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1. Introduction

Transport phenomena in porous media describe the motion of fluids in media of porous
structure which may be accompanied by heat/mass transfer and/or chemical reactions.
While transport phenomena in fluid continua have been, to a large extent, very much
comprehended, the subject matters in porous media are still under careful investigation and
extensive research. Several reasons may be invoked to explain the difficulties associated with
the study of transport phenomena in porous media. Probably the most obvious one is the fact
that fluids move in porous media in complex, tortuous, and random passages that are even
unknown a priori. Consequently, the governing laws may not be solved in any sense for the
apparent difficulties in defining flow boundaries. Further complexities may be added should
there exists heat transfer mechanisms associated with the flow and the interactions of heat
transfer between the moving fluid and the solid matrix. Moreover, chemical reactions describe
essential feature of transport in porous media. It is hardly to find transport processes in porous
media without chemical reaction of some sort or another. Chemical reactions in porous media
can occur naturally as a result of the interactions between the moving fluid and the surface of
the solid matrix. These kinds of chemical reactions, which are usually slow, are pertinent
to groundwater geochemistry, or it can be made to occur by utilizing the porous media
surfaces to catalyze chemical reactions between reacting fluids. The study of these complex
processes in porous media necessitate complete information about the internal structure of
the porous media, which is far beyond the reach of our nowadays capacities. A fundamental
question, thus, arises, in what framework do we need to cast the study of transport in porous
media? In other words, do we really need to get such complete, comprehensive information
about a given porous medium in order to gain useful information that could help us in our
engineering applications? Do we really need to know the field variables distribution at each
single point in the porous medium in order to be able to predict the evolution of this system
with time, for example? Is it possible to make precise measurements within the porous media
for field variables? And, even if we might be able to gain such detailed information, are we
going to use them in their primitive forms for further analysis and development? The answer
to these kind of questions may be that, for the sake of engineering applications, we do not need
such a complete, comprehensive details, neither will we be able to obtain them nor will they
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2 Mass Transfer

be useful in their primitive form. In other words, field variables distribution will be randomly
distributed and we would, in general, need to average them in order to gain statistically useful
integral information. These ideas, in fact, enriched researchers’ minds on their search for an
appropriate framework to study phenomena in porous media. That is, if we need to average
the pointwise field variables to get useful information, should not we might, as well, look for
doing such kind of averaging on our way to investigating porous media. That is, is it possible
to upscale our view to porous media such that we get smooth variables that represent integral
information about the behavior of field variables not at a single point but within a volume
of the porous medium surrounding this point? It turns out that researchers have appealed
to this strategy several times on their way to explore the behavior of systems composed of
innumerable building blocks. Thermodynamics, solid mechanics, fluid mechanics etc. are
examples of sciences that adopted this approach by assuming the medium as continuum.
Now, is it feasible to, also, treat phenomena occurring in porous media as continua? The
answer to this question turns out to be yes as will be explained in the next section.

2. Framework

Salama & van Geel (2008a) provided an interesting analogy that sheds light on the possibility
to adopt the continuum approach to phenomena occurring in porous media. They stated that
an observer closer to a given porous medium will be able to see details of the porous medium
(at least at the surface) that an observer from far distant would, generally, ignore. To the
distant observer, the medium looks smooth and homogeneous like a continuum, Fig.1. It is
exactly this point of view that we seek and it remains interesting to estimate that minimum
distance that our observer would have to stay to get the continuum feeling of the medium.
Of course moving beyond this distance would result in no significant improvement in the
continuum picture. However, moving too far without having established the continuum
feeling such that the extents of the domain enter the scene implies that it would not be possible
to establish the continuum picture. This analogy, in fact, gives us an idea on how to properly
define upscaling to porous media and hence establish continua. That is we need an upscaling
scale (volume) that is much larger than small scale heterogeneity (e.g., pore diameter) and
small enough such that it does not encompass the domain boundaries.
The mathematical machinery that provide such an upscaled description to phenomena
occurring in porous media includes theory of mixtures, the method of volume averaging,
method of homogenization, etc. In the framework of theory of mixtures, global balance
equations are written based on the assumption of the existence of macroscale field variables,
which are employed in the global balance equations. A localized version of these equations
may then be obtained through mathematical manipulations to get what is called the
macroscopic point equations. In the frame work of the method of volume averaging, on the
other hand, the microscale conservation laws adapted to fluid continua filling the interstitial
space are subjected to some integral operators over representative volume which size is
understood within certain set of length scale constraints. These length scale constraints
were introduced for proper upscaling based on the pioneering work of several researchers
including (Whitaker, Gray, Hassanizadeh, Bear, Bachmat, Quintard, Slattery, Cushman, Marle
and many others). Recently, (Salama & van Geel, 2008a) have postulated the conditions
required for proper upscaling such that one may get the correct set of equations subject to
the constraints pertinent to adhering to these conditions, as will be explained later. This set of
macroscopic point equations, in which macroscopic field variables are defined at yet a larger
scale than their microscopic counterpart, represents the governing conservation laws at the
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Solute Transport With Chemical Reaction in Single- and Multi-Phase Flow in Porous Media 3

new macroscale. In this chapter we will be concerned mainly with the method of volume
averaging.

3. Requirements for proper averaging

The upscaling process implies a one to one mapping between two domains one of which
represents the actual porous medium and the second represents a fictitious continuous
domain. Any point in the actual porous medium domain may lay on either the solid phase
or the fluid phase and thus one can define a phase function which equals one if the point
is in the fluid phase and is zero if it lays elsewhere. Over the actual porous medium
domain, field variables are defined only over fluid phases (i.e., they only have values in
the corresponding fluid-phase and zero elsewhere). These variables and/or their derivatives
may not be continuous, particularly at the interfaces. The corresponding point over the
fictitious medium, on the other hand, lays over a continuum where it is immaterial to talk
about particular phase. Moreover, the macroscopic field variables defined over the fictitious
medium are continuous over the whole domain, except possibly at the external boundaries.
These macroscopic field variables represent the behavior of the fluid continuum contained
within a certain volume (called representative elementary volume, REV) and are assigned
to a single point in the fictitious domain. In order to succeed in establishing correctly this
mapping process, extensive amount of research work have been conducted since the second
half of the last century by several research groups including the pioneers mentioned earlier.
On reviewing this work, (?) and recently Salama & van Geel (2008a) proposed a set of
requirements such that proper upscaling may be achieved. They require that,

1. The smoothed macroscopic variables are free from pore-related heterogeneity.

2. The smoothed macroscopic variables do not depend on the size of the averaging volume.

aヴﾗﾏ"IﾉﾗゲWヴ"ヮヴﾗ┝ｷﾏｷデ┞

aヴﾗﾏ"a;ヴ"Sｷゲデ;ﾐデ

Fig. 1. View of two different observers at different proximity from a given porous medium
domain.
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4 Mass Transfer

3. The extent of the domain under study is large enough compared with the size of the
averaging volume.

4. The amount of any conservative quantity (mass, momentum, energy, etc.) within any given
volume (of the size of the REV or larger) is the same if evaluated over the actual porous
medium domain or the corresponding fictitious domain. And, similarly, the flux of any
conservative quantity across any surface (of the size of REA or larger) is also the same in
both the actual and the fictitious domains.

