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1. Introduction    

Control surfaces, such as trailing-edge flaps, provide a means to dynamically alter the 
aerodynamic characteristics of aircraft for primary flight control, secondary vibration 
control, and even higher frequency noise control. While the development of several novel 
technologies has been explored, many practical implementation barriers still exist for a 
single actuation system to serve all three of these objectives. This is particularly true for 
rotorcraft, where the demands of the harsh rotary and vibratory environment are severe in 
terms of actuator force and displacement, bandwidth limitations, life cycle concerns, and 
physical volume available. Accordingly, it has been assumed that on-blade active controls of 
a rotorcraft would be subject to the most stringent requirements in the subsonic flight 
regime, and if a control surface actuation technology could survive here, it could be 
reasonably applied to a fixed wing aircraft. A brief account of the current state-of-the-art for 
rotorcraft blade controls follows.  
Helicopter rotors typically operate in a highly unsteady aerodynamic environment. In forward 
flight, the rotor blade sections experience large variations in angle-of-attack over one 
revolution. This is the primary source of performance degradation, such as high vibration and 
retreating blade stall. Actively changing the angle-of-attack of the blade sections as a function 
of blade azimuth has been shown to significantly alleviate vibration levels, as well as improve 
aerodynamic performance of the rotor (Straub et al., 2000). The change in angle-of-attack can 
be accomplished in a variety of ways. Implementation of high bandwidth hydraulic actuators 
in the rotating frame has demonstrated the ability to actively change the root pitch of the rotor 
blades and has since been demonstrated in both scale models (Lorber et al., 2001) and full scale 
tests (Arnold & Strecker, 2002). Another approach is to vary the aerodynamic forces on the 
blades by dynamically changing the geometry of the airfoil sections. This can be accomplished 
through actively controlling blade twist, airfoil camber, or through the use of trailing-edge 
flaps (Hall & Wereley, 1993). Recent advances in adaptive materials have led to a variety of 
schemes for on-blade actuation in these areas (Chopra, 2000). Some of these include 
piezoelectric innovations such as adaptive twist of the rotor blade (Chen & Chopra, 1997; Chen 
et al., 2001; Shin et al., 2005), trailing-edge flaps (Straub et al., 2001; Fulton, 2000; Fulton, 2005), 
and active camber control (Konstanzer et al., 2001; Nissly et al., 2005).  
In comparing these approaches to active rotor systems, there are potential drawbacks, 

however. For instance, implementation of hydraulic systems in the rotating frame of 
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production helicopters is a challenging task due to the complexity of the system, the 

increase in maintenance associated with the large number of moving parts, as well as the 

hydraulic slip ring, and the added on-blade mass associated with the weight of the 

hydraulic fluid and piping. Considering the active blade twist concept, there is also a large 

weight penalty due to the distributed nature of the actuators. There are also several 

unanswered questions as to whether active material solutions like piezoelectrics can survive 

in the operational environment, whether they have sufficient fatigue life for practical 

consideration, or whether they are properly scaled for operating over broad deflection and 

frequency ranges in full size rotors. Despite this, there have been numerous developments 

aimed at demonstrating the potential that active materials have for full scale rotors. Most 

notable is the piezoelectric actuator work conducted independently by Boeing and 

Eurocopter. Both using piezoelectric actuators to drive trailing-edge flaps on rotor blades, 

the Boeing development led to full scale whirl testing for vibration control (Straub et al., 

2004) and a full scale wind tunnel test for noise reduction (Straub et al., 2009), and the 

Eurocopter development led to full scale flight testing for vibration control (Roth et al., 2006; 

Dieterich et al., 2006).  

Trailing-edge flaps provide localized actuation and can generate significant control 

authority, but these discrete control surfaces do increase drag from the discontinuities and 

abrupt changes in airfoil contour. The active camber control concept alleviates this issue by 

varying the camber of the airfoil to produce a conformal shape change. There are several 

technical barriers that exist in actual implementation, such as the development of a flexible 

skin and supporting core that can withstand the harsh rotating environment of a helicopter. 

