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1. Introduction

Last years, researchers paid a major attention to the controlling chaos schemes that use
information obtained from the experimental time series of system’s accessible variables.
When the trajectory is in a neighbourhood of desired UPO, the Ott-Grebogi-Yorke (OGY)
controlling chaos scheme can be applied (Ott et al., 1990). Exploiting the linearity of return
map near corresponding unstable fixed point, it stabilizes UPOs with one unstable direction
by directing the trajectory to the orbit stable manifold. The technique requires performing
several calculations to generate a control signal. This approach may fail (i) if the dynamics is
so fast that the controller cannot follow it, and (ii) if the dynamics is highly unstable, i.e. the
trajectory diverges from a target so far that small perturbations cannot be effective. For highly
dissipative systems that are well characterized by a one-dimensional return map, occasional
proportional feedback (Hunt, 1991; Peng et al., 1991) and occasional feedback (Myneni et al.,
1999) techniques was developed. The occasional proportional feedback utilizes an amplitude
of parametric perturbation that is proportional to the deviation of system’s current state from
its desired state (Hunt, 1991; Peng et al., 1991). Similar technique but with application to a
system accessible variable instead of a parameter is called proportional perturbation feedback
(Garfinkel et al., 1992). Alternatively, occasional feedback utilizes a control pulse duration that
is equal to the transit time of trajectory through a specified window placed on either side of
saddle fixed point (Myneni et al., 1999). Owing to simplicity, these methods do not require
any processor and can be implemented at high speeds.
For highly unstable orbits, quasicontinuous extensions of original OGY technique can be
applied when more than one control points per period are taken (Hübinger et al., 1994; Reyl
et al., 1993). Another option is to use a continuous-time control (Gauthier et al., 1994; Just et
al., 1999b; Pyragas, 1992; 1995; Socolar et al., 1994). However, obtaining complete information
about desired trajectory can be difficult (or even impossible, say, at high frequencies or spatial
complexity). Therefore, the continuous-time delayed feedback using information only about
a period of desired UPO became most popular. Here, the control signal is proportional to the
difference between a system current state and its state at some earlier time, the delay being
set to a period of desired UPO (Gauthier et al., 1994; Pyragas, 1992). This approach is found
effective to control low-period UPOs at high frequencies (Gauthier et al., 1994), but it may
fail for high-period UPOs or for highly unstable orbits (Just et al., 1999b). An extension of
method that incorporates information from many previous states of the system is suitable for
controlling UPOs in fast dynamical systems, with large value of Lyapunov exponents, and of
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high periods (Socolar et al., 1994). The attractiveness of delayed feedback scheme consists in
the self-organizing ability of a system to autosynchronize its own behaviour. However, unlike
the OGY-based schemes where the trajectory is targeted to a predefined UPO, the delayed
feedback control does not discriminate between different periodic orbits of the same period,
and does not necessarily lead to the stabilization of orbits embedded in a chaotic attractor
(Hikihara et al., 1997; Simmendinger et al., 1998). The success of this control is significantly
restricted by a control loop latency (Just et al., 1999a).
In the nonfeedback, or open-loop, schemes, the control signal does not depend on a system
state. One of approaches is a nonlinear entrainment method (Hübler & Lüscher, 1989; Jackson
& Hübler, 1990). It requires knowledge of the system equations to construct control forces
that can have large amplitude and complicated shape. The basins of entrainment, in turn, can
have very complicated structure. Typically, this method can require as many control forces, as
there are dimensions of the system.
In contrast, there are many examples of converting chaos to a periodic motion by exposing a
system to only one, weak periodic force or weak parameter modulation (Alexeev & Loskutov,
1987; Braiman & Goldhirsch, 1991; Cao, 2005; Chacón, 1996; Chacón & Díaz Bejarano, 1993;
Chizhevsky & Corbalán, 1996; Chizhevsky et al., 1997; Dangoisse et al., 1997; Fronzoni et al.,
1991; Kivshar et al., 1994; Lima & Pettini, 1990; Liu & Leite, 1994; Meucci et al., 1994; Qu et al.,
1995; Ramesh & Narayanan, 1999; Rödelsperger et al., 1995; Tereshko & Shchekinova, 1998).
Typically, this approach utilizes only a period and an amplitude of perturbation (Alexeev &
Loskutov, 1987; Braiman & Goldhirsch, 1991; Kivshar et al., 1994; Lima & Pettini, 1990; Liu &
Leite, 1994; Ramesh & Narayanan, 1999). If the amplitude is kept small enough, one can expect
a controlled periodic orbit or an equilibrium to trace closely the corresponding unperturbed
one (provided that no crises are induced). The periodic perturbation methods can be easily
realized in practice. However, the independence of the perturbation from a system state leads
to some limitations of above approach: the control by periodic perturbations relying only on
their period and amplitude is not, in general, a goal-oriented technique (Shinbrot et al., 1993).
On the other hand, the importance of a phase (Cao, 2005; Chacón, 1996; Chizhevsky &
Corbalán, 1996; Chizhevsky et al., 1997; Dangoisse et al., 1997; Fronzoni et al., 1991; Meucci
et al., 1994; Qu et al., 1995; Tereshko & Shchekinova, 1998) and even a shape (Azevedo
& Rezende, 1991; Chacón, 1996; Chacón & Díaz Bejarano, 1993; Rödelsperger et al., 1995)
of perturbation became evident. The utilization of extra parameters allows tuning the
perturbation to a desired target shape more selectively. The above findings were generalized
in a concept of geometrical resonance that reveals the underlying mechanism of nonfeedback
resonant control for a general class of chaotic oscillators (Chacón, 1996). The phase of
perturbation is crucial for the success of nonfeedback resonant control. First of all, it
determines the direction and, hence, the targets where a trajectory is driven to. Secondly,
keeping the perturbation precisely in phase with the controlled signal ensures smallest control
amplitudes, whereas dephasing can destroy the control. By changing only the perturbation
phase, one can switch the trajectory from one controlled state to another (Tereshko &
Shchekinova, 1998).
In real-life systems, the existing uncontrolled drifts can spoil resonant conditions. Small
deviation of the perturbation frequency from the resonance is equivalent to slowly varying
modulation of the phase. This results in a temporal evolution consisting of regular alternations
between a stabilized orbit and the chaotic behaviours (Chizhevsky & Corbalán, 1996; Meucci
et al., 1994; Qu et al., 1995). The real-life nonfeedback control may, thus, demand an occasional
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adjustment of the perturbation frequency. To overcome the above problem, a feedback control
where the perturbation depends on the controlled signal can be used.
Have analyzed the existing approaches, we developed a following control method. To any
type of system behaviour, we put in correspondence a value of averaged oscillation energy
that is an averaged (over the time) compound of the system kinetic and potential energy.
The objective is to alter this energy so as to correspond to a desired behaviour. This is a
general approach that does not depend on particular oscillator equations. Simple feedback
depending solely on an output signal is utilized for this purpose. We start with identifying
the type of control perturbations appropriate for the above control. One simply increases the
feedback strength, and, thus, depending on the perturbation phase, increases or decreases
the oscillation energy. The above strategy does not require any computation of the control
signal and, hence, is applicable for control as well as identification of unknown systems. The
above approach was applied to control isolated oscillators, as well as coupled ones (Tereshko,
2009; Tereshko et al., 2004a;b). Here, we summarize the obtained results and present our new
findings in controlling spatially-extended systems.