These requirements necessitate the followings:

– An averaging volume exists for every macroscopic field variable.

– A common range of averaging volume may be found for all the field variables.

Adhering to the first three requirements, (Whitaker, 1967) indicated that if ℓβ represents a
length scale pertinent to the internal microscopic structure of the porous medium (typical pore
or grain diameter) and if L represents a length scale associated with the extent of the domain
of interest, then the length scale of the averaging volume should be such that it satisfies the
following constraints

I. ℓ >> ℓβ

II. ℓ << L

Adhering to the fourth requirement, on the other hand, Salama & van Geel (2008a) were
able to establish the proper averaging operator. They indicated that if we consider any
conservative, intensive quantity, ψβ, which may be scalar (e.g., mass of certain species per
unit volume, energy per unit mass, etc.), or vector (e.g., linear momentum per unit mass).
The total amount of ψβ should equal to that evaluated over the same volume in the fictitious
porous medium, Fig.2, which may be evaluated as:

ψtotal =
∫

REV
ρβ(r, t)ψβ(r, t)γβ(r)dv (1)

where ρβ is the density of the β-phase, ψβ is an intensive quantity, γβ is the phase function, and
r represents the position vector spanning the REV. The time, t, in the argument of the indicator
function, γβ represents the scenario of moving interfaces (e.g. immiscible multiphase system).
In our case, however, the time may be omitted due to the fact that for our solid-fluid
systems, the interface boundaries are assumed fixed in space. Refer to Fig.2 for a geometrical
illustration.
The total amount of ψβ should equal to that evaluated over the same volume in the fictitious
porous medium, Fig.3, which may be evaluated as:

ψtotal =
∫

REV

〈
ρβ

〉β
(r, t)

〈
ψβ

〉β
(r, t)ǫβ(r)dv (2)

where
〈

ρβ

〉β
and

〈
ψβ

〉β
represent the intrinsic phase average of the β-phase density and

intensive quantity as described earlier in Eq. (2), and ǫβ is the porosity function over the REV.
That is,

∫

REV
ρβ(r, t)ψβ(r, t)γβ(r, t)dv =

∫

REV

〈
ρβ

〉β
(r, t)

〈
ψβ

〉β
(r, t)ǫβ(r)dv (3)

From the condition that the averaged quantities are assigned to the centroid of the averaging
volume, (Salama & van Geel, 2008a) postulated that,
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Solute Transport With Chemical Reaction in Single- and Multi-Phase Flow in Porous Media 5

r 

x 

O

Fig. 2. An REV.

i.
∫

REV γβ(r, t)dv = ǫβ(x, t)v =
∫

REV ǫβ(r, t)dv

ii.
∫

REV ρβ(r, t)γβ(r)dv =
〈

ρβ

〉β
(x, t)

〈
ψβ

〉β
(x, t)v =

∫
REV

〈
ρβ

〉β
(r, t)ǫβ(r, t)dv

iii.
∫

REV ρβ(r, t)ψβ(r, t)γβ(r)dv =
〈

ρβ

〉β
(x, t)

〈
ψβ

〉β
(x, t)ǫβ(x, t)v =

∫
REV

〈
ρβ

〉β
(r, t)

〈
ψβ

〉β
(r, t)ǫβ(r, t)dv

where
〈

ρβ

〉β
(x, t)

〈
ψβ

〉β
(x, t) and ǫβ(x) are the intrinsic-phase average of ρβ, ψβ and the

porosity at the centroid of the REV, respectively (Fig. 2).
This indicates that sampling the same volume (REV) in both the actual porous medium and
the fictitious one should yield the same conservative quantity. In fact this equation may be
taken as the definition for the averaging processes. That is,

〈
ψβ

〉β
(x, t) =

1
〈

ρβ

〉β
ǫβv

∫

v
ρβ(r, t)ψβ(r, t)γβ(r)dv (4)

Cp"TGX"qxgt"vjg"cevwcn"rqtqwu"ogfkwo0 Vjg"ucog"xqnwog"qxgt"vjg"hkevkvkqwu"qpg0"

Fig. 3. An REV over the actual porous region and an equivalent volume over the fictitious
one.
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6 Mass Transfer

which was introduced by (Hassanizadeh & Gray, 1979b;a; 1980) and was called the mass

average of ψβ. In situations where β-phase is incompressible, we have
〈

ρβ

〉β
= ρβ and

the above equation reduces to Eq. (2) and also, if ψβ represents a per unit volume quantity,
for example the concentration of the β-phase, the density may be omitted. In other words
the above mentioned three postulates may be used to define the averaging operators.

Moreover, these postulates also suggest that:
〈〈

ψβ

〉〉β
=

〈
ψβ

〉
which will show to simplify

mathematical manipulation. Now for incompressible fluids Eq. (7) implies that the product〈
ψβ

〉β
(r, t)ǫβ(r) changes linearly over the REV. (Salama & van Geel, 2008a) further indicated

that, there are at least three possibilities for the product
〈

ψβ

〉β
(r, t)ǫβ(r) to change linearly

within the REV:

1. both 〈ψ〉β and ǫβ remain constant within the REV.

2. 〈ψ〉β changes linearly and ǫβ remains constant.

3. 〈ψ〉β remains constant and ǫβ changes linearly.

These requirements are rather restrictive, that is, if we allow 〈ψ〉β and ǫβ to vary within the
averaging volume such that their product, which is apparently nonlinear, they required that
the nonlinearity within the averaging volume is relatively small. They defined the criteria for
this case as: if ℓǫ represents the length scale over which significant variation in porosity occur
within the REV and ℓψ represents that length scale over which significant deviation from the

straight line variation of the intrinsic phase average of the conservative quantity
〈

ψβ

〉β
may

occur, then they introduced their celebrated inequality

III. ℓ << min(ℓǫ,ℓψ)

Now adhering to these length scale constraints, it may be possible, in principle, to establish
the continuum view to transport phenomena in porous media.

