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1. Introduction 

Since the pioneer work of Lorenz on predictability problems [1–2], many studies have 
examined the relationships between predictability and initial error in chaotic systems [3–7]; 
however, these previous studies focused on multi-scale complex systems such as the 
atmosphere and oceans [4–6]. Because large uncertainties exist regarding the dynamic 
equations and observational data related to such complex systems, there also exists 
uncertainty in any conclusions drawn regarding the relationship between the predictability 
of such systems and initial error. In addition, multi-scale complex systems such as the 
atmosphere are thought to have an intrinsic upper limit of predictability due to interactions 
among different scales [2, 4–6]. The predictability time of multi-scale complex systems, 
regardless of the errors in initial conditions, cannot exceed their intrinsic limit of 
predictability.  
For relatively simple chaotic systems with a single characteristic timescale driven by a small 
number of variables (e.g., the logistic map [7] and the Lorenz63 model [1]), their predictability 
limits continuously depend on the initial errors: the smaller the initial error, the greater the 

predictability limit. If the initial perturbation is of size 0δ  and if the accepted error tolerance, 

Δ , remains small, then the largest Lyapunov exponent 1Λ  gives a rough estimate of the 

predictability time: 
1 0

1
~ ln( )pT
Λ δ

Δ
. However, reliance on the largest Lyapunov exponent 

commonly proves to be a considerable oversimplification [8]. This generally occurs because 

the largest Lyapunov exponent 1Λ , which we term the largest global Lyapunov exponent, is 

defined as the long-term average growth rate of a very small initial error. It is commonly the 
case that we are not primarily concerned with averages, and, even if we are, we may be 
interested in short-term behavior. Consequently, various local or finite-time Lyapunov 
exponents have been proposed, which measure the short-term growth rate of initial small 
perturbations [9–12]. However, the existing local or finite-time Lyapunov exponents, which 
are the same as the global Lyapunov exponent, are established based on the assumption that 
the initial perturbations are sufficiently small that their evolution can be approximately 
governed by the tangent linear model (TLM) of the nonlinear model, which essentially belongs 
to linear error dynamics. Clearly, as long as an uncertainty remains infinitesimal in the 
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framework of linear error dynamics, it cannot pose a limit to predictability. To determine the 
limit of predictability, any proposed ‘local Lyapunov exponent’ must be defined with respect 
to the nonlinear behavior of nonlinear dynamical systems [13–14]. 
Recently, the nonlinear local Lyapunov exponent (NLLE) [15–17], which is a nonlinear 
generalization to the existing local Lyapunov exponents, was introduced to study the 
predictability of chaotic systems. NLLE measures the averaged growth rate of initial errors of 
nonlinear dynamical models without linearizing the governing equations. Using NLLE and its 
derivatives, the limit of dynamical predictability in large classes of chaotic systems can be 
efficiently and quantitatively determined. NLLE shows superior performance, compared with 
local or finite-time Lyapunov exponents based on linear error dynamics, in determining 
quantitatively the predictability limit of chaotic system. In the present study, we explore the 
relationship between the predictability limit and initial error in simple chaotic systems based 
on the NLLE approach, taking the logistic map and Lorenz63 model as examples. 

2. Nonlinear local Lyapunov exponent (NLLE) 

For an n-dimensional nonlinear dynamical system, its nonlinear perturbation equations are 
given by: 

 ( ) ( )( ) ( )
d

t
dt

= t tδ J x δ + ( ) ( )( , )t tG x δ , (1) 

where T
1( ) = ( 2( ), ( ), , ( ))nt x t x tAAt xx  is the reference solution, T is the transpose, ( ) ( )( )t tJ x δ  

are the tangent linear terms, and ( ) ( )( , )t tG x δ  are the high-order nonlinear terms of the 

perturbation T
1 2( ) ( ( ), ( ), , ( ))nt t t tδ δ δ= AAδ . Most previous studies have assumed that the 

initial perturbations are sufficiently small that their evolution could be approximately 

governed by linear equations [9–12]. However, linear error evolution is characterized by 

continuous exponential growth, which is not applicable to the description of a process that 

evolves from initially exponential growth to finally reaching saturation for sufficiently small 

errors (see Fig. 1). This linear approximation is also not applicable to situations in which the 

initial errors are not very small. Therefore, the nonlinear behaviors of error growth should 

be considered to determine the limit of predictability. Without linear approximation, the 

solutions of Eq. (1) can be obtained by numerical integration along the reference solution 

( )tx  from 0=t t  to 0 τ+t : 

 0( )0 0 0( ) ( , ( ), ) ( )t t tτ τ+ = tδ η x δ δ , (2) 

where 0( ) 0( , ( ), )t τtη x δ  is the nonlinear propagator. NLLE is then defined as 