These topics are beginning to be addressed in the fixed frame, such as in unmanned air 

vehicles (Flanagan et al., 2007; Bubert et al., 2010; Olympio & Gandhi, 2010), but the 

technology has not reached the maturity level required for rotorcraft. Therefore, it appears 

that the trailing-edge flap may be the leading candidate control scheme for active rotors 

given the current state-of-the-art in practical actuation strategies.  

Using these drawbacks as motivation to investigate alternative approaches to active 

aerodynamic control, a less conventional, yet properly scalable, approach to trailing-edge 

flap actuation has been developed and tested, and it employs Pneumatic Artificial Muscles, 

or PAMs, as actuators (Kothera et al., 2010). These actuators, originally developed for 

orthotic devices in the 1950s by J.L. McKibben (Gaylord, 1958; Schulte, 1961), typically 

contract in response to an increase in internal pressure, and have been used in robotic 

applications (Tondu et al., 1994; Medrano-Cerda et al., 1995; Daerden & Lefeber, 2002). 

Typically constructed of an elastomeric bladder surrounded by a braided sleeve, the stroke 

in these low cost and light weight actuators comes from re-orientation of the stiff braid 

fibers as the bladder expands radially. Previous research with these devices has 

experimentally confirmed their applicability to trailing-edge flaps in both the fixed frame 

(Woods et al., 2007; Kothera et al., 2008; Woods et al., 2010a) and the rotating frame (Bubert 

et al., 2007; Woods et al., 2010b). The development of and results from these fixed-frame 

tests will be presented here from two different mechanical configurations and loading 

conditions, as a step toward demonstrating the feasibility of using PAM actuators for 

aerospace applications. The next section will discuss the general system design, which will 

be followed by a discussion of bench-top testing results. Then the wind tunnel test article 

development is shown, along with experimental test data.  
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2. System design 

Three different PAM actuation systems were designed, built, and tested, with experimental 

evaluations taking place first on the bench and then moving on to a wind tunnel. In each 

case, the aerodynamic hinge moment was predicted first and then the design of the 

actuation mechanism followed.  

2.1 Aerodynamic prediction  

The actuation system design used two-dimensional thin airfoil theory to predict the hinge 

moments that were used in sizing the actuators and bench-test loading springs to simulate 

the aerodynamic hinge moments. Environmental parameters used in the calculations are 

those of Sea Level Standard (SLS), which have a temperature of T = 288 K, pressure of P = 

101.3 kPa, and air density of ρ = 1.225 kg/m3. The maximum speed of the Glenn L. Martin 

wind tunnel (GLMWT) at the University of Maryland is Mach 0.3, so this was also used in 

the design as a maximum free-stream condition, and a reasonable angle-of-attack of  = 6o 

was also incorporated. It was assumed in this loading mechanism design that there was no 

flow separation over the airfoil and that the gap between the flap and the airfoil was sealed. 

The most important quantity for prediction in terms of sizing the actuation system is the 

hinge moment. This can be calculated according to 
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where ch is the hinge moment coefficient, ch is the hinge coefficient due to angle-of-attack, chf 

is the hinge coefficient due to flap deflection, H is the actual hinge moment, v is the wind 

speed, Sf is the flap area, and cf is the chord of the flap. For the angle-of-attack effects, 

tabulated airfoil data can be used with the equation 
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where (b1) is the rate of change of hinge moment coefficient with incidence, the (a1) terms are 

related to the lift-curve slope,  is the trailing-edge angle, and t/c is the thickness ratio (Etkin, 