2. General approach

Let us consider controlling a general type nonlinear oscillator

ẍ + χ(x, ẋ) + ξ(x) = F(t) + g(x, ẋ) (1)

where χ(x, ẋ), ξ(x) and g(x, ẋ) are dissipative or energy-generating component, restoring
force, and control force, respectively. These functions are nonlinear in general case. Also,
χ(x, ẋ) and g(x) are assumed not to contain an additive function of x. F(t) is an external
time-dependent driving force.
At F(t) = 0 and g(x, ẋ) = 0, Eq. (1) possesses the equilibriums defined by equation
ξ(x) = 0. In oscillators with nonlinear damping (say, van der Pol and Reyleigh oscillators), an
equilibrium becomes unstable at some parameter values, and stable self-sustained oscillations
are excited. In other types of oscillators, say Duffing oscillator, a limit cycle arises under the
action of periodic driving force. We assume that at some driving amplitudes, a limit cycle
becomes saddle, and new attractor, say period-2 cycle, arises. In many well-known examples,
this scenario leads, through the sequence of bifurcations, to the birth of chaotic attractor.
One can define an energy of oscillations as the sum of “potential" and “kinetic" energy:

E(t) =
∫

ξ(x) dx +
1
2
ẋ2 . (2)

An averaged (over period T) energy yields

〈E〉 =
1
T

∫ T

0

(

∫

ξ(x) dx +
1
2
ẋ2)

dt . (3)

For periodic dynamics T is an oscillation period, whereas for chaotic one T → ∞. Each
attractor of an oscillator is assigned to a value of averaged energy (3). If an oscillation
amplitude is sufficiently small, the limit cycle oscillations can be approximated as x ≃ ρ sin ωt,
which gives 〈E〉 = 1

2 ρ2.
Typically, transitions to a chaotic attractor correspond to the increase of energy (3). Let us
clarify this statement on the example of a period-doubling process. Suppose that changing
some of the system parameters results in an oscillation period doubling and, eventually, in a
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chaos. Starting at period-1 cycle, its amplitude grows with increasing the above parameter,
and, hence, energy (3) does. Every period-doubling bifurcation contributes subharmonic (as
well as its odd harmonic) to the fundamental frequency, which again increases energy (3).
Thus, the higher the orbit period is, the higher the averaged energy corresponding to this orbit.
A stationary point, around which a limit cycle develops, can be viewed as a zero-amplitude
cycle possessing, thus, zero energy.
A following control strategy can be proposed. Starting at a lower energy attractor, one
stabilizes higher energy repellors by sequential increasing the averaged oscillation energy.
On the contrary, decreasing this energy leads to the stabilization of lower energy repellors.
A change of energy (2) yields

Ė(t) = ξ(x)ẋ + ẋẍ =
(

− χ(x, ẋ) + F(t) + g(x, ẋ)
)

ẋ . (4)

The last term of (4) represents an energy change caused solely by the control. We require that

g(x, ẋ) ẋ > 0 (< 0) (5)

for ∀(x, ẋ). A minimal feedback satisfying (5) is achieved at g = g(ẋ). Indeed, simple linear
(relative to the velocity) control g(ẋ) ∼ ẋ as well as nonlinear controls of higher power, say
g(ẋ) ∼ ẋ3 suffice. In general

g(ẋ) = k h(ẋ) (6)

where h(ẋ) is assumed to be odd, i.e. h(ẋ) = −h(−ẋ). One can, thus, define

h(ẋ)

⎧

⎪

⎨

⎪

⎩

> 0, if ẋ > 0
= 0, if ẋ = 0
< 0, if ẋ < 0 .