 0( )
0

0
0

( )1
( , ( ), ) ln

( )

t
t

t

τ
λ τ

τ
+

=t
δ

x δ
δ

, (3) 

where 0( ) 0( , ( ), )tλ τtx δ  depends in general on the initial state 0( )tx  in phase space, the initial 

error 0( )tδ , and time τ . This differs from the existing local or finite-time Lyapunov 

exponents, which are defined based on linear error dynamics [9–12]. In the case of double 

limits of 0( ) 0t →δ  and τ →∞ , NLLE converges to the largest global Lyapunov exponent 

1Λ . The ensemble mean NLLE over the global attractor of the dynamical system is given by 
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0 0 0λ( ( ), ) λ( ( ), ( ), )t t t dτ τΩ= ∫δ x δ x  

 0 0λ( ( ), ( ), )
N

t t τ= x δ , ( N →∞ ) (4) 

where Ω represents the domain of the global attractor of the system, and 
N

 denotes the 

ensemble average of samples of sufficiently large size N  ( N →∞ ). The mean relative 

growth of initial error (RGIE) can be obtained by 

 0 0( ) ( )( , ) exp( ( , ) )E τ λ τ τ=t tδ δ . (5) 

Using the theorem from Ding and Li [16], then we obtain 

 0( ( ), ) PE t cτ ⎯⎯→δ ( N →∞ ), (6) 

where P⎯⎯→  denotes the convergence in probability and c  is a constant that depends on 

the converged probability distribution of error growth P . This is termed the saturation 
property of RGIE for chaotic systems. The constant c  can be considered as the theoretical 

saturation level of 0( ( ), )E t τδ . Once the error growth reaches the saturation level, almost all 

information on initial states is lost and the prediction becomes meaningless. Using the 
theoretical saturation level, the limit of dynamical predictability can be determined 

quantitatively [15–16]. In addition, for 0 0

1
( ( ), ) ln ( ( ), )t E t

t
λ τ τ⎡ ⎤= ⎣ ⎦δ δ , based on the above 

analysis, we have 

 0

1
( ( ), ) lnPt cλ τ

τ
⎯⎯→ ×δ  as τ →∞ ; (7) 

therefore, 0( ( ), )tλ τδ  asymptotically decreases like O( 1 τ ) as τ →∞ . The magnitude of the 

initial error δ0  is defined as the norm of the vector error 0( )tδ  in phase space at the initial 

time 0t ; i.e., 0 0( )tδ = δ . The results show that the limit of dynamical predictability depends 

mainly on the magnitude of the initial error 0( )tδ  and rather than on its direction, because 

the error direction in the phase space becomes rapidly aligned toward the most unstable 
direction (Fig. 2). 

3. Experimental predictability results 

The first example is the logistic map [7], 

 1 (1 )n n ny ay y+ = − , 0 4a≤ ≤ , (8) 

Here, we choose the parameter value of a = 4.0, for which the logistic map is chaotic on the 

set (0,1) [18–19]. Figure 3 shows the dependence of the mean NLLE and the mean RGIE on 
the magnitude of the initial error. The mean NLLE is essentially constant in a plateau region 

that widens as decreasing initial error δ0  (Fig. 3a). For a sufficiently long time, however, all 

the curves are asymptotic to zero. This finding reveals that for a very small initial error, 
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error growth is initially exponential, with a growth rate consistent with the largest global 
Lyapunov exponent, indicating that linear error dynamics are applicable during this phase. 
Subsequently, the error growth enters a nonlinear phase with a steadily decreasing growth 
rate, finally reaching a saturation value.  
Figure 3b shows that the time at which the error growth reaches saturation also lengthens as 

δ0  is reduced. Regardless of the magnitude of the initial error δ0 , all the errors ultimately 

reach saturation. To estimate the predictability time of a chaotic system, the predictability 
limit is defined as the time at which the error reaches 99% of its saturation level. The limit of 
dynamic predictability is found to decrease approximately linearly as increasing logarithm 
of initial error (Fig. 4). For a specific initial error, the limit of dynamic predictability is longer 
than the time for which the tangent linear approximation holds, which is defined as the time 
over which the mean NLLE remains constant. The difference between the predictability 
limit and the time over which the tangent linear approximation holds, remains largely 
constant as increasing logarithm of initial error, suggesting that the time over which the 
nonlinear phase of error growth lasts may be constant for initial errors of various 
magnitudes. 
The second example is the Lorenz63 model [1], 

 

X X Y

Y rX Y XZ

Z XY bZ

σ σ⎧ = − +
⎪⎪ = − −⎨
⎪ = −⎪⎩

$
$
$

, (9) 

where σ =10, r =28, and b =8/3, for which the well-known “butterfly” attractor exists. 