1982). The effect on the hinge moment due to flap deflection is computed by 
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where dch/dcl is the rate of change of the hinge moment coefficient with respect to the change 

in lift coefficient, dch/dδ is the rate of change of the hinge moment coefficient with respect to 

the change in flap deflection, cl is the lift coefficient, and δ is the flap deflection (Abbott & 

von Doenhoff, 1959). Because this term depends on the lift coefficient, its computation was 

also required in the prediction. For the current case with a flap on the trailing-edge, added 

lifting effects from the flap on the lift coefficient can be approximated as 

( ) ,l lc c kα α δ= +  
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where k is the fraction for how the flap deflection angle changes the effective angle-of-attack 
of the airfoil (Eastman & Pinkerton, 1930). Here, the lift coefficient due to angle-of-attack is 
estimated with Mach scaling according to 

2

2
,

1
lc

M
α

π
=

−
 

where M is the Mach number. The denominator in this equation is commonly denoted as 
the parameter β.  
As was mentioned, a total of three PAM-flap systems were evaluated. Table 1 lists the key 
design parameters for each and defines each with a “system number,” which will be used 
throughout to more easily identify the results being shown. As can be seen, all three systems 
were sized for NACA 0012 airfoils with nominal angles-of-attack of 6 degrees. It should also 
be noted that each successive system was designed and tested for a higher Mach number. 
The first two systems were identical in terms of the overall model size and flap size, with the 
second containing stronger PAM actuators for the higher air loads. The third system was 
designed for an even higher wind speed and a smaller airfoil section to better illustrate the 
capability of the PAM actuators for scalability and high performance.  
 

System No. 1 2 3 

Wind Speed (M) 0.1 0.3 0.56 

Angle-of-Attack (deg) 6 6 6 

Airfoil Type NACA 0012 NACA 0012 NACA 0012 

Airfoil Chord (in) 21 21 10.5 

Flap Chord (in) 3.15 3.15 1.61 

Flap Span (in) 10 10 34 

Table 1. Details of specific trailing-edge flap systems 

Using the aerodynamic equations listed above with the airfoil specifics and wind speeds in 

Table 1 led to predictions of the hinge moments that would need to be generated by the 

PAM actuation systems to deflect the various flaps. Figure 1 displays the simulation results 

for the noted systems and conditions. In each set of results, the estimated, bi-directional 

hinge moment contributions are shown from the airfoil angle-of-attack (green) and the flap 

deflection (red), along with the summed total (blue). Figure 1(a) shows the hinge moment 

for system 1 at the design condition, Figure 1(b) shows the hinge moment for system 2 at the 

design condition, and Figure 1(c) shows the hinge moment for system 3 at the design 

condition. Figure 1(d) has also been included to estimate the wind tunnel test condition for 

system 3. While designed for Mach 0.56, the test facility has a maximum wind speed of only 

Mach 0.3, so the designed actuation system was bench tested to the full spring-simulated 

aerodynamic stiffness, but it was wind tunnel tested to a reduced load with input pressure 

scaled accordingly. In order to meet the goal of at least 10 degrees of flap deflection, the 

PAM actuators must be able to produce 2.2 in-lb, 23 in-lb, and 70 in-lb for the noted design 

conditions of systems 1 – 3, respectively. Being that system 3 would be designed for 

operating at Mach 0.56, it would have little trouble meeting the reduced hinge moment 

requirement of only 22 in-lb for the wind tunnel test.  
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(a) (b) 

  
(c) (d) 

Fig. 1. Hinge moment predictions for actuation system designs – (a) system 1; (b) system 2; 
(c) system 3 bench-top; (d) system 3 wind tunnel 

2.2 Actuator design 

For the most part, the PAM actuation systems were sized to fit entirely within the airfoil 
contour. A schematic diagram of how the PAM system functions is provided in Figure 2. In 
this figure, the upper PAM is inactive (open to atmosphere, P1 = 0) and the lower PAM is 
active (pressurized, P2 > 0). The basic operation of a PAM actuator is to produce a contractile 
stroke upon internal pressurization. This stroke is the result of radial expansion of the 
elastomeric bladder, which is surrounded by a double helical weave of stiff fibers (e.g., 
polyethylene terephthalate - PET). As the softer bladder expands, the stiff fibers maintain 
their length and reorient themselves to accommodate the radial expansion. Consequently, 
the length of the device decreases. Also as indicated in the figure, any time pressure in one 
of the PAMs exceeds that in the other antagonistic PAM, a moment is generated about the 
flap hinge. The case shown is P1 < P2, which causes the flap to deflect in the downward 
direction.  
There are two key equations for predicting the deflections of the antagonistic PAM actuation 
system. The first is the arc length formula 

