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1. Introduction 

The study of chaos can be introduced in several applications as: medical field, fractal theory, 
electrical circuits and secure communication, essentially based on synchronization 
techniques. 
The synchronization for chaotic systems has been extended to the scope, such as generalized 
synchronization, phase synchronization, lag synchronization, and even anti-synchronization 
(Pecora & Carroll, 1990; Wu & Chua, 1993; Michael et al., 1996; Bai & Lonngsen, 1997; Yang 
& Duan, 1998; Taherion & Lai, 1999; Zhang & Sun, 2004; Li, 2005; Yassen, 2005; Hammami et 
al., 2009; Juhn et al., 2009; Hammami et al., 2010b). 
For an n  master chaotic system coupled to an n  slave one, described respectively by 

( ) ( ( ))m mx t f x t=�  and by ( ) ( ( )),s sx t g x t=�  where mx  and sx  are phase space variables, and 
(.)f  and (.)g  the corresponding nonlinear functions, the synchronization in a direct sense 

implies that 0( ) ( )s mx t x t− →  as .t →+∞  
The property of anti-synchronization constitutes a prevailing phenomenon in symmetrical 
oscillators, in which the state vectors have the same absolute values but opposite signs, 
which implies that 0( ) ( )s mx t x t+ →  as .t →+∞  
When synchronization and anti-synchronization coexist, simultaneously, in chaotic systems, 
the synchronization is called hybrid synchronization (Juhn et al., 2009). 

2. Chaotic hybrid synchronization and stability study 

Let consider the chaotic master system ( )mS  described, in the state space, by: 

 ( )( ) ( ) ( )m m mx t A x t x t=�  (1) 

coupled with the following forced slave system ( ) :sS  

 ( ) ( )( ) ( ) ( ) ( ) ( )s s s sx t A x t x t B x t u t= +�  (2) 
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where mx  and sx  are the n  state vectors of the considered systems ( )mS  and ( ) ,sS  
respectively, 1 1,  ,

T T
m mn s snm sx x x x x x⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= =… …  u  the h  control vector, 

1 ,
T

hu u u⎡ ⎤⎣ ⎦= …  (.)A  an n n×  instantaneous characteristic matrix, and (.)B  an n h×  
instantaneous control matrix. 
Let denote by Se  the state synchronous error: 

 ( ) ( ) ( )s mSe t x t x t= −  (3) 

and ASe  the anti-synchronous one: 

 ( ) ( ) ( )s mASe t x t x t= +  (4) 

1 1,  ,
T T

S S Sn AS AS ASne e e e e e⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= =… …  and consider that the hybrid 
synchronization of the two chaotic systems, ( )mS  and ( ) ,sS  is achieved if the following 
conditions hold (Juhn et al., 2009): 

 
lim lim 0 1 2

lim lim 0 1

( ) ( ) ( ) ,  , , , ,  

( ) ( ) ( ) ,  , ,

Si si mit t

ASj sj mjt t

e t x t x t i p p n

e t x t x t j p n
→+∞ →+∞

→+∞ →+∞

⎧
⎪
⎨
⎪
⎩

= − = ∀ = <

= + = ∀ = +

…

…
 (5) 

The satisfaction of the first relations of conditions (5) means that the synchronization 
property as far as p  states of the error vector are concerned is satisfied. Nevertheless, the 
fulfilment of the second relations of the same system (5) guarantees the anti-synchronism 
relatively to the ( )-n p  remaining states. 
Then, the problem consisting in studying the convergence of both synchronous and anti-
synchronous errors is equivalent to a stability study problem. 
To force this property to the error system characterizing the evolution of the error vector of 
the coupled chaotic systems, one solution is to design a suitable feedback control law ( )u t  of 
the slave system which can be chosen in the form, Fig. 1. (Kapitanialc, 2000): 

 ( )( )( ), ( ) ( )  ( )( ) s m s mx t x t x t x tu t K Δ= −  (6) 

such that, the operator Δ  is replaced by the sign ( )−  in the synchronization case and by the 
sign ( )+  in the anti-synchronization one; (.)K  is an h n×  nonlinear gain matrix.   
 

 
Fig. 1. Schematic representation of two chaotic systems synchronized in hybrid manner 
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The determination of the controller’s gains, intended for the hybrid synchronization of the 
dynamic coupled master-slave chaotic system, is considered in the following section.  

3. Analytic synchronization conditions of chaotic systems (Benrejeb & 
Hammami, 2008; Hammami, 2009; Hammami et al., 2010a) 

To guarantee the synchronization as well as the anti-synchronization of chaotic systems, 
proposed approaches are based on the choice of both adapted stability method and of 
system description. 