Figure 5 shows the mean NLLE and mean RGIE with initial errors of various magnitudes as 
a function of time τ . For all initial errors, the mean NLLE is initially unstable, then remains 

constant and finally decreases rapidly, approaching zero as increasing τ  (Fig. 5a). For a very 

small initial error, it does not take long for error growth to become exponential, with a 
growth rate consistent with the largest global Lyapunov exponent, indicating that linear 
error dynamics are applicable during this phase. Subsequently, error growth enters a 
nonlinear phase with a steadily decreasing growth rate, finally reaching a saturation value 
(Fig. 5b). For initial errors of various magnitudes, the predictability limit of the Lorenz63 
model is defined as the time at which the error reaches 99% of its saturation level, similar to 
the case for the logistic map.  
Figure 6 shows the predictability limit and the time over which the tangent linear 
approximation holds as a function of the magnitude initial error. The predictability limit of 
the Lorenz63 model decreases approximately linearly as increasing logarithm of initial error, 
similar to the logistic map. For the Lorenz63 model, the difference between the predictability 
limit and the time over which the tangent linear approximation holds, remains largely 
constant as increasing logarithm of initial error.  

4. Theoretical predictability analysis 

As shown above, there exists a linear relationship between the predictability limit and the 
logarithm of initial error, for both the logistic map and Lorenz63 model. To understand the 
reason for this linear relationship, it is necessary to further investigate the relationship 
between the predictability limit and the logarithm of initial error using the theoretical 
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analysis, to determine if a general law exists between the predictability limit and the 
logarithm of initial error for chaotic systems.  
For relatively simple chaotic systems such as the logistic map and Lorenz63 model, the 

predictability limit pT  is assumed to consist of the following two parts: 

 p L NT T T= + , (10) 

where LT  is the time over which the tangent linear approximation holds, and NT  is the time 

over which the nonlinear phase of error growth occurs. When the mean error reaches a 

critical value cδ , which is thought to be almost constant for a chaotic system under the 

condition of the given parameters, the tangent linear approximation is no longer valid and 

the error growth enters the nonlinear phase. Under the condition of the given parameters, 

the saturation value of error *E  is constant, which is not dependent on the initial error. 

Consequently, the time NT  taken for the error growth from cδ  to *E  can be considered as 

almost constant, not relying on the initial error. This assumption is confirmed by the 

experimental results shown in Figs. 3 and 5, which indicate that the interval between the 

predictability limit and the time over which the tangent linear approximation holds, remains 

almost constant as increasing logarithm of initial error. Then, NT  can be written as a 

constant: 

 1NT C= . (11) 

For LT , the time over which the tangent linear approximation holds, we get 

 1( )c LTδ δ Λ0= exp , (12) 

where δ0  is the initial error and 1Λ  is the largest global Lyapunov exponent. From Eq. (12), 

we have 

 
1

1
ln c

LT
δ

Λ δ0

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (13) 

From Eqs. (10), (11), and (13), we obtain 

 [ ]1
1

1
ln lnp cT C δ δ

Λ 0= + − . (14) 

Under the condition of the given parameters, 1Λ  of the chaotic system is fixed, as is 

1

1
ln cδΛ

. Then, we have 2
1

1
ln c Cδ

Λ
=  (where 2C  is a constant). Therefore, pT  can be written 

as 

 
1

1
lnpT C δ

Λ 0= − ,  (15) 

where 1 2C C C= + . Eq. (15) can be changed to 
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o

o

10

1 10

l g1

l g
pT C

e

δ
Λ

0= − . (16) 

If the largest global Lyapunov exponent 1Λ  and the constant C  are known in advance, the 

predictability limit can be obtained for initial errors of any magnitude, according to Eq. (16). 

The constant C  can be calculated from Eq. (16) if the predictability limit corresponding to a 

fixed initial error has been obtained in advance through the NLLE approach. 

5. Experimental verification of theoretical results 

Using the method proposed by Wolf et al. [20], the largest global Lyapunov exponent 1Λ  

of the logistic map is 0.693 when 4.0a = . From Eq. (16), we have the formula that 

describes the relationship between the predictability limit and the initial error of the 

logistic map:  

 o 103.32 l gpT C δ0= − . (17) 

For 610δ −
0 = , the predictability limit of the logistic map is 18pT = , as obtained using the 

NLLE approach. Then, we have 1.92C = −  in Eq. (17). Therefore, the predictability limit for 

various initial errors can be obtained from Eq. (17). The predictability limits obtained in this 

way are in good agreement with those obtained using the NLLE approach (Fig. 7). This 

finding indicates that the assumptions presented in Section 3 are indeed reasonable. 