1 2 ,
L L L

r r
δΔ −

= =  
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where L1 is the length of the inactive PAM, L2 is the length of the active PAM, and r is the 
hinge radius. These are all labeled in Figure 2 with the convention that downward flap 
deflection angles are positive and upward flap deflection angles are negative.  
 

 

Fig. 2. Diagram of bi-directional PAM-flap actuator 

The second equation considers the available actuation force by 

2 1 ,
H

F F F
r

Δ = − =  

where F1 is the inactive PAM force (e.g., at 0 psi), F2 is the active PAM force, and H is the 
hinge moment generated on the flap. For bi-directional operation of the flap, an antagonistic 
actuator arrangement is typically preferred.  
Based on these actuator design equations and the aerodynamic hinge moment predictions 
from section 2.1, an in-house database of PAM actuator performance data was consulted to 
select the actuator characteristics best suited to each of the three systems. Table 2 displays 
the results of this actuator sizing analysis. For the first two systems, which are essentially the 
same except for the increased strength of the second, a chordwise PAM orientation was 
selected. This means that the length and stroke direction of the PAM actuators is along the 
airfoil chord, which was made possible by the large airfoil section (21-in chord). System 3 
could not use chordwise actuators because of the higher forces required and the smaller size 
of the airfoil section. In this case, a spanwise orientation was selected, whereby the spanwise 
pulling motion of the PAM actuators is transferred into chordwise motion to deflect the flap 
through the use of a kinematic mechanism. While adding complexity and increasing the 
part count, having a mechanism does allow for consideration of mechanical advantage 
trade-offs to better tune system performance. For instance, when comparing the system 2 
and 3 actuators, it can be seen that larger diameter PAMs were used for system 2 although 
the expected loads were smaller here than for system 3. Note that it is a general design rule 
for PAMs with the same braid angle that larger diameter actuators will produce more force 
for a given pressure. This use of smaller diameter PAMs of essentially the same braid angle 
was facilitated by the mechanism, where stroke could be traded for force. As indicated in 
the table, the PAMs for system 3 are over 9 inches long, whereas the PAMs for system 2 are 
just over 3 inches in active length.  
Force-contraction data was collected from experiments conducted on a servo-hydraulic load 
frame. For each case, the PAM actuator was installed in the machine at its resting length, as 
shown in Figure 3(a). Next, the noted pressure was applied and held constant throughout 
the test. Immediately after the pressure was applied, the actuator blocked force 
measurement was recorded. Then, the actuator was allowed to contract slowly, or quasi-
statically, to the point where no force was measured. This point is known as the free 
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System No. 1 2 3 

Orientation Chordwise Chordwise Spanwise 

No. PAM Pairs 1 2 1 

Diameter (in) 0.5 1.0 0.625 

Active Length (in) 3.15 3.15 9.10 

Resting Braid Angle (deg) 47 60 61 

Braid Material PET PET Kevlar 

Bladder Material Latex Latex Latex 

Mechanical Advantage 1 1 1.15 

Table 2. Details of specific PAM actuators selected for system designs 

 

 
(a) (b) 