(7)

To guarantee a control perturbation tininess even at high values of ẋ, h(ẋ) is taken to be
bounded. Throughout, we consider g(ẋ) = k tanh(βẋ) with 0 < β � ∞ determining the
function slope.
Perturbation (6-7) is specially tuned to control equilibriums: their positions are not changed
by the control as the latter vanishes at ẋ = 0. Ė = 0 at equilibriums respectively. The above
control does not vanish at dynamic attractors. Our aim, however, is not controlling the UPOs
of unperturbed system existing at given parameter values, but rather the shift of a system into
a region of desired behaviours. Energy (3) is changed so as to match energy of a desired state.
For small oscillations, one can find amplitude ρ by substituting x = ρ sin ωt into an averaged
(over period T) energy change and solving equation

〈Ė〉 =
1
T

∫ T

0
Ė(t) dt =

1
T

∫ T

0

(

− χ(x, ẋ) + F(t) + g(x, ẋ)
)

ẋdt = 0 . (8)

Equation (8) describes the balance of dissipation and energy supply brought by damping,
driving, and control forces. For general orbit defined by the infinite series of periodic modes,
a fundamental mode as well as its harmonics should, in principle, be counted.
In this paper, we alter the feedback strength to adjust the oscillation energy to different
levels. The above strategy does not require any computation of control signal and, hence,
is applicable for control as well as identification of unknown systems.
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Another strategy is based on a goal-oriented control of desired target. It can be applied in cases
when the system equations are known or a desired target can be identified (say, extracted from
the system time series). The amplitude of system’s natural response is derived from equation

1
T

∫ T

0

(

− χ(x, ẋ) + F(t))
)

ẋ dt = 0 . (9)

Equation (9) describes the balance of dissipation and supply of system’s intrinsic energy. For
free self-sustained oscillations, this balance is supported entirely by nonlinear damping. To
eliminate the natural response distortion imposed by the control, the following condition must
be satisfied:

1
T

∫ T

0

(

g(x, ẋ)
)

ẋ dt = 0 . (10)

For small oscillations, substitution of g(x, ẋ) = k tanh(βẋ) ≈ k(βẋ − 1
3 β3 ẋ3) into (10) yields

β =
2

ρω
. (11)

Thus, the distortion can be minimized solely by tuning a perturbation shape. If ρ ≪ 1, β
should be sufficiently large so as to preserve the underlying natural response.
Control (6-7) does not depend on the type of functions χ(x, ẋ), ξ(x), and F(t), and, hence, can
be applied to linear and nonlinear oscillators, to regular and chaotic dynamics.
The approach can be easily generalized to a case of coupled oscillator networks (Tereshko et
al., 2004b).

3. Controlling 2-D oscillators

3.1 Van der Pol oscillator

Consider the van der Pol oscillator with χ(x, ẋ) = (x2 − μ)ẋ and ξ(x) = x controlled by
feedback g(ẋ) = k tanh(βẋ). Linearizing the dynamic equation (1) in the vicinity of x =

0, one obtains the eigenvalues: λ1 =
(

μ + kβ −
√

(μ + kβ)2 − 4
)

/2 and λ2 =
(

μ + kβ +
√

(μ + kβ)2 − 4
)

/2. At μ > 0 and k < 0, the perturbation with k < −(1/β)μ or β > (1/|k|)μ
stabilizes the unstable equilibrium. Thus, two control strategies can be applied: (i) altering the
perturbation magnitude; (ii) reshaping the perturbation. When β → ∞, tanh(βẋ) → sign(ẋ).
The energy change caused by the control yields g(ẋ)ẋ = k sign(ẋ) ẋ = k |ẋ|. This strategy
corresponds to maximizing the rejection (injection) of the oscillation energy and is, in fact,
the first approximation of optimal control for a van der Pol oscillator with small dissipation
(Kolosov, 1999).

3.2 Forced two-well DufÞng oscillator
To analyze controlling chaotic oscillators, consider the forced two-well Duffing oscillator with
negative linear and positive cubic restoring terms:

ẍ + eẋ− x + x3 = b cos ωt+ k tanh(βẋ) . (12)

In unperturbed system, at e = 0.3, ω = 1.2, and b < 0.3, the “particle" become trapped into
other left or right potential well oscillating around x = −1 and x = 1 respectively (or tending
to these stationary states when b = 0). At b � 0.3, the particle is able to escape the wells, its
irregular wandering between two potential wells corresponding to chaotic oscillations. Taking
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Fig. 1. Bifurcation diagram of oscillator (12) at e = 0.3, ω = 1.2, b = 0.31, and k = −0.06.

the linear approximation tanh(βẋ) ≈ β ẋ, obtain Ė =
(

(−e + kβ)ẋ + b cos ωt)
)

ẋ. At small β’s,
the control action is, thus, equivalent to linear adjustment of the oscillator damping. With
increasing β, the influence of the perturbation nonlinearity respectively increases.
Let us fix the amplitude k and change only the perturbation slope β. This induces the double
action: (i) reshaping the perturbation, and (ii) changing its effective amplitude ke f . Increasing
the slope leads to the increase of ke f (it changes from 0 to k when β changes from 0 to ∞).
As a result, when k < 0 the sequential stabilization of orbits of the period-doubling cascade
occurs in the reverse order (Fig. 1). These orbits are stabilized at relatively small β and k.
Around β = 1, the coexisting orbits multiple of period 3 appear. They can be eliminated
by the slow modulation of either k or h. The similar effect of reverse period-doubling is
reached at increasing e. However, suppressing the oscillations (to a state where the trajectory
remains in the vicinity of either 1 or -1) occurs only at extremely high e. Hereupon, the
system dynamics becomes overdamped, which requires extremely long transitional times. In
contrast, the perturbations with large β effectively suppress the oscillations when k remains
relatively small (Fig. 2). Note, the requirement for large β follows from condition (11): when
ρ → 0, β → ∞. Unlike stabilization of stationary points in unforced oscillators, the system
trajectory slightly deviates around the controlled point (with the amplitude less than 10−3 in
Fig. 2), and the control, hence, does not vanish there. This happens because stationary points
in forced oscillators are not the invariants of dynamics and become these only at zero forcing.
Figure 3 demonstrates the entrainment between the feedback force at very small and large β’s,
when stabilizing the period-1 orbit and the stationary point respectively, and the driving force
waveforms. The larger β the better the perturbation force waveform fits (in anti-phase) the
driving force to suppress the latter. Tuning the phase and the shape of perturbation to their
driving force counterparts is equivalent to combining the driving and the perturbation forces
into the one effective force Fe f = (b + k) cos ωt.
Changing the perturbation phase on the opposite one leads to the increase of the averaged
oscillation energy allowing the UPOs corresponding to the higher values of energy (2) be
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Fig. 2. Dynamics of (a) the state variable and (b) the control perturbation of oscillator (12) at
e = 0.3, ω = 1.2, b = 0.31, k = −0.3, and β = 5000.
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Fig. 3. Dynamics of (a) the state variable at β = 5000 and k = −0.31 (solid line); β = 0.01 and
k = −9 (dotted line), and (b) the control perturbation at β = 5000 and k = −0.31 (solid line);
β = 0.01 and k = −9 (dotted line), and the driving force (dashed line) of oscillator (12). For
all graphs, e = 0.3, ω = 1.2, and b = 0.31.
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Fig. 4. Phase space of oscillator (12) at e = 0.3, ω = 1.2, b = 0.31, β = 2, and k = 0 (grey
dotted line); k = 0.06 (bold solid line).