3.1 Case of nonlinear monovariable systems 

Let consider the error dynamic system described by (7) in the monovariable case: 

 ( ) ( )ˆ ˆ( ) ( ), ( ) ( ) ( ), ( ) ( )s m s me t A x t x t e t B x t x t u t= +�  (7) 

 ( )( ) ( ), ( ) ( )s mu t K x t x t e t= −  (8) 

with ,u∈R  { }ˆ ˆ(.) (.) ,ijA a=  { }ˆˆ(.) (.) ,iB b=  and { }(.) (.) ,jK k=  1, , , ,i j n∀ = …  and the 

characteristic matrix of the closed-loop system (.),A�  defined by: 

 ˆ ˆ(.) (.) (.) (.)A A B K= −�  (9) 

Theorem 1. The system described by (7) and (8) and verifying (10): 

 0 1 1ˆˆ (.) (.) (.)  , , ,  for ij i ja b k i j n i j− = ∀ = − ≠…  (10) 

such that: 

i. the nonlinear elements are located in either one row or one column of the matrix (.),A�  

ii. the diagonal elements ( )ˆˆ (.) (.) (.)ii i ia b k−  of the matrix (.)A�  are such that: 

 ( ) 0 1 1ˆˆ (.) (.) (.)  , ,ii i ia b k i n− < ∀ = −…  (11) 

is asymptotically stable, if there exist 0ε >  such that: 

 ( ) ( )( ) ( )1 1

1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)
n

nn n n ni n i in i n ii i i
i

a b k a b k a b k a b k ε
− −

=

⎡ ⎤− − − − − ≤ −∑ ⎢ ⎥⎣ ⎦
 (12) 

Proof. Conditions (10) lead to an arrow form closed-loop characteristic matrix (.)A�  

(Benrejeb, 1980), called Benrejeb matrix (Borne et al., 2007): 

 (.)A

× ×⎡ ⎤
⎢ ⎥× ×⎢ ⎥
⎢ ⎥=
⎢ ⎥

× ×⎢ ⎥
⎢ ⎥× × × ×⎣ ⎦

� % #

…

 (13) 
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The choice of a comparison system having a characteristic matrix ( )(.) ,M A��  relatively to the 

vectorial norm 1( ) ,
T

np z z z⎡ ⎤= ⎣ ⎦…  [ ]1 ,
T

nz z z= …  leads, when the nonlinearities are 

isolated in either one row or one column, to the following sufficient conditions, by the use of 
Borne-Gentina practical stability criterion (Borne & Benrejeb, 2008): 

 ( ) 1 2
1 0 1 2

1 2
( ) (.)  , , ,i i

M A i n
i

…⎛ ⎞
− > ∀ = …⎜ ⎟…⎝ ⎠

��  (14) 

This criterion, useful for the stability study of complex and large scale systems generalizes 
the Kotelyanski lemma for nonlinear systems and defines large classes of systems for which 
the linear conjecture can be verified, either for the initial system or for its comparison 
system. 
The comparison system associated to the previous vectorial norm ( ),p z  is defined, in this 
case, by the following differential equations: 

 ( )( ) (.) ( )z t M A z t= ���  (15) 

such that the elements (.)ijm�  of ( )(.)M A��  are deduced from the ones of the matrix (.)A�  by 
substituting the off-diagonal elements by their absolute values, which can be written as: 

 
1

1

(.) (.)   , ,
ˆˆ(.) (.) (.) (.)  , , , ,  

ii ii

ij ij i j

m a i n

m a b k i j n i j

= ∀ =⎧⎪
⎨ = − ∀ = ≠⎪⎩

� � …

� …
 (16) 

The system (7) is then stabilized by (8) if the matrix ( )(.)M A��  is the opposite of an M −  
matrix, or equivalently, by application of the practical Borne-Gentina criterion: 

 ( )( )
0 1 2 1

1 0det

(.)  , , ,

( ) (.)

ii

n

a i n

M A

< ∀ = −⎧⎪
⎨ − >⎪⎩

� …
��  (17) 

The development of the first member of the last inequality of (17): 

 ( )( ) ( )
11 1 1

1 1
1 1 1det( ) (.) ( ) (.) (.) (.) (.) ( ) (.)