4. Consequences

As with our experience upon adopting the continuum hypothesis to the science of fluid
mechanics, rather than the primitive Newtonian mechanics at the molecular scale an
apparently different formulation needed to be adopted and several things arise. Probably
the most obvious one is the fact that the state variables are modified. That is velocity
vectors, for example, are, now, no longer associated with particles, rather they represent
an integral behavior of a collection of several many particles contained within an averaging
volume. The fluctuations of the actual particles velocity around continuum velocity suggest
that two different mechanisms for heat and momentum transfer be hypothesized. One is
associated with the transport of momentum and energy along with the continuum velocity
and the other associated with the fluctuating components that appear as a surface flux in
the continuum conservation laws, (Leal, 2007). We expect that these mechanisms become
even more pronounced when adopting the continuum hypothesis to porous media. As an
example, the dispersion of passive solute in pure liquids is very much influenced by the
diffusion coefficient which is a macroscopic property of the medium. In porous media, on
the other hand, dispersion becomes more pronounced and is no longer a property of the
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Solute Transport With Chemical Reaction in Single- and Multi-Phase Flow in Porous Media 7

different fluids; it also depends on the internal geometrical structure of the porous medium. A
second consequence of the continuum hypothesis is an uncertainty in the boundary conditions
to be used in conjunction with the resulting macroscopic equations for motion and heat
and mass transfer (Salama & van Geel, 2008b). A third consequence is the fact that the
derived macroscopic point equations contain terms at the lower scale. These terms makes
the macroscopic equations unclosed. Therefore, they need to be represented in terms of
macroscopic field variables though parameters that me be identified and measured.

5. Single-phase flow modeling

5.1 Conservation laws

Following the constraints introduced earlier to properly upscale equations of motion of fluid
continuum to be adapted to the upscaled continuum of porous medium, researchers and
scientists were able to suggest the governing laws at the new continuum. They may be written
for incompressible fluids as:

Continuity

∇ ·
〈

vβ

〉
= 0 (5)

Momentum

ρβ
∂〈vβ〉

∂t + ρβ

〈
vβ

〉β
· ∇

〈
vβ

〉β
= −∇

〈
pβ

〉β
+ ρβg+

μβ∇2
〈

vβ

〉β
− μβ

K

〈
vβ

〉
− ρβ Fǫβ√

K

∣∣∣
〈

vβ

〉∣∣∣
〈

vβ

〉 (6)

Energy

σ
∂
〈

Tβ

〉β

∂t
+

〈
vβ

〉
· ∇

〈
Tβ

〉β
= k∇2

〈
Tβ

〉β
± Q (7)

Solute transport

ǫ
∂
〈

cβ

〉β

∂t
+

〈
vβ

〉
· ∇

〈
cβ

〉β
=∇ ·

(
D · ∇

〈
cβ

〉β
)
± S (8)

where
〈

vβ

〉β
and

〈
pβ

〉β
epresent the intrinsic average velocity and pressure, respectively and

〈
vβ

〉
is the superficial average velocity, v =

√
u2 + v2, σ = (ρCp)M/(ρCp) f , k = (kM/(ρCp) f ,

is the thermal diffusivity. From now on we will drop the averaging operator, 〈〉, to simplify
notations. The energy equation is written assuming thermal equilibrium between the solid
matrix and the moving fluid. The generic terms, Q and S, in the energy and solute equations
represent energy added or taken from the system per unit volume of the fluid per unit time
and the mass of solute added or depleted per unit volume of the fluid per unit time due to
some source (e.g., chemical reaction which depends on the chemistry, the surface properties
of the fluid/solid interfaces, etc.). Dissolution of the solid phase, for example, adds solute to
the fluid and hence S > 0, while precipitation depletes it, i.e., S < 0. Organic decomposition or
oxidation or reduction reactions may provide both sources and sinks. Chemical reactions in
porous media are usually complex that even in apparently simple processes (e.g., dissolution),
sequence of steps are usually involved. This implies that the time scale of the slowest step
essentially determines the time required to progress through the sequence of steps. Among
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8 Mass Transfer

the different internal steps, it seems that the rate-limiting step is determined by reaction
kinetics. Therefore, the chemical reaction source term in the solute transport equation may
be represented in terms of rate constant, k, which lumps several factors multiplied by the
concentration, i.e.,

S = k f (s) (9)

where k has dimension time−1 and the form of the function f may be determined
experimentally, (e.g., in the form of a power law). Apparently, the above set of equations
is nonlinear and hence requires, generally, numerical techniques to provide solution (finite
difference, finite element, boundary element, etc.). However, in some simplified situations,
one may find similarity transformations to transform the governing set of partial differential
equations to a set of ordinary differential equations which greatly simplify solutions. As
an example, in the following subsection we show the results of using such similarity
transformations in investigating the problem of natural convection and double dispersion past
a vertical flat plate immersed in a homogeneous porous medium in connection with boundary
layer approximation.

5.2 Examble: Chemical reaction in natural convection

The present investigation describes the combined effect of chemical reaction, solutal, and
thermal dispersions on non-Darcian natural convection heat and mass transfer over a vertical
flat plate in a fluid saturated porous medium (El-Amin et al., 2008). It can be described as
follows: A fluid saturating a porous medium is induced to flow steadily by the action of
buoyancy forces originated by the combined effect of both heat and solute concentration on
the density of the saturating fluid. A heated, impermeable, semi-infinite vertical wall with
both temperature and concentration kept constant is immersed in the porous medium. As
heat and species disperse across the fluid, its density changes in space and time and the fluid
is induced to flow in the upward direction adjacent to the vertical plate. Steady state is reached
when both temperature and concentration profiles no longer change with time. In this study,
the inclusion of an n-order chemical reaction is considered in the solute transport equation. On
the other hand, the non-Darcy (Forchheimer) term is assumed in the flow equations. This term
accounts for the non-linear effect of pore resistance and was first introduced by Forchheimer.
It incorporates an additional empirical (dimensionless) constant, which is a property of the
solid matrix, (Herwig & Koch, 1991). Thermal and mass diffusivities are defined in terms
of the molecular thermal and solutal diffusivities, respectively. The Darcy and non-Darcy
flow, temperature and concentration fields in porous media are observed to be governed by
complex interactions among the diffusion and convection mechanisms as will be discussed
later. It is assumed that the medium is isotropic with neither radiative heat transfer nor
viscous dissipation effects. Moreover, thermal local equilibrium is also assumed. Physical
model and coordinate system is shown in Fig.4.
The x-axis is taken along the plate and the y-axis is normal to it. The wall is maintained at
constant temperature and concentration, Tw and Cw, respectively. The governing equations
for the steady state scenario [as given by (Mulolani & Rahman, 2000; El-Amin, 2004) may be
presented as:

Continuity:
∂u

∂x
+

∂v

∂y
= 0 (10)

30 Mass Transfer in Multiphase Systems and its Applications

www.intechopen.com



Solute Transport With Chemical Reaction in Single- and Multi-Phase Flow in Porous Media 9

Fig. 4. Physical model and coordinate system.

Momentum:

u
c
√

K

ν
u |v| = −K

μ

(
∂p

∂x
+ ρg

)
(11)

v
c
√

K

ν
v |v| = −K

μ

(
∂p

∂y

)
(12)

Energy:

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂x

(
αx

∂T

∂x

)
+

∂

∂y

(
αy

∂T

∂y

)
(13)

Solute transport:

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂x

(
Dx

∂C

∂x

)
+

∂

∂y

(
Dy

∂C

∂y

)
− K0 (C − C∞)n (14)

Density
ρ = ρ∞ [1 − β∗(T − T∞)− β∗∗(C − C∞)] (15)

Along with the boundary conditions:

y = 0 : v = 0, Tw = const.,Cw = const.;
y → ∞ : u = 0, T → T∞,C → C∞

(16)

where β∗ is the thermal expansion coefficient β∗∗ is the solutal expansion coefficient. It should
be noted that u and v refers to components of the volume averaged (superficial) velocity of the
fluid. The chemical reaction effect is acted by the last term in the right hand side of Eq. (14),
where, the power n is the order of reaction and K0 is the chemical reaction constant. It is
assumed that the normal component of the velocity near the boundary is small compared

31Solute Transport With Chemical Reaction in Singleand Multi-Phase Flow in Porous Media
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10 Mass Transfer

with the other component of the velocity and the derivatives of any quantity in the normal
direction are large compared with derivatives of the quantity in direction of the wall. Under
these assumptions, Eq. (10) remains the same, while Eqs. (11)- (15) become:

u +
c
√

K

ν
u2 = −K

μ

(
∂p

∂x
+ ρg

)
(17)

∂p

∂y
= 0 (18)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
αy

∂T

∂y

)
(19)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

(
Dy

∂C

∂y

)
− K0 (C − C∞)n (20)

Following (Telles & V.Trevisan, 1993), the quantities of αy and Dy are variables defined as
αy = α + γd |v| and Dy = D + ζd |v| where, α and D are the molecular thermal and solutal
diffusivities, respectively, whereas γd |v| and ζd |v| represent dispersion thermal and solutal
diffusivities, respectively. This model for thermal dispersion has been used extensively (e.g.,
(Cheng, 1981; Plumb, 1983; Hong & Tien, 1987; Lai & Kulacki, 1989; Murthy & Singh, 1997)
in studies of non-Darcy convective heat transfer in porous media. Invoking the Boussinesq
approximations, and defining the velocity components u and v in terms of stream function ψ
as: u = ∂ψ/∂y and v = −∂ψ/∂x, the pressure term may be eliminated between Eqs. (17) and
(18) and one obtains:

∂2ψ

∂y2
+

c
√

K

ν

∂

∂y

(
∂ψ

∂y

)2

=

(
Kgβ∗

μ

∂T

∂y
+

Kgβ∗∗

μ

∂C

∂y

)
ρ∞ (21)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=

∂

∂y

[(
α + γd

∂ψ

∂y

)
∂T

∂y

]
(22)

∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
=

∂

∂y

[(
D + ζd

∂ψ

∂y

)
∂C

∂y

]
− K0 (C − C∞)n (23)

Introducing the similarity variable and similarity profiles (El-Amin, 2004):

η = Ra1/2
x

y

x
, f (η) =

ψ

αRa1/2
x

,θ(η) =
T − T∞

Tw − T∞
,φ(η) =

C − C∞

Cw − C∞
(24)

The problem statement is reduced to:

f ′′ + 2F0Rad f ′ f ′′ = θ′ + Nφ′ (25)

θ′′ +
1

2
f θ′ + γRad

(
f ′θ′′ + f ′′θ′

)
= 0 (26)

φ′′ +
1

2
Le f φ′ + ζLeRad

(
f ′φ′′ + f ′′φ′)− Scλ

Gc

Re2
x

φn=0 (27)

As mentioned in (El-Amin, 2004), the parameter F0 = c
√

Kα/νd collects a set of parameters
that depend on the structure of the porous medium and the thermo physical properties of
the fluid saturating it, Rad = Kgβ∗(Tw − T∞)d/αν is the modified, pore-diameter-dependent
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Solute Transport With Chemical Reaction in Single- and Multi-Phase Flow in Porous Media 11

Rayleigh number, and N = β∗∗(Cw − C∞)/β∗ν is the buoyancy ratio parameter. With
analogy to (Mulolani & Rahman, 2000; Aissa & Mohammadein, 2006), we define Gc to be the
modified Grashof number, Rex is local Reynolds number, Sc and λ are Schmidt number and
non-dimensional chemical reaction parameter defined as Gc = β∗∗g(Cw − C∞)2x3/ν2, Rex =
urx/ν, Sc = ν/D and λ = K0αd(Cw − C∞)n−3/Kgβ∗∗, where the diffusivity ratio Le (Lewis
number) is the ratio of Schmidt number and Prandtl number, and ur =

√
gβ∗d(Tw − T∞) is

the reference velocity as defined by (Elbashbeshy, 1997).
Eq. (27) can be rewritten in the following form:

φ′′ +
1

2
Le f φ′ + ζLeRad

(
f ′φ′′ + f ′′φ′)− χφn = 0 (28)

With analogy to (Prasad et al., 2003; Aissa & Mohammadein, 2006), the non-dimensional
chemical reaction parameter χ is defined as χ = ScλGc/Re2

x. The boundary conditions then
become:

f (0) = 0,θ(0) = φ(0) = 1, f ′(∞) = θ(∞) = φ(∞) = 0 (29)