stabilized. Figure 4 demonstrates the stabilization of period-5 orbit. The similar strategy can
destabilize the initially stable system by shifting it to the chaotic regions.

3.3 Forced van der Pol oscillator

Controlling chaotic oscillators with nonlinear damping shows the clearly different scenarios
of the control. Let us analyze the forced van der Pol oscillator:

ẍ + e(x2 − μ)ẋ + x = b cos ωt+ k tanh(βẋ) . (13)

In the unperturbed system, no regularity is observed at e = 5, μ = 1, b = 5 and ω = 2.463

(Fig. 5(a)). At small enough β, obtain Ė =
(

− e
(

x2 − (μ + e−1kβ)
)

ẋ+ b cos(ωt)
)

ẋ. Unlike the

previous case, even a weak control perturbation changes nonlinearly the oscillator damping.
One can expect the markedly different manifestations of the control at small and large β,
respectively. Indeed, the control with k < 0 decreases the negative damping term, which
leads to stabilization of the period-3 and the period-1 orbits (Fig. 5(b)). These orbits are
different from the orbits stabilized by decreasing the driving force amplitude. We compared
the stabilized orbits and their unperturbed counterparts. To stabilize the period-1 orbit, the
control perturbation induces the shift of μ to μ′ = μ − e−1kβ (see Fig. 5(b)). As predicted
by the theory, the stabilized orbit and the unperturbed orbit that corresponds to this shift
coincide. For orbits with more complicated shapes, the stabilized orbits trace closely their
unperturbed counterparts.
With the increase of β, the control perturbation begins to affect the driving force term. Figure
5(c) demonstrates the stabilization of period-5 orbit corresponding to the lower amplitudes of
driving force.
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Fig. 5. Phase space of oscillator (13) at e = 5, μ = 1, ω = 2.463, b = 5, and (a) k = 0; (b)
β = 0.1, and k = −20 (dashed line); k = −40 (solid line); circles indicate the period-1 cycle of
the unperturbed system at e = 5, μ = 0.2, ω = 2.463, and b = 5; (c) β = 3, and k = −0.13.
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Fig. 6. Phase space of oscillator network (14) for the averaged trajectory
(

〈x〉 = 1
n ∑

n
i=1 x and

〈ẋ〉 = 1
n ∑

n
i=1 ẋ

)

at e = 0.18, ν = 8, ω = 1.02, b = 0.35, 1
n (α1, α2, .., αn) = (1.7861, -2.1131,

0.2561, 2.2297, -1.3585, -0.6648, 1.1977, 0.2451, -2.2229, 0.4282), n = 10 and k = 0 (grey dotted
line); k = −0.18 (solid line). j = arg

{

min
(

|α1|, |α2|, .., |αn|
)}

= 8, which implies the
perturbation to be applied to 8th oscillator.

3.4 Coupled oscillators

Consider controlling the network of n oscillators coupled via the mean field. As the network
element, take the forced van der Pol-Duffing oscillator, an oscillator with the van der Pol
nonlinear damping and the modified Duffing restoring force containing only the cubic term.
This oscillator describes the dynamics of nonlinear circuit (Ueda, 1992). Let us assume that
the oscillators are identical but their coupling strengths are randomly varied, and only single
element of the network is subjected to the control. The oscillator with the weakest coupling
strength is least affected by the mean field, and, hence, is most preserving own intrinsic
dynamics. We apply the control to this oscillator. The oscillator network equations, thus,
read

ẍj + e(νx2
j − 1)ẋj + x3

j + αj
1
n

n

∑
i=1

xi = b cos ωt+ k tanh(βẋ)

ẍl + e(νx2
l − 1)ẋl + x3

l + αl
1
n

n

∑
i=1

xi = b cos ωt (14)

where j = arg
{

min
(

|α1|, |α2|, .., |αn|
)}

, l = 1, 2, .., n, l �= j.
For single oscillator, the dynamics is chaotic at e = 0.2, ν = 8, ω = 1.02, and b = 0.35
(Ueda, 1992). Coupling 10 chaotic oscillators by the connections with strengths varied
randomly according to the Gaussian distribution (with the mean equal to 0, and the variance
and the standard deviation equal to 1) produces various dynamics. Figure 6 demonstrates
the averaged trajectory of the network that reveals all futures of chaotic behaviour. The
perturbation decreasing the averaged oscillation energy, being applied to the most weakly
connected oscillator, stabilizes the network dynamics. Controlling, in opposite, the most
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strongly connected oscillator leads to the similar results requiring, however, much larger
control amplitudes.
We performed the simulations of higher dimensional networks. For 50 oscillator network with
random normally distributed coupling strengths, the control perturbation applied to the most
weakly coupled oscillator is found to stabilize the dynamics.