Therefore, it is appropriate to determine the predictability limit of the logistic map by 

extrapolating Eq. (17) to various initial errors. 

The largest global Lyapunov exponent 1Λ  of the Lorenz63 model is obtained to be 0.906 

when σ =10, r =28, b =8/3. From Eq. (16), we have the formula that describes the 

relationship between the predictability limit and the initial error of the Lorenz63 model: 

 o 102.54l gpT C δ0= − . (18) 

For 610δ −
0 = , the predictability limit of the Lorenz63 model is 22.19pT = , as obtained using 

the NLLE approach. Then, we have 6.95C =  in Eq. (17). Therefore, the predictability limits 

for various initial errors can be obtained by extrapolating the Eq. (17) to various initial 

errors. The resulting limits are in good agreement with those obtained using the NLLE 

approach (Fig. 8). The linear relationship between the predictability limit and the logarithm 

of initial error is further verified by the Lorenz63 model, and the relationship may be 

applicable to other simple chaotic systems. 

6. Summary 

Previous studies that examine the relationship between predictability and initial error in 
chaotic systems with a single characteristic timescale were based mainly on linear error 
dynamics, which were established based on the assumption that the initial perturbations are 
sufficiently small that their evolution could be approximately governed by the TLM of the 
nonlinear model. However, linear error dynamics involves large limitations, which is not 
applicable to determine the predictability limit of chaotic systems.  
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Taking the logistic map and Lorenz63 model as examples, we investigated the relationship 
between the predictability limit and initial error in chaotic systems, using the NLLE 
approach, which involves nonlinear error growth dynamics. There exists a linear 
relationship between the predictability limit and the logarithm of initial error. A theoretical 
analysis performed under the nonlinear error growth dynamics revealed that the growth of 
mean error enters a nonlinear phase after it reaches a certain critical magnitude, finally 
reaching saturation. For a given chaotic system, if the control parameters of the system are 
given, then the saturation value of error growth is fixed. The time taken for error growth 
from the nonlinear phase to saturation is also almost constant for various initial errors. The 
predictability limit is only dependent on the phase of linear error growth. Consequently, 
there exists a linear relationship between the predictability limit and the logarithm of initial 
error. The linear coefficient is related to the largest global Lyapunov exponent: the greater 
the latter, the more rapidly the predictability limit decreases as increasing logarithm of 
initial error. If the largest global Lyapunov exponent and the predictability limit 
corresponding to a fixed initial error are known in advance, the predictability limit can be 
extrapolated to various initial errors based on the linear relationship between the 
predictability limit and the logarithm of initial error. 
 It should be noted that the linear relationship between the predictability limit and the 
logarithm of initial error holds only in the case of relatively small initial errors. If the initial 
errors are large, the growth of the mean error would directly enter into the nonlinear phase, 
meaning that the linear relationship would fail to describe the relationship between the 
predictability limit and the logarithm of initial error. A more complex relationship may exist 
between the predictability limit and initial errors, which is an important subject left for 
future research.  
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Fig. 1. Linear (dashed line) and nonlinear (solid line) average growth of errors in the Lorenz 
system as a function of time. The initial magnitude of errors is 10–5. 
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Fig. 2. Mean NLLE 0( ( ), )tλ τδ  (a) and the logarithm of the corresponding mean RGIE 

0( ( ), )E t τδ  (b) in the Lorenz63 model as a function of time τ . In (a) and (b), the dashed and 

solid lines correspond to the initial errors 0( )tδ = (10–6, 0, 0) and 0( )tδ = (0, 0, 10–6), 

respectively. 

 
 
 

 
 
 

Fig. 3. Mean NLLE 0( ( ), )t nλ δ  (a) and the logarithm of the corresponding mean RGIE 

0( ( ), )E t nδ  (b) in the logistic map as a function of time step n  and 0δ  of various 

magnitudes. From above to below, the curves correspond to 0δ =10–12, 10–11, 10–10, 10–9, 10–8, 

10–7, 10–6, 10–5, 10–4, and 10–3, respectively. In (a), the dashed line indicates the largest global 

Lyapunov exponent. 
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Fig. 4. Predictability limit PT  and the time LT  over which the tangent linear approximation 

holds in the logistic map as a function of 0δ  of various magnitudes. 

 
 
 
 
 

 
 
 

Fig. 5. Same as Fig. 3, but for the Lorenz63 model. 
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Fig. 6. Same as Fig. 4, but for the Lorenz63 model. 

 
 

 
 

Fig. 7. Predictability limits obtained from Eq. (17) (open circles) and those obtained using the 

NLLE approach (closed triangles) in the logistic map as a function of 0δ  of various 

magnitudes. 
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Fig. 8. Same as Fig. 7, but for the Lorenz63 model. 
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