It is noteworthy to state that F0 = 0 corresponds to the Darcian free convection regime, γ = 0
represents the case where the thermal dispersion effect is neglected and ζ = 0 represents
the case where the solutal dispersion effect is neglected. In Eq. (16), N > 0 indicates the
aiding buoyancy and N < 0 indicates the opposing buoyancy. On the other hand, from
the definition of the stream function, the velocity components become u = (αRax/x) f ′ and

v = −(αRa1/2
x /2x)[ f − η f ′]. The local heat transfer rate which is one of the primary interest

of the study is given by qw = −ke(∂T/∂y)|y=0, where, ke = k + kd is the effective thermal
conductivity of the porous medium which is the sum of the molecular thermal conductivity
k and the dispersion thermal conductivity kd. The local Nusselt number Nux is defined as
Nux = qwx/(Tw − T∞)ke. Now the set of primary variables which describes the problem
may be replaced with another set of dimensionless variables. This include: a dimension
less variable that is related to the process of heat transfer in the given system which may
be expressed as Nux/

√
Rax = −[1 + γRadF′(0)]θ′(0). Also, the local mass flux at the vertical

wall that is given by jw = −Dy(∂C/∂y)|y=0 defines another dimensionless variable that is the
local Sherwood number is given by, Shx = jwx/(Cw − C∞)D. This, analogously, may also
define another dimensionless variable as Shx/

√
Rax = −[1 + ζRadF′(0)]φ′(0).

The details of the effects of all these parameters are presented in (El-Amin et al., 2008). We,
however, highlight the role of the chemical reaction on this system. The effect of chemical
reaction parameter χ on the concentration as a function of the boundary layer thickness η
and with respect to the following parameters: Le = 0.5, F0 = 0.3, Rad = 0.7, γ = ζ = 0.0,
N = −0.1 are plotted in Fig.5. This figure indicates that increasing the chemical reaction
parameter decreases the concentration distributions, for this particular system. That is,
chemical reaction in this system results in the consumption of the chemical of interest and
hence results in concentration profile to decrease. Moreover, this particular system also shows
the increase in chemical reaction parameter χ to enhance mass transfer rates (defined in
terms of Sherwood number) as shown in Fig.6. It is worth mentioning that the effects of
chemical reaction on velocity and temperature profiles as well as heat transfer rate may be
negligible. Figs. 7 and 8 illustrate, respectively, the effect of Lewis number Le on Nusselt
number and Sherwood number for various with the following parameters set as χ = 0.02,
Rad = 0.7, F0 = 0.3, N = −0.1, γ = 0.0. The parameter ζ seems to reduce the heat transfer
rates especially with higher Le number as shown in Fig. 7. In the case of mass transfer rates
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Fig. 5. Variation of dimensionless concentration with similarity space variable η for different
χ (Le = 0.5, F0 = 0.3, Rad = 0.7, γ = ζ = 0.0, N = −0.1).

(defined in terms of Sherwood number), Fig. 8 illustrates that the parameter ζ enhances the
mass transfer rate with small values of Le<̃1.55 and the opposite is true for high values of
Le>̃1.55. This may be explained as follows: for small values of Le number, which indicates
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Fig. 6. Effect of Lewis number on Sherwood number for various χ (F0 = 0.3, Rad = 0.7,
γ = ζ = 0.0, N = −0.1).
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Fig. 7. Variation of Nusselt number with Lewis number for various ζ (χ = 0.02, F0 = 0.3,
Rad = 0.7, γ = 0.0, N = −0.1).

that mass dispersion outweighs heat dispersion, the increase in the parameter ζ causes mass
dispersion mechanism to be higher and since the concentration at the wall is kept constant
this increases concentration gradient near the wall and hence increases Sherwood number. As

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Le

S
h
x
/
(
R
a
x
^
0
.5
)

¦"?"202
¦"?"203
¦"?"205
¦"?"207

Fig. 8. Effect of Lewis number on Sherwood number for various ζ (χ = 0.02, F0 = 0.3,
Rad = 0.7, γ = 0.0, N = −0.1).
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Fig. 9. Variation of Nusselt number with Lewis number for various γ (χ = 0.02, F0 = 0.3,
Rad = 0.7, ζ = 0.0, N = −0.1).

Le increases (Le > 1), heat dispersion outweighs mass dispersion and with the increase in ζ
concentration gradient near the wall becomes smaller and this results in decreasing Sherwood
number. Fig. 9 indicates that the increase in thermal dispersion parameter enhances the heat
transfer rates.

6. Multi-phase flow modeling

Multi-phase systems in porous media are ubiquitous either naturally in connection with,
for example, vadose zone hydrology, which involves the complex interaction between three
phases (air, groundwater and soil) and also in many industrial applications such as enhanced
oil recovery (e.g., chemical flooding and CO2 injection), Nuclear waste disposal, transport of
groundwater contaminated with hydrocarbon (NAPL, DNAPL), etc. Modeling of Multi-phase
flows in porous media is, obviously, more difficult than in single-phase systems. Here we
have to account for the complex interfacial interactions between phases as well as the time
dependent deformation they undergo. Modeling of compositional flows in porous media is,
therefore, necessary to understand a number of problems related to the environment (e.g.,
CO2 sequestration) and industry (e.g., enhanced oil recovery). For example, CO2 injection
in hydrocarbon reservoirs has a double benefit, on the one side it is a profitable method
due to issues related to global warming, and on the other hand it represents an effective
mechanism in hydrocarbon recovery. Modeling of these processes is difficult because the
several mechanisms involved. For example, this injection methodology associates, in addition
to species transfer between phases, some substantial changes in density and viscosity of the
phases. The number of phases and compositions of each phase depend on the thermodynamic
conditions and the concentration of each species. Also, multi-phase compositional flows
have varies applications in different areas such as nuclear reactor safety analysis (Dhir, 1994),
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high-level radioactive waste repositories (Doughty & Pruess, 1988), drying of porous solids
and soils (Whitaker, 1977), porous heat pipes (Udell, 1985), geothermal energy production
(Cheng, 1978), etc. The mathematical formulation of the transport phenomena are governed
by conservation principles for each phase separately and by appropriate interfacial conditions
between various phases. Firstly we give the general governing equations of multi-phase,
multicomponent transport in porous media. Then, we provide them in details with analysis
for two- and three-phase flows. The incompressible multi-phase compositional flow of
immiscible fluids are described by the mass conservation in a phase (continuity equation),
momentum conservation in a phase (generalized Darcy’s equation) and mass conservation
of component in phase (spices transport equation). The transport of N-components of
multi-phase flow in porous media are described by the molar balance equations. Mass
conservation in phase α :