4. Controlling 3-D oscillators

4.1 Colpitts oscillator

The chaotic attractors have been observed in several electronic circuits. One of such circuit
is the Colpitts oscillator (Baziliauskas, 2001; De Feo, 2000; Kennedy, 1994). It consists of a
bipolar junction transistor (the circuit active nonlinear element) and a resonant L-C circuit.
The oscillator is widely used in electronic devices and communication systems.
The Colpitts oscillator dynamics can be described by the following dynamical system
(Baziliauskas, 2001):

ẋ = y− f (x)

ẏ = c− x− by− z (15)

εż = y− d

where function

f (x) =

{

−a(z+ 1), z < −1,
0, z � −1 ,

dimensionless variables x and z correspond to circuit’s capacitor voltages, and variable y
corresponds to circuit’s inductor current. a, b, c, d are the dimensionless parameters. This
model is equivalent to the so-called ideal model of the circuit (De Feo, 2000). It maintains,
however, all essential features exhibited by the real Colpitts oscillator. For z < −1, the
transistor works in its forward-active region, while for z � −1, it is cut-off.
Substituting y = εż + d to the second equation of (16), obtain

εz̈+ εbż+ z = c− bd− x

ẋ = − f (x) + εż + d . (16)

To apply the above approach, one need to add feedback g(ẋ) to the first equation of system
(16). For the above oscillator, the change of energy (2) caused by this control yields żg(ż). If
g(ż) takes form (6-7), the latter term always provides the increase (decrease) of the oscillation
energy for positive (negative) perturbation magnitudes. We, thus, consider g(ż) = k tanh(βż).
Taking ż = 1

ε (y− d), obtain the control feedback to apply to the second equation of system
(16):

g(y) = k tanh
(1

ε
β(y− d)

)

. (17)

Perturbation (17) is specially tuned to control the equilibrium of system (16). Figure 7
demonstrates the latter. k is chosen to be negative, which results in decreasing the averaged
oscillation energy.
Note, the stationary point exists only in the forward-active region. Unlike, the periodic orbit
trajectories spend most of their times in the cut-off region. The circuit oscillations are balanced,
thus, not around the above stationary point but rather around the total collector voltage
equilibrium. The latter is proportional to x + z. Let us consider ε = 1 and define w = x+ z. In
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Fig. 7. Dynamics of the state variable of oscillator (16) at ε = 1, a = 30, b = 0.8, c = 20,
d = 0.6, β = 10, and k = 0 (t < 200); k = −1.6 (t � 200). Dashed line indicates the time of
starting the control.
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Fig. 8. Phase space of oscillator (16) at ε = 1, a = 30, b = 0.8, c = 20, d = 0.6, β = 10, and (a):
k = 0 (grey line); k = −0.009 (bold black line); (b): k = −0.012 (solid line); k = −0.24
(dot-dashed line)
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Fig. 9. Dynamics of the state variable of oscillator (16) at ε = 1, a = 30, b = 0.8, c = 20,
d = 0.6, β = 10, and k = 0 (t < 125); k = 0.08 (t � 125). Dashed line indicates the time of
starting the control.

the cut-off region, the summation of first and third equations of system (16) yields ẇ = 2y− d.
Substitution of y = 1

2 (ẇ + d) to the second equation of system (16) results in the following
dynamics of the total collector voltage:

ẅ + bẇ + 2w = 2c− bd . (18)

Perturbation g(ẇ) satisfying conditions (6-7) being applied to oscillator (18) results in the
following:

g(y) = k tanh
(

β(y−
d

2
)
)

(19)

To control circuit’s periodic orbits, the second equation of system (16) should be exposed to
the latter feedback.
Figures 8 and 9 demonstrate controlling the oscillator periodic orbits. At k = 0, the system
exhibits chaotic oscillations (Fig. 8(a), grey line). Let us apply the feedback that decreases the
oscillation energy. Strengthening its force, one sequentially stabilizes the orbits corresponding
to the windows of chaotic attractor and then the period-doubling orbits of main cascade in
their reverse order. At k ≃ −0.009, one obtains the period-3 orbit corresponding to the largest
window of chaotic attractor (Fig. 8(a), bold black line). The period-8, -4, -2, and -1 orbits
are stabilized at k ≃ −0.11,−0.12,−0.14,−0.22 respectively. Figure 8(b) demonstrates the
stabilized period-4 (solid line) and the period-1 (dot-dashed line) orbit respectively.
Increasing the oscillation energy leads to the stabilization of orbits corresponding to these
energy levels. As example, Fig. 9 demonstrates the stabilization of so-called 2-pulse orbit.
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We also considered a chain (ring) of 10 Colpitts oscillators with the diffusion-type couplings
(with coupled emitters and collectors of the circuit transistor (Baziliauskas, 2001)). Different
UPOs were stabilized with control perturbations applied to only single oscillators.

4.2 Chua’s oscillator

Let us consider controlling a system that produces two major mechanisms of chaotic
behaviour in continuous systems — the Rössler and the Lorenz types. This system is the
Chua’s circuit, an autonomous electronic circuit modelled by equations (Chua et al., 1986;
Wu, 1987):

ẋ = a(y− f (x))

ẏ = x− y + z + g(y) (20)

ż = −by

where function f (x) = m1x + 1
2 (m0 −m1)(|x + 1| − |x− 1|) , a is the bifurcation parameter,

and g(y) is the control perturbation.
We take b = 15, m0 = − 1

7 , and m1 = 2
7 . With increasing a in the unperturbed system, the

steady states, (x(s) = p, y(s) = 0, z(s) = −p) and its symmetric image (x(s) = −p, y(s) =

0, z(s) = p), where p =
(m1−m0)

m1
, become unstable, and a limit cycle arises through the

Andronov-Hopf bifurcation. Further increasing the bifurcation parameter leads firstly to the
Rössler-type chaos through the period-doubling cascade, and then to merging two Rössler
bands and to forming the double scroll attractor (Chua et al., 1986). The oscillation amplitude
grows as α increases.
Substituting y = − ż

b to the second equation of (20) and assuming g(y) to be the odd function,
obtain

z̈ +ż+ bz = −bx+ bg(
ż

b
)