Fig. 3. Characterization testing of PAM actuator – (a) resting length; (b) free contraction 

contraction value and is shown in Figute 3(b). After recording this value, the PAM actuator 
was stretched back to its resting length and the test was stopped. Typical performance data 
from each of the three selected PAM configurations is provided in Figure 4 at various 
pressure settings. Note that the x-axis data is presented as the non-dimensional contraction 
percentage. For the range of PAM lengths considered in this work, it has been shown that 
contraction percentage is largely independent of PAM length for a given diameter and braid 
angle. As an example, a particular PAM at a given pressure may have a free contraction of 
25%. This actuator with a 4-in resting length would thereby have a free contraction of 1 inch, 
whereas a 12-in resting length actuator would have a free contraction of 3 inches.  
It can be seen in Figure 4 that both force and contraction increase with pressure. For the 
performance metric of blocked force (measured force with 0% contraction, i.e., resting length 
and maximum possible force), the increase in force is linear with pressure, but the same is 
not true for the performance metric of free contraction (measured contraction with 0 lb force, 
i.e., maximum possible stroke). The free contraction increases with pressure, but tends to 
roll off as a maximum limit is approached. These trends are valid, of course, only over the 
pressure range which does not lead to yield in the braid fibres. It should be noted here that 
our tests have shown that the PET braid does not begin to yield until approximately 200 psi 
and the yield point for the Kevlar braid is over 1000 psi. Given that the three system designs 
here are all intended to operate below 100 psi, a more than adequate safety margin exists for 
burst failure. Another characteristic to mention in regard to the typical force-contraction 
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(a) (b) 

 
(c) 

Fig. 4. Performance data from PAM actuators selected for system designs – (a) system 1; (b) 
system 2; (c) system 3 

behaviour of PAM actuators is that some measure of hysteresis does exist in the loop. 
Despite the noticeable hysteresis, average values and a linear force-contraction 
approximation between blocked force and free contraction may be sufficient for initial 
system design and component sizing exercises. To state the maximum values of blocked 
force and free contraction (at 90 psi) for the system 1 – 3 actuators, respectively, we have 24 
lb with 14%, 250 lb with 27%, and 200 lb with 29%.  

3. Bench-top testing & validation 

3.1 Experimental setup 

To evaluate the PAM trailing-edge flap actuation systems prior to entering a wind tunnel 

environment, each of the three actuation systems was tested on a laboratory bench. Figure 5 

shows the test setups that were designed, fabricated, and tested. First in Figure 5(a) is a 

system sized for low subsonic air loads with the single pair of antagonistic PAM actuators 

(system 1) oriented along the chord of the airfoil. Here, the compressed air enters and exits 

the PAM actuators from their end near the upper-right corner of the photograph. Two 

aluminum extensions are at their other end and are instrumented with resistive strain gages 
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for measurement purposes. Representative inertia is mounted on the axis of flap rotation 

and a bending spring is attached to simulate aerodynamic stiffness. Figure 5(b) shows a 

similar arrangement with chord-oriented PAM actuators, but this system has two 

antagonistic pairs of larger PAM actuators (system 2) to increase the quasi-static flap 

deflection output. It can be seen in the figure that the PAMs attach to the hinge from one 

side and a spring loading mechanism attaches to the hinge axis from the other side. Linear 

extension springs were used for this test. Figure 5(c) shows an antagonistic pair of PAM 

actuators intended for spanwise orientation in the airfoil section, which uses a mechanism 

(not pictured) to turn the actuator work into chordwise motion that rotates the flap about its 

hinge axis (system 3). An inertial element was attached to the top of the axis of rotation here 

and linear extension springs were connected at a different radius than the PAMs to account 

for the mechanism that would be installed in the airfoil section. Also note that the difference 

in physical appearance of the PAMs from system 1 and 2 (black) to those in system 3 

(yellow) is due to the use of a different braid material.  
 