∂(φραSα)

∂t
= −∇ · (ραuα) + qα (30)

Momentum conservation in phase α:

uα = −Kkrα

μα
(∇pα + ραg∇z) (31)

Energy conservation in phase α:

∂

∂t
(ǫραSαhα) +∇ · (ραuαhα) =∇ · (ǫSαkα∇T) + q̄α (32)

Mass conservation of component i in phase α:

∂(φczi)

∂t
+∇ · ∑

α
cαxαiuα =∇ ·

(
φDi

α∇(czi)
)
+ Fi, i = 1, · · · , N (33)

where the index α denotes to the phase. S, p,q,u,kr,ρ and μ are the phase saturation, pressure,
mass flow rate, Darcy velocity, relative permeability, density and viscosity, respectively. c is
the overall molar density; zi is the total mole fraction of ith component; cα is the phase molar
densities; xαi is the phase molar fractions; and Fi is the source/sink term of the ith component
which can be considered as the phase change at the interface between the phase α and other
phases; and/or the rate of interface transfer of the component i caused by chemical reaction
(chemical non-equilibrium). Di

α is a macroscopic second-order tensor incorporating diffusive
and dispersive effects. The local thermal equilibrium among phases has been assumed,
(Tα = T,∀α), and kα and q̄α represent the effective thermal conductivity of the phase α and
the interphase heat transfer rate associated with phase α, respectively. Hence, ∑α q̄α = q, q is
an external volumetric heat source/sink (Starikovicius, 2003). The phase enthalpy kα is related

to the temperature T by, hα =
∫ T

0 cpαdT + h0
α. The saturation Sα of the phases are constrained

by, cpα and h0
α are the specific heat and the reference enthalpy oh phase α, respectively.

∑
α

Sα = 1 (34)

One may defined the phase saturation as the fraction of the void volume of a porous medium
filled by this fluid phase. The mass flow rate qα, describe sources or sinks and can be defined
by the following relation (Chen, 2007),
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q = ∑
j

ρjqjδ(x − xj) (35)

q = −∑
j

ρjqjδ(x − xj) (36)

The index j represents the points of sources or sinks. Eq. (35) represents sources and qj

represents volume of the fluid (with density ρj) injected per unit time at the points locations
xj, while, Eq. (36) represents sinks and qj represents volume of the fluid produced per unit
time at xj.
On the other hand, the molar density of wetting and nonwetting phases is given by,

cα =
N

∑
i=1

cαi (37)

where cαi is the molar densities of the component i in the phase α. Therefore, the mole fraction
of the component i in the respective phase is given as,

xαi =
cαi

cα
, i = 1, · · · , N (38)

The mole fraction balance implies that,

N

∑
i=1

xαi = 1 (39)

Also, for the total mole fraction of ith component,

N

∑
i=1

zi = 1 (40)

Alternatively, Eq. (32) can be rewritten in the following form,

∂

∂t

(
φ∑

α
cαxαiSα

)
+∇ · ∑

α
cαxαiuα =∇ ·

(
φcαSαDi

α∇xαi

)
+ Fi, i = 1, · · · , N (41)

Fi may be written as,

Fi = ∑
α

xαiqα, i = 1, · · · , N (42)

where qα is the phase flow rate given by Eqs. (35), (36). From Eqs. (32) and (41), one may
deduce,

czi = ∑
α

cαxαiSα = ∑
α

cαiSα, i = 1, · · · , N (43)

If one uses the total mass variable X of the system (Nolen 1973; Young and Stephenson 1983),

X = ∑
α

cαSα (44)

Therefore,
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1 = ∑
α

cαSα

X
= ∑

α
Cα (45)

where Cα is the mass fraction phase α, respectively.
The quantity,

kα = Kkrα (46)

is known as effective permeability of the phase α. The relative permeability of a phase is a
dimensionless measure of the effective permeability of that phase. It is the ratio of the effective
permeability of that phase to the absolute permeability. Also, it is interesting to define the
quantities mα which is known as mobility ratios of phases α, respectively are given by,

mα =
kα

μα
(47)

The capillary pressure is the the difference between the pressures for two adjacent phases α1

and α2, given as,

pcα1α2 = pα1 − pα2 (48)

The capillary pressure function is dependent on the pore geometry, fluid physical properties
and phase saturations. The two phase capillary pressure can be expressed by Leverett
dimensionless function J(S), which is a function of the normalized saturation S,

pc = γ

(
φ

K

) 1
2

J(S) (49)

The J(S) function typically lies between two limiting (drainage and imbibition) curves which
can be obtained experimentally.

6.1 Two-phase compositional flow

The governing equations of two-phase compositional flow of immiscible fluids are given by,
Mass conservation in phase α:

∂(φραSα)

∂t
= −∇ · (ραuα) + qα α = w,n (50)

Momentum conservation in phase α:

uα = −Kkrα

μα
(∇pα + ραg∇z) α = w,n (51)

Mass conservation of component i in phase α:

∂(φczi)

∂t
+∇ · (cwxwiuw + cnxniun) = Fi, i = 1, · · · , N (52)

where the index α denotes to the wetting (w) and non-wetting (n), respectively. S, p,q,u,kr,ρ
and μ are the phase saturation, pressure, mass flow rate, Darcy velocity, relative permeability,
density and viscosity, respectively. c is the overall molar density; zi is the total mole fraction
of ith component; cw, cn are the wetting- and nonwetting-phase molar densities; xwi, xni are
the wetting- and nonwetting-phase molar fractions; and Fi is the source/sink term of the ith

component. The saturation Sα of the phases are constrained by,
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(a) Corey approximation (b) LET approximation

Fig. 10. Relative permeabilities.