ẋ = a(−
ż

b
− f (x)) . (21)

For oscillator (21), the change of energy caused by the control yields bżg( żb ). If g( żb ) takes form
(6-7), the latter term always provides the increase (decrease) of the oscillation energy for the
positive (negative) perturbation magnitudes. We, thus, consider g( żb ) = k tanh(β ż

b ). Taking
into account that ż = −by and considering the limit β → ∞, obtain the following control term:

g(y) = k sign(y) . (22)

At negative k, perturbation (22) reduces the oscillation energy. The increase of perturbation
amplitude recovers all lower energy repellors of system (20). Figure (10) demonstrates the
bifurcation diagram of system (20) at a = 9. Here, we considered only the trajectories
corresponding to the right hand wing of the attractor. The unperturbed system exhibits the
chaotic behaviour that corresponds to the screw-type chaos of the Rössler band attractor. At
0.0083 � k � 0.0097, the orbits of period 3 · 2i, i = 0, 1, 2... (in the reverse order beginning
with the highest period) are stabilized. These orbits correspond to the largest window of the
Rössler band. As known, this window separates the two different types of Rössler chaos in
Chua’s circuit, the screw-type chaos and the spiral chaos. At the higher amplitudes of control
perturbation, the behaviour becomes converted to the spiral chaos featuring, thus, the control
of chaotic repellor. The further increase of control amplitude leads firstly to the sequential
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stabilization of 2i, i = 0, 1, 2... orbits (these UPOs are controlled at 0.0193 � k � 0.0392, again,
in the reverse order beginning with the highest period orbit) and finally to the stabilization
of the steady state corresponding to the controlled band (Fig. 11). In the latter case, the
perturbation evolves to the high-frequency periodic oscillations controlling the stationary
state. One can draw a clear parallel between this case and the stabilization of unstable
equilibrium in a rapidly oscillating field, which is the classical example of physics (Landau
& Lifshitz, 1976).
The last example demonstrates the self-tuning nature of given control. Indeed, to stabilize the
periodic orbits, the perturbation evolves to the required resonant one. Unlike, when controls
the chaotic repellors, the perturbation switches chaotically between −k and k.
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Fig. 10. Bifurcation diagram of perturbed Chua’s circuit (20) at b = 15, m0 = −1/7, and
m1 = 2/7, a = 9.

In the nonchaotic regimes, one can apply the similar strategy. Consider, for example, a = 8,
which corresponds to the period-1 oscillations. Taking positive k and increasing it, the system
will be driven to the higher energy states. As a result, all these states can be controlled, namely:
the period-doubled orbits, the repelling Rössler band and double scroll, and the UPOs of latter
repellors.
Consider now the double scroll attractor (a = 10, Fig. 12(a)). At negative k, strengthening the
perturbation decreases the oscillation energy, allowing to control the lower energy repellors.
Figure 12(b) illustrates the control of UPO corresponding to a window of the double scroll.
At the higher amplitude of control perturbation, one observes the reverse bifurcation of
the double scroll birth when the trajectories from two loci diverge and form two separate
odd-symmetric Rössler bands. Depending on the locus where the control is turned on, one
or another band can be controlled. Figure 12(c) illustrates controlling the right-hand Rössler
band. Increasing the control amplitude, one stabilizes sequentially the period-doubling orbits
in their reverse order. Fig. 12(d) shows controlling the period-4 orbit. The further increase
of control amplitude leads to the stabilization of steady states. However, the unstable steady
states can be controlled by a weaker perturbation, if the control is turned on in the vicinity of
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Fig. 11. Dynamics of (a) perturbed Chua’s circuit (20) and (b) its control perturbation at
b = 15, m0 = −1/7, m1 = 2/7, a = 9, and k = 0 (0 ≤ t < 21); k = −0.033 (21 ≤ t < 50);
k = −0.055 (50 ≤ t < 81); k = −0.098 (t > 81).
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Fig. 12. State space of perturbed Chua’s circuit (20) at b = 15, m0 = −1/7, m1 = 2/7, a = 10,
and (a) k = 0; (b) k = −0.0085; (c) k = −0.068; (d) k = −0.085.

150 Chaotic Systems

www.intechopen.com



these states. To control the UPOs corresponding to the lower energy levels, the perturbation
decreasing the oscillation energy, i.e. one with the positive k, should be applied.

5. Controlling reaction-diffusion media

The above strategy can be generalized to control the pattern dynamics in the
spatially-extended systems. Consider a general reaction-diffusion system:

∂u

∂t
= ξ(u) +

∂2u

∂r2 . (23)

This equation possesses a special solution of the form u = u(r − ct), where c is the wave
speed, called a travelling wave (23). Taking new variable ̺ = r− ct, obtain

ü + cu̇ + ξ(u) = 0 (24)

where all derivatives are taken over ̺. Perturbation (6-7) is able to effectively increase
or decrease the oscillation energy of travelling wave enhancing or suppressing the latter
respectively.
Let us consider an excitable medium. It is characterized by the existence of the only
equilibrium, the resting state, yet being perturbed the system trajectory is able to spend a
substantial time outside of the equilibrium, in the firing state. Let us augment equation (23)
with new “recovery" variable v that allows the system dynamics to return to its resting state:

v̇ = ψ(u, v) (25)

Assuming the existence of travelling wave solution, throughout we consider the following
system:

ü + cu̇ + ζ
(

ξ(u) + ϕ(u, v)
)

= 0

v̇ +
1
c

ψ(u, v) = 0 . (26)

Typically, ϕ(u, v) and ψ(u, v) are the linear combinations of u and v, and ξ(u, v) is a
nonlinear function. The most known examples of nonlinear kinetics in the excitable media
are represented by functions ξ(u) = u− 1