nnn n
nn ni in ii jj

i j
M A a a a a a

−− − −

= =

⎛ ⎞− = − − −∑ ∏⎜ ⎟
⎝ ⎠

�� � � � � �  (18) 

achieves easily the proof of theorem 1. 
Corollary 1. The system described by (7) and (8) and verifying (10) such that: 

i. the nonlinear elements are located in either one row or one column of the matrix (.)A� , 

ii. the diagonal elements ( )ˆˆ (.) (.) (.) ,ii i ia b k−  1 1, , ,i n∀ = −…  of the matrix (.)A�  are strictly 

negative, 

iii. the products of the off-diagonal elements of the matrix (.)A�  are such that: 

 ( )( ) 0 1 1ˆ ˆˆ ˆ(.) (.) (.) (.) (.) (.)  , ,ni n i in i na b k a b k i n− − ≥ ∀ = −…  (19) 
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is asymptotically stable if there exist 0ε >  for which the instantaneous characteristic polynomial 

( )(.) .,AP λ�  of (.)A�  satisfies the condition: 

 ( ) ( )( )(.) 0 1 det., ( ) (.)n
AP M A ε= − ≥� �  (20) 

Proof. The proof of corollary 1 is inferred of theorem 1 by taking into account the new 
added iii. conditions, which guarantee, through a simple transformation, the identity of the 
matrix (.)A�  and its overvaluing matrix ( )(.) .M A��  
These conditions, associated to aggregation techniques based on the use of vector norms, 
have led to stability domains for a class of Lur’e Postnikov systems whereas, for example, 
Popov stability criterion use failed (Benrejeb, 1980). 

3.2 Nonlinear multivariable systems case 

In the case of nonlinear multivariable systems, let us consider the closed-loop error system 
described by: 

 ( ) ( )ˆ ˆ( ) . ( ) . ( )e t A e t B u t= +�  (21) 

 ( ) (.) ( )u t K e t= −  (22) 

then by: 

 ( ) (.) ( )e t A e t= ��  (23) 

 ˆ ˆ(.) (.) (.) (.)A A B K= −�  (24) 

with hu∈R  the control vector, ˆ (.)A  the n n×  instantaneous characteristic matrix, 

{ }ˆ ˆ(.) (.) ,ijA a=  ˆ(.)B  the n h×  control matrix, { }ˆˆ(.) (.)ijB b=  and (.)K  the h n×  instantaneous 
gain matrix, { }(.) (.) .ijK k=  

The conditions allowing to put (.)A�  under arrow form, are expressed as follows: 

 
1

0 1 1(.) (.) (.) ,ˆˆ , , ,   
h

ij il lj
l

a b k i j n i j
=

− = ∀ = − ≠∑ …  (25) 

Then, a necessary condition leading to the existence of a control law is that the number of 
equations to solve, ( )( )1 2 ,n n− −  must be less than or equal to the number of unknown 
parameters, ,n h×  then: 

 2h n≥ −  (26) 

Remark 1. If there exist ,  ,i i n<  such that 1ˆ (.) , , ,,  ilb l h∀ = …  is equal to zero and by 
considering the conditions (25) allowing to put the matrix (.)A�  under the arrow form, the 
system (21) must be such that: 

 0 1 1 forˆ (.)  , ,   ija j n i j= ∀ = − ≠…  (27) 
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Remark 2. If all the elements 1 1ˆ (.)  , , ,,ilb i n∀ = −…  1, , ,l h∀ = …  are equal to zero, then the 
equations (25) cannot be satisfied only in the particular case where the matrix ˆ (.)A  is under 
the arrow form; that is to say, that all the elements 1 1ˆ (.),  , , , ,ija i j n∀ = −…  for ,i j≠  are equal 
to zero, due to: 

 
1

0 1 1ˆ (.) (.)  , , , ,  
h

il lj
l

b k i j n i j
=

= ∀ = − ≠∑ …  (28) 

Theorem 2. The system described by (21) and (22) and verifying (25) and (26), is stabilized by the 

control law (22) if the instantaneous characteristic matrix (.),A�  defined by (24), is such that: 

i. the nonlinear elements are located in either one row or one column of the matrix (.),A�  

ii. the first ( )1n −  diagonal elements of the matrix (.)A�  are such that: 

 
1

0 1 2 1ˆˆ (.) (.) (.)  , , ,
h

ii il li
l

a b k i n
=

⎛ ⎞− < ∀ = −∑⎜ ⎟
⎝ ⎠

…  (29) 

iii. there exist 0,ε >  such that: 

 
1 1 1

11 1

1

ˆ ˆˆ ˆ(.) (.) (.) (.) (.) (.)
ˆˆ (.) (.) (.)