 
(a) (b) (c) 

Fig. 5. Experimental setups for bench-top evaluations – (a) system 1; (b) system 2; (c) system 3 

For each of the three test cases, the hinge rotation angle was measured with a Hall-effect angle 
sensor (Midori, series QPC). Two of the PAM actuators were instrumented with load cells 
(Honeywell) and the actuation pressure was measured with a pressure transducer (Omega, 
series PX209). Solenoid valves were used to direct the air flow into and out of the PAMs, as 
directed by a square wave voltage input for these open-loop experiments. For the two 
chordwise PAM configurations, the control valves used were SMC model VZ solenoids and 
for the spanwise PAM configuration, it was a Festo model MPYE valve with a much higher 
flow capacity. A National Instruments data acquisition system and laptop computer were used 
to run the experiments and to collect data. The test procedure included driving the control 
valves at various input frequencies and under different spring loads to measure the dynamic 
response of the PAM actuation systems in terms of flap deflection angle bandwidth.  

3.2 Bench-top test results 

Figure 6 shows the bench-top test results from the three cases as half peak-to-peak deflection 
values that were averaged over several actuation cycles. Here, Figure 6(a) shows data from 
system 1 for a range of pressures. It should be noted that the spring load indicated in the 
caption simulates air loads existing at a free-stream velocity of Mach 0.23, while the design 
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condition was only for Mach 0.1. The difference here was due to spring availability at the 
time of the test, so a more conservative loading condition (approximately four times the 
expected wind tunnel load) was tested on the bench-top. Given that the PAM actuation 
system was able to produce nearly ±5 degrees of flap deflection over the tested frequency 
range of 30 Hz provided sufficient assurance that the system would meet, and most likely 
surpass, the ±10 degree target in the wind tunnel. As expected from basic PAM operation, 
this figure also shows that increasing the pressure led to increased deflection capability. 
Figure 6(b) shows data from the Mach 0.3 spring load of the chordwise, double PAM pair 
actuators (system 2) at various pressures, showing a different characteristic than was shown 
for system 1. As can be seen, the quasi-static deflection output increases fairly linearly with 
actuation pressure, but there is a sharp roll-off in deflection performance at frequencies 
above 1 Hz that reduces the achievable deflection level at higher frequencies. Additionally, 
the measured deflection at high frequency appears to be independent of pressure. These 
response features indicate that air flow restrictions were present in the pneumatic supply 
system. This is a reasonable outcome when considering that the same pneumatic valves 
were used for systems 1 and 2, while the air volume required for operating system 2 was 
much larger than that for system 1. This was later improved upon in a revised bench- 
 

   
(a) (b) 

 
(c) 

Fig. 6. Bench-top test results – (a) system 1 with Mach 0.23 spring load; (b) system 2 with 
Mach 0.3 spring load; (c) system 3 with Mach 0.56 spring load 
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top test, but the improved pneumatics for system 2 was not tested in a wind tunnel, so those 
results will not be presented here (Kothera et al., 2008). In continued scaling of the PAM 
actuation system, system 3 did incorporate improved pneumatic elements. Figure 6(c) 
shows experimental flap deflection measurements from a Mach 0.56 spring load at various 
pressures for system 3, where it can be seen that the deflection bandwidth was significantly 
increased over that seen from system 2, with ±10 degrees now being produced up to nearly 
10 Hz at 90 psi. Based on these results, it was concluded that systems 1 and 3 would meet 
the goal of at least ±10 degrees of flap deflection in the dynamic response for their respective 
wind tunnel tests, but system 2 would likely fall short of the goal due to the flow rate 
restrictions in the pneumatic circuit. These tests also verified proper basic functionality of 
the actuation systems.  

4. Wind tunnel testing 

After successful bench-top evaluations, the trailing-edge flap actuation systems were placed in 
various wind tunnel test articles to assess their performance under actual aerodynamic loading 
conditions. This section will discuss the test article fabrication and experimental test results.  