Sw + Sn = 1 (53)

The normalized wetting phase saturation S is given by,

S =
Sw − S0w

1 − Snr − S0w
0 ≤ S ≤ 1 (54)

where S0w is the irreducible (minimal) wetting phase saturation and Snr is the residual
(minimal) non-wetting phase saturation. The expression of relation between the relative
permeabilities and the normalized wetting phase saturation S, given as,

krw = k0
rwSa (55)

krn = k0
rn(1 − S)b (56)

The empirical parameters a and b can be obtained from measured data either by optimizing
to analytical interpretation of measured data, or by optimizing using a core flow numerical
simulator to match the experiment. k0

rw = krw(S = 1) is the endpoint relative permeability to
water, and k0

rn = krn(S = 0) is the endpoint relative permeability to the non-wetting phase.
For example, for the Corey power-law correlation, a = b = 2, k0

rn = 1, k0
rw = 0.6, for water-oil

system see Fig.10a. Another example of relative permeabilities correlations is LET model
which is more accurate than Corey model. The LET-type approximation is described by three
empirical parameters L,E and T. The relative permeability correlation for water-oil system has
the form,

krw =
k0

rwSLw

SLw + Ew(1 − S)Tw
(57)

and

krn =
(1 − S)Ln

(1 − S)Ln + EnSTn
(58)

The parameter E describes the position of the slope (or the elevation) of the curve. Fig. 10b
shows LET relative permeabilities with L = E = T = 2 and k0

rw = 0.6 for water-oil system.
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Fig. 11. Capillary pressure as a function of normalized wetting phase saturation.

Also, there are Corey- and LET-correlations for gas-water and gas-oil systems similar to
the oil-water system. Correlation of the imbibition capillary pressure data depends on the
type of application. For example, for water-oil system, see for example, (Pooladi-Darvish &
Firoozabadi, 2000), the capillary pressure and the normalized wetting phase saturation are
correlated as,

pc = −B lnS (59)

where B is the capillary pressure parameter, which is equivalent to γ
(

φ
K

) 1
2
, in the general

form of the capillary pressure, Eq. (49), thus, B ≡ −γ
(

φ
K

) 1
2

and J(S) ≡ lnS. Note that J(S) is

a scalar non-negative function. Capillary pressure as a function of normalized wetting phase
(e.g. water) saturation is shown in Fig. 11. Also, the well known (van Genuchten, 1980; Brooks
& Corey, 1964) capillary pressure formulae which can be written as,

pc = p0(S
−1/m − 1)1−m, 0 < m < 1 (60)

pc = pdS−1/λ, 0.2 < λ < 3 (61)

where p0 is characteristic capillary pressure and pd is called entry pressure.
The capillary pressure pc is defined as a difference between the non-wetting and wetting phase
pressures,

pc = pn − pw (62)

the total velocity defined as,
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u = uw + un (63)

the total mobility is given by,

m(S) = mw(S) + mn(S) (64)

the fractional flow functions are,

fw(S) =
mw(S)

m(S)
, fn(S) =

mn(S)

m(S)
(65)

and the density difference is,

∆ρ = ρn − ρw (66)

On the other hand, the molar density of wetting and nonwetting phases is given by,

cw =
N

∑
i=1

cwi, cn =
N

∑
i=1

cni (67)

where cwi and cni are the molar densities of component i in the wetting phase and nonwetting
phase phases, respectively. Therefore, the mole fraction of component i in the respective phase
is given as,

xwi =
cwi

cw
, xni =

cni

cn
, i = 1, · · · , N (68)

The mole fraction balance implies that,

N

∑
i=1

xwi = 1,
N

∑
i=1

xni = 1 (69)

Also, for the total mole fraction of ith component,

N

∑
i=1

zi = 1 (70)

Alternatively, Eq. (52) can be rewritten in the following form,

∂

∂t
[φ (cwxwiSw + cnxniSn)] +∇ · (cwxwiuw + cnxniun) = Fi, i = 1, · · · , N (71)

Fi may be written as,

Fi = xwiqw + xniqn, i = 1, · · · , N (72)

where qw and qn are wetting phase and nonwetting phase phase flow rate, respectively. From
Eqs. (32) and (72), one may deduce,

czi = cwxwiSw + cnxniSn = cwiSw + cniSn, i = 1, · · · , N (73)

If one uses the total mass variable X of the system (Nolen, 1973; Young & Stephenson, 1983),

X = cwSw + cnSn (74)

42 Mass Transfer in Multiphase Systems and its Applications

www.intechopen.com



Solute Transport With Chemical Reaction in Single- and Multi-Phase Flow in Porous Media 21

Therefore,

1 =
cwSw

X
+

cwSn

X
= Cw + Cn (75)

where Cw and Cn are mass fractions of wetting- and nonwetting-phase of the system,
respectively. It is noted that,

Cw = 1 − Cn (76)

The total mole fraction of ith component, zi, in terms of one phase (wetting phase) mass
fraction and the wetting- and nonwetting-phase molar fractions, is given by,

zi = Cwxwi + (1 − Cw)xni, i = 1, · · · , N (77)

The pressure equation can be obtained, using the concept of volume-balance, as follows,

φC f
∂p

∂t
+

N

∑
i=1

V̄i∇ · (cwxwiuw + cnxniun) =
N

∑
i=1

V̄iFi, i = 1, · · · , N (78)

where C f is the total fluid compressibility and Vi is the total partial molar volume of the ith

component. The distribution of the each component inside the two phases is restricted to
the stable thermodynamic equilibrium in terms of phases’ fugacities, fwi and fni of the ith

component. The stable thermodynamic equilibrium is given by minimizing the Gibbs free
energy of the system Bear (1972); Chen (2007),

fwi(pw, xw1, xw2, · · · , xwN) = fni(pn, xn1, xn2, · · · , xnN), i = 1, · · · , N (79)

The fugacity of the ith component is defined by,

fαi = pαxoiφαi, α = w,n, i = 1, · · · , N (80)

φαi,α = w,n is the fugacity coefficient of the ith component which will be defined below. The
phase and volumetric behaviors, including the calculations of the fugacities, are modeled
using the Peng-Robinson equation of state (Peng & Robinson, 1976). Introducing the pressure
of the phase, p/alpha, which is given by Peng-Robinson two-parameter equation of state as,

pα =
RT

Vα − bα
− aα(T)

Vα(Vα + bα) + bα(Vα − bα)
, α = w,n (81)

aα =
N

∑
i=1

N

∑
j=1

xiαxjα(1 − κij)
√

aiaj, bα =
N

∑
j=1

xiαbi, α = w,n (82)

where R is the universal gas of constant, T is the temperature, Vα is the molar volume of the
phase α, κij is a binary interaction parameter between the components i and j, ai and ai are
empirical factor for the pure component i given by,

ai = Πiaαi
R2T2

ic

pic
, bi = Πib

RTic

pic
, i = 1, · · · , N (83)

