiment method which make possible a 

complex study taking into account parameters intercorrelations by simulating experimental 

conditions, as have been shown. 

The erbium ion pairs in a laser fiber can explain the experimentally observed nonlinear 

dynamics of the system, apart from the intrinsic nonlinearity of a multiple-mode laser. The 

existence of the erbium ion pairs introduces a supplementary nonlinearity with a saturable 

absorber action (Sanchez et al.,1995). In the single-mode laser description, as well as in the 

two-mode laser the ion pairs are responsible for an increase of the laser threshold, a 

decrease of the laser gain, and self-pulsations. Depending on the laser pumping level, the 

laser self-pulsations range from an oscillatory form to a well-defined pulse-shape. The 

nonlinear dynamics is present even close to the laser threshold and does not requires large 

pumping levels. 

The nonlinear dynamics can be avoided by a choice of sufficiently low-doped fibers, such 

that the average distance between ions is large enough and the interaction between ions is 

small. It is clear that the limitation to sufficiently low-doped fibers is performed at the 

expense of using longer fibers. 
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