4.1 Wind tunnel test article development 

The three PAM actuation systems were integrated into different test articles based on their 
originally specified performance conditions and measured performance from the bench-top 
evaluations. Systems 1 and 2 had the same geometry, as stated in Table 1, but different 
construction was used to better match the test conditions. That is, system 2 was designed with 
a stronger frame structure and skin than system 1. The frame for system 1 was constructed 
with 0.25-in aluminum and consisted of a spar running the span of the airfoil section (24-in), 
an airfoil-shaped end plate at both ends, and two intermediate support ribs that extended from 
the spar to the trailing-edge. The flap hinge was fabricated from a precision ground 0.25-in 
stainless steel rod, and the flap was able to rotate about the hinge with a bearing at each end. 
The skin was made with a wet lay-up process using two plies of pre-impregnated fibreglass, 
and formed the shape of the airfoil section with a Styrofoam mold. Additional reinforcement 
at the leading-edge was provided with a thin sandwich structure of fibreglass and foam, which 
formed a shell-like structure around the spar so that the solenoid valves and air tubing could 
be installed inside. The system 2 wind tunnel model had the same basic layout as the system 1 
model, but it was made to be stronger since it was to be tested at Mach 0.3. That is, it had two 
airfoil-shaped end plates and two mid-span support ribs, all constructed of 0.5-in aluminum, 
and a steel spar. The entire skin was also fabricated as sections of sandwich structure 
composites with foam core inside 2-ply fibreglass. There was a separate leading-edge, or D-
spar section, and aft panels that were fastened to the frame structure. As with system 1, system 
2 also placed the solenoid control valves inside the D-spar cavity surrounded by the shell-like 
skin. Figure 7(a) shows the system 1 wind tunnel model installed in the test fixture between 
two acrylic vertical walls and positioned in front of the free-jet wind tunnel. Figure 7(b) shows 
the wind tunnel model for system 2, which was fixed at the floor of the Glenn L. Martin wind 
tunnel at the University of Maryland and cantilevered upward. There was also an elliptical top 
plate bolted to the top of the cantilevered model to promote more desirable air flow 
characteristics over the test section. The primary difference in appearance of these two models 
is that the system 1 model was left bare and the system 2 model was painted black. Note also 
that strips of aluminum tape were placed over the recessed fasteners.  
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The wind tunnel model for system 3 was fabricated with an entirely different approach than 
those for systems 1 and 2. In this case, instead of building the complete airfoil section from 
raw materials, the outboard section of a scrapped full-scale Bell 407 helicopter rotor blade 
was employed as the basis for the wind tunnel model. Since this rotor blade does not 
currently feature a trailing-edge flap, the blade was physically modified to accept a flap and 
the PAM actuation system. The spanwise PAM actuators and mechanism were mounted 
inside the D-spar of the blade and the aft section of the blade was removed. This section was 
first used to create a mold for the new trailing-edge flap so that the geometry of the blade 
could be matched exactly. Note that the production Bell 407 blade contains taper and twist, 
which would have otherwise been difficult to match in constructing the flap. Aluminum 
strips were bonded inside the remaining aft portion of the blade skin where the flap section 
had been removed in order to provide bearing surfaces and structural support to fasten the 
trailing-edge flap in place. The flap was supported at the inboard and outboard ends and at 
two intermediate locations. A hole was drilled in the aft wall of the spar and a slot was 
placed in the skin to attach a control rod from the mechanism inside the spar to a control 
horn on the trailing-edge flap. These parts are on the opposite side of blade section in Figure 
7(c), so they are not visible in the photograph; the control rod was located at the inboard 
edge of the flap, or near the floor in the figure. Recall that system 3 was the only system for 
which a component of the PAM actuation system violated the baseline airfoil profile. This 
was due largely to the smaller size of the airfoil section and the higher wind loading 
condition. Also note that the tip of the cantilevered blade section was laterally restrained 
with a cable to limit side-to-side motion of the blade during flap actuation. 
 