Tic and pic are the critical temperature and pressure,
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Πia = 0.45724, Πib = 0.077796, αi =
(

1 − λi

[
1 −

√
T
Tic

])2
,

λi = 0.37464 + 1.5432ωi − 0.26992ω2
i , i = 1, · · · , N

(84)

Eq. (72) can be rewritten in the following cubic form,

Z3
α − (1 − Bα)Z2

α + (Aα − 2Bα − 3B2
α)Zα − (AαBα − B2

α − B2
α) = 0, α = w,n (85)

where Zα is the compressibility factor given by,

Zα =
bαVα

RT
, α = w,n (86)

(Chen, 2007) explained how to solve the cubic algebraic equation, Eq. (64). The fugacity
coefficient φαi of the ith component is defined in terms of the compressibility factor Zα as,

lnφαi =
bi
bα
(Zα − 1)− ln(Zα − Bα)− Aα

2
√

2Bα

(
2
aα

∑
N
j=1 xjα(1 − κij)

√
aiaj − bi

bα

)

· ln
(

Zα+(1+
√

2)Bα

Zα−(1−
√

2)Bα

) (87)

Deriving of this equation can be found in details in (Chen, 2007).
Using Eqs. (51)- (53) and (62)- (65) with some mathematical manipulation one can find,

∂(φρwSw)

∂t
= −∇ · ρw fw(S)

{
Kmn(S)

(
dpc

dSw
∇Sw − ∆ρg∇z

)
+ u

}
+ qw (88)

Alternatively, in terms of pressure the flow equations may be rewritten in the form,

∂(φρwSw)

dpc

(
∂pn

∂t
− ∂pw

∂t

)
=∇ · ρw

{
Kkrw

μw
(∇pw − ρwg∇z)

}
+ qw (89)

∂(φρn(1 − Sw))

dpc

(
∂pn

∂t
− ∂pw

∂t

)
=∇ · ρn

{
Kkrn

μn
(∇pn − ρng∇z)

}
+ qn (90)

Both models, Eq. (88) and Eqs. (89)- (90) are used intensively especially in the field of oil
reservoir simulations.

6.2 Three-phase compositional flow

In three-phase compositional flow the governing equations will not has a big difference from
the two-phase case. In this section we introduce the main points which distinguish the
three-phase flow. On the other hand, we consider the black oil model as an example of the
three-phase compositional flow instead of considering the general case to investigate such
kind of complex flow. The black oil model is water-oil-gas system such that water represents
the aqueous phase and oil represents oleic phase. The hydrocarbon in a reservoir is almost
consists of oil and gas. Water is being naturally in the reservoir or injected in the secondary
stage of oil recovery. Also, gas may be found naturally or/and injected as CO2 injection for
the enhanced oil recovery stage. The governing equations may be extended to the three-phase
flow. The generalized Darcy’s law with mass transfer equations will remain the same as
in Eqs. (30) and (31) with considering α = w,o, g, thus each phase is represented by two
equations, continuity and momentum. The index α denotes to the water (w), oil (o) and gas (g),
respectively. The solute transport equations is modified to suite the three-phase compositional
flow as follow,
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∂(φczi)

∂t
+∇ ·

(
cwxwiuw + coxoiuo + cgxgiug

)
= Fi, i = 1, · · · , N (91)

or

∂
∂t

[
φ
(

cwxwiSw + coxoiSo + cgxgiSg

)]
+∇ ·

(
cwxwiuw + coxoiuo + cgxgiug

)
=

xwiqw + xoiqo + xgiqg, i = 1, · · · , N
(92)

Following (Stone, 1970; 1973) we assume that the water-oil and oil-gas relative permeabilities
are given as the two-phase case,

krw(Sw) = k0
rw

(
Sw − Swc

1 − Swc − Sorw

)nw

(93)

krg(Sg) = k0
rg

(
Sg − Sgr

1 − Swc − Sorg − Sgr

)ng

(94)

where Swc is the connate water saturation, Sorg is the residual oil saturation to gas, Sorw is the
residual oil saturation to water, Sgr is the residual gas saturation to water. Sw = 1 − Sorw. The
intermediate-wetting phase (oil phase) relative permeabilities are given by,

krow(Sw) = k0
row

(
1 − Sw − Sorw

1 − Swc − Sorw

)now

(95)

krog(Sg) = k0
rog

(
1 − Swc − Sorg − Sg

1 − Swc − Sorg − Sgr

)nog

(96)

The intermediate-wetting phase relative permeability is given by,

kro(Sw,Sg) =
krowkrog

knorm
(97)

knorm may be setting as one or given by another formula as in the literature which will not
mention here for breif.

6.3 Numerical methods for multi-phase flow

Much progress in the last three decades in numerical simulation of multi-phase flow with
compositional and chemical effect. Both first-order finite difference and finite volume
methods are used. First-order finite difference schemes has numerical dispersion issue, while
the first-order finite volume has powerful features when used for two-phase flow simulation
(Leveque, 2002). However, the later one has some limitations when applied to fractured
media (Monteagudo & Firoozabadi, 2007). Also, higher-order methods have less numerical
dispersion and more accurate flow field calculations than the first-order methods. The
combined mixed-hybrid finite element (MHFE) and discontinuous Galerkin (DG) methods
have been used to simulate two-phase flow by (Hoteit & Firoozabadi, 2005; 2006; Mikyska
& Firoozabadi, 2010). In the combined MHFE-DG methods, MHFE is used to solve the
pressure equation with total velocity, and DG method is used to solve explicitly the species
transport equations. Therefore, the parts are coupled using scheme such as the iterative
IMplicit Pressure and Explicit Concentration (IMPEC) scheme. Also, (Sun et al., 2002) have
used combined MHFE-DG methods to miscible displacement problems in porous media.
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The DG method (Wheeler, 1987; Sun & Wheeler, 2005a;b; 2006) is derived from variational
principles by integration over local cells, thus it is locally mass conservative by construction.
In addition, the DG method has low numerical diffusion because higher-order approximations
are used within cells and the cells interfaces are weakly enforced through the bilinear form.
DG method is efficiently implementable on unstructured and nonconforming meshes.
The MHFE methods are based on a variational principle expressing an equilibrium or saddle
point condition that can be satisfied locally on each element (Brezzi & Fortin, 1991). It has
an indefinite linear system of equations for pressure (scalar) and the total velocity (vector)
but they definitized by appending as extra degrees of freedom the average pressures at the
element edges.
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