3u
3 and ξ(u) = Θ(u− δ) where Θ is the Heaviside

step function. The latter is equal to 1 when v exceeds the threshold value δ, and 0 otherwise.
These choices belong to the classical FitzHugh-Nagumo (FitzHugh, 1961) and Rinzel-Keller
(Rinzel & Keller, 1973) models respectively.
To control the travelling waves, we apply the control perturbation to the right-hand side of
the first equation of system (26):

ü + cu̇ + ζ
(

ξ(u) + ϕ(u, v)
)

= k tanh(βu̇) . (27)

The latter is, in fact, the introduction of some form of nonlinear damping into the system.
For small β, the linear approximation yields tanh(βu̇) ≈ β u̇, and the control reduces to the
adjustment of the travelling wave speed:

ü + (c− kβ)u̇ + ζ
(

ξ(u) + ϕ(u, v)
)

= 0 . (28)
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The distributed version of the above control can be directly applied to system (23), viewing it
as a spatially distributed overdamped oscillator. Note, ̺ is the function of both t and r giving
the opportunity for the two types of control. The first type reads:

∂u

∂t
= ξ(u) +

∂2u

∂r2 + k(r, t) tanh
(

β
∂u

∂t

)

. (29)

Generally, k is the function of r and t. Throughout, however, we demonstrate the efficiency
of the spatially localized perturbations with the constant in time amplitudes. In the limit of
small β and constant k, the control reduces to the simple timescale and diffusion coefficient
adjustments:

∂u

∂t
=

1
(1 − kβ)

(

ξ(u) +
∂2u

∂r2

)

. (30)

Unlike the adjustment of the travelling wave speed in (28), the above one affects the whole
right-hand side of the equation and, hence, must be bounded to kβ < 1 (unless one intends to
drastically modify the system).
The second type of control reads:

∂u

∂t
= ξ(u) +

∂2u

∂r2 + k(r, t) tanh
(

β
∂u

∂r

)

. (31)

Here, the last term is nothing but the nonlinear flow, which, in the limit of small β, tends to its
linearized version.
When suppressing the travelling waves in excitable media, after some period of exposition,
the control can be switched off. Indeed, the rest state is the stable equilibrium here, and the
perturbation should only be imposed while the trajectory is out of its basin of attraction.
Below, consider the above control on the examples of two models of excitable
reaction-diffusion media.

5.1 Distributed FitzHugh Nagumo model

This system is the approximation of Hodgkin-Huxley model (Hodgkin & Huxley, 1952) of the
propagation of voltage pulses along a nerve fibre. The dynamics is described by the system of
coupled equations (Scott, 1975):

∂u

∂t
= u−

1
3
u3 − v+ ι +

∂2u

∂r2

∂v

∂t
= α(u− av+ b) (32)

where u represents the local electric potential across the cell membrane and v represents
the conductivity of the voltage-sensitive ionic channels. Parameters ̺, a and b represent
the membrane’s current, radius and resistivity respectively, and parameter α constitutes the
temperature factor.

5.1.1 Excitable regime

When looking for a travelling wave solution, the problem reduces to solving the ODEs
equations:

ü + cu̇ + u−
1
3
u3 − v + ι = 0

v̇ = −
α

c
(u− av + b) . (33)
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Fig. 13. Bifurcation diagram of system (33) at a = 0.5, b = 0.6, α = 0.1, and ι = 0.

The forced-free system, i.e. one with ι = 0, demonstrates the transition to chaos with the
decrease of c (Fig. 13). Obviously, the linear damping control (28) will stabilize the dynamics.
More efficient, however, to utilize the nonlinearity of sigmoid-type control perturbation as in
(27). Fig. 14 illustrates the control of various period orbits by the tanh-perturbation.
The similar strategy is applied to the periodically driven system. When the membrane is
subjected to the periodic current, i.e. ι = ρ cos(ωt), system (33) demonstrates the chaotic
behaviour as well as its driven-free analogue (Rajesekar & Lakshmanan, 1994). Fig. 15
illustrates the control of above system.

5.1.2 Oscillatory regime

Fig. 16 illustrates controlling the system in the oscillatory mode applying the linearized
version of control (31). Depending on the sign of control perturbation, one can either increase
the oscillation frequency or suppress the oscillations.

5.2 Kahlert-Rössler model

The Kahlert-Rössler model is a variant of the Rinzel-Keller system (Rinzel & Keller, 1973) of
the nerve conduction (Kahlert & Rössler, 1984):

∂u

∂t
= μ

(

− u + Θ(u− δ) + v− γ
)

+
∂2u

∂r2

∂v

∂t
= −ǫu+ v (34)

where Θ(ϑ) = 1 if ϑ > 0 and 0 otherwise; δ is the threshold parameter.
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Fig. 14. State space of controlled system (33) at a = 0.5, b = 0.b, α = 0.1, c = 0.72, ι = 0,
β = 10 and (a) k = 0; (b) k = −0.0118; (c) k = −0.013; (d) k = −0.015 (solid line) k = −0.03
(open circles).

5.2.1 Excitable regime

Looking for the travelling wave solution, obtain the following system of ODEs:

ü + cu̇ + μ
(

− u + Θ(u− δ) + v− γ
)

= 0

v̇ =
1
c
(ǫu− v) (35)

where all derivatives are taken over the wave variable ̺ = r− ct.
System (35) demonstrates the "screw-type" chaos at some parameter values (Kahlert & Rössler,
1984). Applying the tanh-perturbation, the chaos is tamed to the periodic oscillations (Fig. 17).

5.2.2 Oscillatory regime

The adjustment of system’s timescale and diffusion rate can stabilize the dynamics. Fig. 18(a)
illustrates the emergence of low-frequency stabilizing modulation. Changing kβ leads to
different patterns. Fig. 18(b) illustrates the temporal dynamics at the system middle point,
i.e at r = l/2 where l is the system size.