  
(a) (b) 

 
(c) 

Fig. 7. Wind tunnel test articles – (a) system 1, free-jet; (b) system 2, closed-circuit; (c) system 
3, closed-circuit 
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4.2 Wind tunnel test results 

Test results in the form of averaged, half peak-to-peak deflection are displayed in Figure 8, 

following the same layout as the previous figures. Shown in each case are the measured 

results from the previously specified wind tunnel test conditions, with the effect of varying 

actuation pressure also displayed for systems 1 and 3. Reaching a maximum speed of Mach 

0.1, Figure 8(a) shows the open-loop dynamic response of system 1 at various actuation 

frequencies and pressures. As was inferred from the bench-top test, this PAM actuation 

system was able to far exceed the original goal of ±10 degrees at high frequency. At only 30 

psi operating pressure in the PAMs, this system was able to produce ±10 degrees beyond 20 

Hz, and operating the PAM actuators with 90 psi led to ±20 degrees of flap deflection being 

produced up to nearly 25 Hz. There is also a resonance phenomenon apparent in this data 

set, which can be seen to increase in frequency with pressure. This changing resonance 

frequency is attributed to the changing stiffness of the PAM actuators as their operational 

pressure changes. Figure 8(b) shows the experimental flap deflections from system 2 that were 

measured at 90 psi in the PAM actuators and at two different angles-of-attack, though there is 

little noticeable difference in the dynamic response of the system at the two angles-of-attack. 

  

  
(a) (b) 

 
(c) 

Fig. 8. Wind tunnel test results – (a) single PAM pair, chordwise at Mach 0.1; (b) double 
PAM pair, chordwise at Mach 0.3; (c) single PAM pair, spanwise at Mach 0.3 
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As was expected from the bench-top test results, this system again illustrates a rapid drop 

off in achievable flap deflection as the actuation frequency increases. Recall that this was 

due to flow limitations in the pneumatic components. The ability to produce almost ±40 

degrees quasi-statically at Mach 0.3, however, is a promising result for the technology, 

especially when the dynamic response shown can be viewed as potentially a worst case 

situation achieving ±4 degrees of flap deflection up to 40 Hz.  

Figure 8(c) shows the wind tunnel results for system 3 at Mach 0.3. Recall that this is 

reduced from the bench-top test condition (Mach 0.56), but was the maximum possible 

speed of the wind tunnel used for testing. There are also two lines for each of the noted 

actuation pressure levels. The solid line represents the flap deflection measured at the 

inboard edge of the flap and the dotted line represents the deflection at the outboard edge of 

the flap. Since there is some difference between the two ends of the flap, this implies that 

there was some wash-out present in the model. This could be reduced in the future by 

increasing the torsional stiffness of the trailing-edge flap or attaching the actuation 

mechanism to a more central location on the flap instead of at the inboard end. Regardless of 

this effect, the measured actuation performance met and exceeded the goal of ±10 degrees 

dynamically. Nearly 10 degrees can be maintained for up to 30 Hz at only 14 psi PAM 

operating pressure, whereas nearly 18 degrees can be maintained for up to 35 Hz when 

driving the PAM actuators with 28 psi. Recall that this test case is a reduced load from the 

expected condition, so the PAM input pressures had to be reduced, as well. Based on all of 

these results, it can be stated that PAM actuation systems have clearly demonstrated their 

high performance capabilities for aerospace applications.  

5. Conclusion 

This research has developed and tested a series of innovative trailing-edge flap actuation 

systems that exploit antagonistic configurations of Pneumatic Artificial Muscles (PAMs) to 

generate bi-directional flap deflections. The systems were designed and built for 

experimental evaluation on the bench-top under simulated aerodynamic loadings with 

spring mechanisms and in the wind tunnel under actual aerodynamic conditions up to the 

maximum speed (Mach 0.3) of the Glenn L. Martin wind tunnel at the University of 

Maryland. Results showed that the flap deflection range produced was attractive to various 

flight control regimes, including flight control, vibration control, and even noise control. The 

key conclusion of this work is that PAM actuation systems have demonstrated the ability to 

dynamically control large flap deflections over a wide bandwidth in these varying control 

regimes and offer an attractive solution to aerodynamic control applications.  
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