ˆˆ (.) (.) (.)

h h

ni nl li in il ln
h n l l

nn nl ln
hl i

ii il li
l

a b k a b k

a b k

a b k

ε
− = =

−= =

=

⎡ ⎤⎛ ⎞⎛ ⎞− −∑ ∑⎜ ⎟⎜ ⎟⎢ ⎥
⎝ ⎠⎝ ⎠⎛ ⎞ ⎢ ⎥− − ≤ −∑ ∑⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎛ ⎞⎢ ⎥× − ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (30) 

Proof. The proof of theorem 2 is similar to the theorem 1 relatively to the dynamic nonlinear 
monovariable continuous system; the conditions (29) and (30) are inferred from the 
conditions (11) and (12), by replacing the elements (.)ija�  by their expressions according to 
the elements of ˆ ˆ(.),  (.)A B  and (.)K  matrices. 
Remark 3. The previous results, well adapted for multivariable systems, can be applied only 
for monovariable ones which are, at most, of third order, by respect to the above-mentioned 
necessary condition (26). 
Although, according to the class of systems described by differential scalar equation, the 
arrow form matrix can be advantageously used in a different way. 
In such a view, let us consider the closed-loop nonlinear system assumed to be described by 
the following differential scalar equation: 

 ( )1( ) ( 1) ( )

0
0( ) ( ),  ( ),  ,  ( ) ( )

nn n i
i

i
s t a s t s t s t s t

− −

=
′+ =∑ …  (31) 

s  is the output, ,s∈R  y  the state vector ( 1) ,  ,
Tn ny s s s y−⎡ ⎤′= ∈⎣ ⎦… R  and 

0 1 1(.),  , , , ,ia i n∀ = −…  coefficients of the instantaneous characteristic polynomial ( )(.) .,AP λ  
of the matrix (.),A  such that: 

 ( ) ( )
1

(.)
0

det., (.) (.)
nn i

A i
i

P A aλ λ λ λ
−

=
= − = + ∑I  (32) 

The system (31) can be rewritten as: 
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 ( ) (.) ( )y t A y t=�  (33) 

 

0 1

0 1 0 0

0 0

0 0 1

(.)

(.) (.)n

A

a a −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

…
# % % % #

…
…

 (34) 

The change of base defined by (Benrejeb, 1980): 

 y Px=  (35) 

 
1 2 1

2 2 2
1 2 1

1 1 1
1 2 1

1 1 1 0

0

1

n

n n n
n

n n n
n

P

α α α

α α α

α α α

−

− − −
−

− − −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
… #

# # # #

…

…

 (36) 

with 1 2 1,  , , , ,i i nα ∀ = −…  distinct arbitrary constant parameters, ,  ,i j i jα α≠ ∀ ≠  leads to the 
following description: 

 ( ) (.) ( )x t A x t=
�

�  (37) 

where the new instantaneous characteristic matrix, denoted by (.)A
�

 is in the Benrejeb arrow 
form: 

 1(.) (.)PA A P−=
�

 (38) 

 

1 1

1 1

1 1

(.)

(.) (.) (.)
n n

n n

A

α β

α β
γ γ γ

− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

� % #

…

 (39) 

with: 

 ( )1 1

, 1
i j

n

i i j
i j

β α α
≠

− −

=
= −∏  (40) 

 ( )(.) 1 2 1(.) .,  , , ,i iAP i nγ α= − ∀ = −� …  (41) 

 
1

1
1

(.) (.)
n

n n i
i

aγ α
−

−
=

= − − ∑  (42) 

For the system described by (37) and (39), the application of Borne-Gentina criterion can 
lead to the stability conditions of the studied nonlinear system as shown in the following. 

www.intechopen.com



 Chaotic Systems 

 

210 

The equilibrium state of the nonlinear system (37) is asymptotically stable if the conditions: 

i. 0 1 1,  , , ,  ,  i i ji n i jα α α< = − ≠ ∀ ≠…  (43) 

 

ii.    there exist a positive parameter ,ε  such that: 

 
1 1

0
(.) (.)

n

n i i i
i

γ β γ α ε
− −

=
− ≤ −∑  (44) 

are satisfied. 
When the ( )1n −  products 1 1(.),  , , ,i i i nβ γ ∀ = −…  are non-negative, the condition (44) can be 
reduced and stated, by means of the instantaneous characteristic polynomial of the matrix 

(.),A
�

 in the following manner: 

 ( )(.) 0.,AP ε≥�  (45) 

which constitutes a verification case of the validity of the linear Aizerman conjecture. 