6. Discussion and conclusions

The two control strategies are found to be effective: (i) altering a perturbation magnitude;
(ii) reshaping a perturbation. In the majority of considered cases, the control represents
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Fig. 15. State space of controlled system (33) at a = 0.5, b = 0.5, α = 0.1, c = 0.9, ρ = 0.55,
ω = 1, β = 100 and (a) k = 0; (b) k = −0.001; (c) k = −0.005.

155Control and Identification of Chaotic Systems by Altering the Oscillation Energy

www.intechopen.com



Fig. 16. Dynamics of controlled system (32) at a = 0.5, b = 0.6, α = 0.1, δ = 0 and (a)
kβ = 0.99; (b) kβ = −3.9.

−0.01 −0.005 0 0.005 0.01 0.015
0.85

0.9

0.95

1

1.05

u

v

(a)

−2 0 2 4 6 8 10 12

x 10
−3

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

u

v

(b)

Fig. 17. State space of controlled system (35) at μ = 10, γ = 1, δ = 0.01, ǫ = 150, c = 3.5,
β = 100 and (a) k = 0; (b) k = −0.21.
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Fig. 18. Dynamics of controlled system (34) at μ = 10, γ = 1, δ = 0.01, ǫ = 150 and (a)
kβ = 0.5; (b) kβ = 0.6.
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an addition of extra nonlinear damping to a system. Depending on the level of
perturbation nonlinearity, two different scenarios take place. Recall that simple changing the
tanh-perturbation slope transforms the feedback from near-linear to extremely nonlinear one.
The above controls manifests themselves in (i) changing an oscillator natural damping; (ii)
suppressing (enhancing) an external driving force, respectively. The perturbation shape, once
again, reveals its significance determining the control mechanisms.
The occurrence of second scenario depends on the oscillator features. In our approach, a
control perturbation is naturally locked to an oscillator velocity. If there is any phase shift
between the velocity, and, hence, the control perturbation and the driving force, than a
delayed version of control, i.e. g(ẋ(t− τ)) with a time lag τ between the control perturbation
and the driving force, will be most effective. Note, a phase of chaotic oscillator is determined
using the approach developed in (Pikovsky et al., 1997; Rosenblum et al., 1996). When the
phase difference between chaotic oscillations and a driving force exhibits large deviations,
the coherence between the control action and the driving force can be destroyed. In this case
independently on β, the control affects only an oscillator damping. This scenario is observed,
for example, in the “broken egg" attractor (Ueda, 1992).
Though derived differently, in approximation ẋ ≈ τ−1(x(t)− x(t− τ)

)

, the proposed control
can be viewed as a continuous-delay control with saturation (or simply a continuous-delay
control when h(ẋ) = ẋ) (Gauthier et al., 1994; Pyragas, 1992) adapted to the stabilization of
fixed points. To control a fixed point, return time τ must tend to 0.
Recently our method was applied to mechanical systems where the forcing source has a
limited available energy supply (de Souza et al, 2007). These oscillators, called non-ideal ones,
are described by a combination of passive and active parts (the oscillator and the motor). The
authors demonstrated the efficiency of approach applying the control altering the oscillation
energy to the driving motor part.
Some of the existing methods of control can be reconsidered in the light of proposed approach.
Look at so-called active control applied for suppressing oscillations driven by the dry friction
forces (Heckl & Abrahams, 1996). These oscillations are produced by a mass-spring system
sliding on a moving belt. The active control represents a feedback loop which senses the mass
velocity, passes it to a filter, then to a phase shifter, to a variable-gain amplifier, and finally
to shaker attached to the mass. The control force is g(ẋ, φ) = αeiφ ẋ where α is a measure for
amplification and φ is a phase shift. In terms of a time lag τ, g(ẋ, τ) = αẋ(t− τ). Immediately,
one find that at φ = 0 (τ = 0), or φ = π

2 (τ = π
2 ), the active control is nothing but the proposed

energy alteration control. No surprise that, keeping positive α, the authors found their control
to be optimal at φ = π

2 (τ = π
2 ). In this case, the averaged energy change brought about by

the control decreases as 〈ẋ(t)ẋ(t− τ)〉 = −〈ẋ2(t)〉, which leads to recovering of lower energy
repellors, and, generally, to the stabilization of dynamics.
The nonfeedback control methods can be reviewed in terms of energy alteration too. The
resonance between a controlled signal and a control perturbation is usually the general
condition for the efficient shift of the trajectory to a desired target, or, in other words, to
altering the system energy. The phase of perturbation is used both to fine-tune the control
or and to switch the drive direction on the opposite one, i.e. to switch between the directions
of energy increase and decrease (Tereshko & Shchekinova, 1998).
An important issue is the application of control in practice. The authors in (Heckl &
Abrahams, 1996) discussed the applications of their technique to real-life friction-driven
oscillations, in particular, to a squeal noise. This disturbing type of noise occurs when there is
a lateral progression of a wheel relative to a rail. The excited bending vibrations of the wheel
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are radiated in the surrounding air and heard as intensive high pitched squeal. The authors
present an experimental set where their control technique was tested.
A development of methods of controlling spatially-extended systems has great practical
importance too. The considered excitable dynamics of active reaction-diffusion systems, for
example, lies at the core of neuron functioning. Controlling the neural activity patterns can
potentially treat mental, movement and sleep disorders, pain, and other illnesses associated
with a neural system.
To summarize, we developed the control based on an alteration of oscillation energy. Since
the approach utilizes a feedback that depends solely on the output signal, it is especially
useful when the system parameters are inaccessible or hardly adjustable. The particular type
of perturbation is rather relative — most important, it should comply with condition (5),
which guarantees the monotonic change of a system oscillation energy. Then, the repellors
are stabilized when the energy passes levels corresponding to their stable counterparts.
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