4. Synchronization and anti-synchronization cases 

4.1 Synchronization of two identical coupled chaotic Chen systems 

In this part, let focus on the problem of synchronization process of two identical coupled 
chaotic Chen dynamical systems. 
The studied system is described by the following differential equations (Fallahi et al., 2008): 

 
1 1

2 2 1 3

3 3 1 2

0 0

0

0 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t x t

x t x t x t x t

x t x t x t x t

α α
γ α γ

β

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�
�

 (46) 

 

where ,  α β  and γ  are three positive parameters. 

The system (46) exhibits a chaotic attractor at the parameter values: 35 3,  α β= =  and 28,γ =  
starting at the initial value of the state vector [ ]0 1 1 0 5( ) . ,

T
x =  Fig. 2. 

Obviously, the Chen nonlinear model can also be presented by respect to the following 
model: 

 ( ) (.) ( )x t A x t=�  (47) 

 

where [ ]1 2 3( ) ( ) ( ) ( )
T

x t x t x t x t=  is the state vector and (.)A  the instantaneous 
characteristic matrix such that:  

 1

1

0

0

(.) ( )

( )

A x t

x t

α α
γ α γ

β

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (48) 

 

At this stage, we choose a master Chen system given by: 
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( )
( )

1 2 1

2 3 1 2

3 1 2 3

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m m m

m m m m

m m m m

x t x t x t

x t x t x t x t

x t x t x t x t

α

γ α γ
β

⎧ = −
⎪

= − − +⎨
⎪ = −⎩

�
�
�

 (49) 

which drives a slave Chen system described by: 

 

( )
( )

1 2 1

2 3 1 2 1

3 1 2 3 2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

s s s

s s s s

s s s s

x t x t x t

x t x t x t x t u t

x t x t x t x t u t

α

γ α γ
β

⎧ = −
⎪

= − − + +⎨
⎪ = − +⎩

�
�
�

 (50) 

1 2( ),  , ,iu t i =  are the appropriate control functions to be determined. 

It comes the error dynamics equations below: 

 

( )
( ) ( )

( )

1 2 1

2 1 2 1 3 1 3 1

3 3 1 2 1 2 2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

S S S

S S S m m s s

S S m m s s

e t e t e t

e t e t e t x t x t x t x t u t

e t e t x t x t x t x t u t

α

γ α γ

β

⎧ = −
⎪

= − + + − +⎨
⎪ = − − − +⎩

�
�
�

 (51) 

which can be rewritten in the form: 

 
( )

( ) ( )
( )

1 2 1

2 1 2 1 3 1 3

3 3 1 2 1 2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

S S S

S S S m m s s

S S m m s s

e t e t e t

e t e t e t x t x t x t x t Bu t

e t e t x t x t x t x t

α
γ α γ

β

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥ = − + + − +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦

�
�
�

 (52) 

 

 
Fig. 2. Three-dimensional attractor of Chen dynamical chaotic system 
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with: 

 

0 0

1 0

0 1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (53) 

The synchronization problem for coupled Chen chaotic dynamical systems is to achieve the 
asymptotic stability of this error system (52), with the following active control functions 

1 2( ),  , ,iu t i =  defined by: 

 
2

1
1 2( ) (.) ( ) (.) ,i ij j i

j
u t k x t f i

=
= − − ∀ =∑  (54) 

Then, for an instantaneous 2 2×  gain matrix { }(.),  (.) (.) ,ijK K k=  we obtain: 

 
( )

( ) ( ) ( )
( )

1 2 1

2 11 1 12 2 1 3 1 3 1

3 21 1 22 2 3 1 2 1 2 2

( ) ( ) ( )

( ) (.) ( ) (.) ( ) ( ) ( ) ( ) ( ) (.)

( ) (.) ( ) (.) ( ) ( ) ( ) ( ) ( ) ( ) (.)

S S S

S S S m m s s

S S S S m m s s

e t e t e t

e t k e t k e t x t x t x t x t f

e t k e t k e t e t x t x t x t x t f

α

γ α γ

β

⎧ = −
⎪

= − − + − + − −⎨
⎪ = − − − − − −⎩

�
�
�

 (55) 

The characterization of the closed-loop system by an arrow form matrix is easily checked, by 
choosing the correction parameter 22(.)k  such that: 

 22 0k =  (56) 

Then, to satisfy the constraints (29) as well as the condition (30) of the theorem 2, the two 
following inequalities must be, respectively, fulfilled: 

 12 0(.)kγ − <  (57) 

 ( ) ( )( )1
11 12 0(.) (.)k kα α γ α γ −− − − − − <  (58) 

So, 21 (.),k∀  possible choices of the other parameters are given by: 

 12

11

k

k

α
γ α

=⎧
⎨ = −⎩

 (59) 

Finally, it remains to study the stability of a linear controlled system, in the case where the 
following possible choices are adopted: 

 1 1 3 1 3

2 1 2 1 2

(.) ( ) ( ) ( ) ( )

(.) ( ) ( ) ( ) ( )
m m s s

m m s s

f x t x t x t x t

f x t x t x t x t

= −⎧
⎨ = − +⎩

 (60) 

Then, the constant gain matrix ,K  can be chosen as: 

 
2 0

K
γ α α−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (61) 
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Thus, when stabilized by the above-mentioned feedback 1 2( ),  , ,iu t i =  the error system (55) 
will converge to zero as t → +∞  implying that system (50) will globally synchronize with 
system (49). 
Fig. 3. shows the error dynamics in the uncontrolled state, while both Fig. 4. and Fig. 5. 
illustrate the error dynamics when controller is switched on. Obviously, the two chaotic 
Chen systems evolve in the same direction as well as the same amplitude; they are globally 
asymptotically synchronized by means of the proposed controller. 
 

0 5 10 15
-50

0

50

e
S

1

0 5 10 15
-50

0

50

e
S

2

0 5 10 15

0

20

40

60

e
S

3

Time (s)
 

Fig. 3. Error dynamics of the coupled master-slave Chen system 
when controller is deactivated 
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Fig. 4. Synchronization dynamics between the coupled master-slave Chen system 
when controller is activated 
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Fig. 5. Error dynamics of the coupled master-slave Chen system 
when controller is switched on 

4.2 Anti-synchronization of two identical coupled chaotic Lee systems 

The studied chaotic Lee system is described by the following differential equations (Juhn et 
al., 2009): 

 
1 1

2 1 2

3 1 3

10 10 0

40 0

4 0 2 5

( ) ( )

( ) ( ) ( )

( ) ( ) . ( )

x t x t

x t x t x t

x t x t x t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�
�

 (62) 

It exhibits a chaotic attractor, starting at the initial value of the state vector [ ]0 2 3 2( ) ,
T

x =  

Fig. 6. 
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Fig. 6. Three-dimensional view of the Lee chaotic attractor 
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Let us consider the master Lee system ( )mS  given by (63): 

 
1 1

2 1 2

3 1 3

10 10 0

40 0

4 0 2 5

( ) ( )

( ) ( ) ( )

( ) ( ) . ( )

m m

m m m

m m m

x t x t

x t x t x t

x t x t x t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�
�

 (63) 

driving a similar controlled slave Lee system ( )sS  described by (64): 

 
1 1

2 1 2

3 1 3

10 10 0 0

40 0 1

4 0 2 5 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) . ( )

s s

s s s

s s s

x t x t

x t x t x t u t

x t x t x t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�
�

 (64) 

( )u t  is the scalar active control.  

For the following state error vector components, defined relatively to anti-synchronization 
study: 

 
1 11

2 22

3 33

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

s mAS

s mAS

s mAS

e t x t x t
e t x t x t
e t x t x t

⎧
⎪
⎨
⎪
⎩

= +
= +
= +

 (65) 

the error system can be defined by the following differential equations: 

 ( )
( )

1 1 2

1 3 1 32 1

2 2
1 13 3

10 10

40

2 5 4

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) . ( ) ( ) ( )

AS AS AS

s s m mAS AS

s mAS AS

e t e t e t

e t e t x t x t x t x t u t

e t e t x t x t

⎧
⎪
⎪
⎨
⎪
⎪⎩

= − +

= − + +

= − + +

�
�

�

 (66) 

The problem of chaos anti-synchronization between two identical Lee chaotic dynamical 
systems is solved here by the design of a state feedback structure 1 2 3(.),  , , ,i ik ∀ =  and the 
choice of nonlinear functions 1 2 3(.),  , , ,if i∀ =  such that: 

 
3

1
1 2 3, ,( ) (.) ( ) (.)ji i

i
ju t k x t f

=
∀ == − −∑  (67) 

It comes the following closed-loop dynamical error system: 

( )
( )

(.)( ) ( ) 110 10 01 1
( ) 40 (.) (.) (.) ( ) ( ) ( ) ( ) ( ) (.)2 1 2 3 2 1 3 1 3 2
( ) 2.5 0 0 ( ) 2 23 3 4 ( ) ( ) (.)1 1 3

fe t e tAS AS
e t k k k e t x t x t x t x t fAS AS s s m m
e t e tAS AS x t x t fs m

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥= − − − − + +⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ + +⎢ ⎥⎣ ⎦

�

�

�

 (68) 

The nonlinear elements (.)if  and (.)ik  have to be chosen to make the instantaneous 
characteristic matrix of the closed-loop system in the arrow form and the closed-loop error 
system asymptotically stable. 

www.intechopen.com



 Chaotic Systems 

 

216 

From the possible solutions, allowing to put the instantaneous characteristic matrix of (68) 
under the arrow form, let consider the following: 

 3 0k =  (69) 

and: 

 ( )
( )3

1

2 1 3 1 3

2 2
3 1 1

0

4( )

(.)

(.) ( ) ( ) ( ) ( )

(.) ( ) ( )AS

s s m m

s mt

f

f x t x t x t x t

f e x t x t

⎧
⎪
⎪
⎨
⎪
⎪
⎩

=

= − +

= − +

 (70) 

For the vector norm [ ]1 2 3 :( ),  T
AS AS AS AS ASe e e ep e =  

 1 2 3( )AS

T
AS AS ASep e e e⎡ ⎤

⎣ ⎦=  (71) 

the overvaluing matrix is in arrow form and has non negative off-diagonal elements and 
nonlinearities isolated in either one row or one column. 
By the use of the proposed theorem 2, stability and anti-synchronization properties are 
satisfied for the both following sufficient conditions (72) and (73): 

 2(.) 0k− <  (72) 

 ( )( )110 10 40 (.) (.) 01 2k k−⎛ ⎞− − − − <⎜ ⎟
⎝ ⎠

 (73) 

Various choices of the gain vector [ ]1 2(.) (.) 0 ,(.),  (.) k kK K =  are possible, such as the 
following linear one: 

 { } [ ]4 2 0iK k= =  (74) 

By considering the initial condition 0 2 3 2( ) ,AS
T

e ⎡ ⎤⎣ ⎦=  for the Lee error system (66) 
when the active controller is deactivated, it is obvious that the error states grow with time 
chaotically, as shown in Fig. 7., and after activating the controller, Fig. 8. shows three 
parametrically harmonically excited 3D systems evolve in the opposite direction. The 
trajectories of error system (68) imply that the asymptotical anti-synchronization has been, 
successfully, achieved, Fig. 9. 

5. Hybrid synchronization by a nonlinear state feedback controller – 
Application to the Chen–Lee chaotic system (Hammami, 2009) 

Let consider two coupled chaotic Chen and Lee systems (Juhn et al., 2009). The following 
nonlinear differential equations, of the form (1), correspond to a master system (Tam & Si 
Tou, 2008): 

( )( ) ( ) ( )m m mx t A x t x t=�  
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with: 

 ( )
3

1

2

0

0

0

( )

( ) ( )

( )

m

m m

m

a x t

A x t b x t

cx t d

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (75) 

1 2,  m mx x  and 3mx  are state variables, and ,  ,  a b c  and d  four system parameters. 

For the following parameters ( ) ( )5 10 0 3 3 8, , , , , . , . ,a b c d = − −  and initial condition 

1 2 30 0 0 1 5 32 13( ) ( ) ( ) . ,
T T

m m mx x x⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ = −  the drive system, described by (1) and (75) 

is a chaotic attractor, as shown in Fig. 10.  
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Fig. 7. Error dynamics ( )1 2 3, ,AS AS ASe e e  of the coupled master-slave Lee system 
when the active controller is deactivated 
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Fig. 8. Partial time series of anti-synchronization for Lee chaotic system 
when the active controller is switched on 
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Fig. 10. The 3-dimensional strange attractor of the chaotic Chen–Lee master system 

For the Chen–Lee slave system, described in the state space by: 

 ( )( ) ( ) ( ) ( )s s sx t A x t x t u t= +�  (76) 

with: 

 ( )
3

1

2

0

0

0

( )

( ) ( )

( )

s

s s

s

a x t

A x t b x t

cx t d

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (77) 

we have selected the anti-synchronization state variables 1mx  and 3mx  facing to 1sx  and 

3 ,sx  and the synchronization state variable 2mx  facing to 2 .sx  
Then, the hybrid synchronization errors between the master and the slave systems 

1 2 3( ) ( ) ( ) ( ) ,
T

AS S ASe t e t e t e t⎡ ⎤⎣ ⎦=  are such as: 
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1 1 1

2 2 2

3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

AS s m

S s m

AS s m

e t x t x t

e t x t x t

e t x t x t

= +⎧
⎪ = −⎨
⎪ = +⎩

 (78) 

Let compute the following continuous state feedback controller’s structure: 

 ( )( ) ( ), ( ) ( )m su t K x t x t e t= −  (79) 

to guarantee the asymptotic stability of the error states defined by (78), 

1 2 3 ,
T

AS S ASe e e e⎡ ⎤⎣ ⎦=  so that the slave system, characterized by (76) and (77), 

synchronizes and anti-synchronizes, simultaneously, to the master one, described by (1) and 
(75), by assuring that the synchronization error 2Se  and the anti-synchronization errors 

1ASe  and 3ASe  decay to zero, within a finite time.  

Thus, for a state feedback controller of the form (79), (.),K  { } 1 2 3(.) (.) ,  ,  , , ,ijK k i j= ∀ =  and 

by considering the differential systems (1), (75), (76), (77) and (78), we obtain the following 
state space description of the error resulting system: 

 ( ) (.) ( )e t A e t=�  (80) 

with: 

 
11 3 12 13

21 22 1 23

2 31 32 33

(.) ( ) (.) (.)

(.) (.) (.) ( ) (.)

( ) (.) (.) (.)

m

m

m

a k x t k k

A k b k x t k

cx t k k d k

− − − −⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 (81) 

By respect to the stabilisability conditions announced in the above-mentioned theorem 2, the 
dynamic error system (80) is first characterized by an instantaneous arrow form matrix 

(.),A  that is to say, the main requirements concerning the choice of the feedback gains 

12(.)k  and 21(.)k  are given by: 

 12 3

21 0

(.) ( )mk x t

k

= −⎧
⎨ =⎩

 (82) 

To satisfy that the two first diagonal elements of the characteristic matrix (.)A  are strictly 
negative: 

 11

22

0

0

(.)

(.)

a k

b k

− <⎧
⎨ − <⎩

 (83) 

a possible solution is: 

 11

22

7

6

k

k

=⎧
⎨ = −⎩

 (84) 

Besides, to annihilate the nonlinearities in system (80), a solution is: 
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 23 1

31 2

(.) ( )

(.) ( )
m

m

k x t

k cx t

=⎧
⎨ =⎩

 (85) 

Finally, by considering the fixed values of 11 12 21 22 23,  (.),  ,  ,  (.)k k k k k  and 31(.),k  it is 
relevant to denote that to satisfy the sufficient condition (30) of theorem 2, for any arbitrary 
chosen parameters of correction 13(.)k  and 32(.),k  it is necessary to tune the remaining 
design parameter 33(.),k  guaranteeing the hybrid synchronization of the coupled chaotic 
studied system such that: 

 33 0(.)d k− <  (86) 

Then, for the following instantaneous gain matrix (.),K  easily obtained: 

 
3

1

2

7 0

0 6

0 1

( )

(.) ( )

( )

m

m

m

x t

K x t

cx t

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (87) 

the studied dynamic error system (80) is asymptotically stable.  

For the following initial master and slave systems conditions, 0 1 5 52 13 ,( ) . T
mx ⎡ ⎤⎣ ⎦= −  

0 2 10 15( ) ,T
sx ⎡ ⎤⎣ ⎦= − −  and without activation of the designed controller, the numerical 

simulation results of the above master-slave system are shown in Fig. 11. 
It is obvious, from Fig. 12., that the error states grow with time chaotically. 
Therefore, by designing an adequate nonlinear controlled slave system and under mild 
conditions, the hybrid synchronization is achieved within a shorter time, as it is shown in 
Fig. 13., with an exponentially decaying error, Fig. 14. 
The obtained phase trajectories of the Fig. 15., show that the Chen–Lee slave chaotic 
attractor is synchronized in a hybrid manner with the master one. 
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Fig. 11. Error dynamics between the master Chen–Lee system 
and its corresponding slave system before their hybrid synchronization 
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Fig. 12. Evolutions of the hybrid synchronization errors versus time 
when the proposed controller is turned off 
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Fig. 13. Hybrid synchronization of the master-slave Chen–lee chaotic system 
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Fig. 14. Exponential convergence of the error dynamics 
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Fig. 15. 2-D projection of the hybrid synchronized attractors 
associated to the Chen–Lee chaotic system 

6. Conclusion 

Appropriate feedback controllers are designed, in this chapter, for the chosen slave system 
states to be synchronized, anti-synchronized as well as synchronized in a hybrid manner 
with the target master system states. It is shown that by applying a proposed control 
scheme, the variance of both synchronization and anti-synchronization errors can converge 
to zero. The synchronisation of two identical Chen chaotic systems, the anti-synchronization 
of two identical Lee chaotic systems and, finally, the coexistence of both synchronization 
and anti-synchronization for two identical Chen–Lee chaotic systems, considered as a 
coupled master-slave systems, are guaranteed by using the practical stability criterion of 
Borne and Gentina, associated to the specific matrix description, namely the arrow form 
matrix. 
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