
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Modeling and Control of Space Vehicles with Fuel
Slosh Dynamics

Mahmut Reyhanoglu
Embry-Riddle Aeronautical University

USA

1. Introduction

In April of 1957, a Jupiter Intermediate Range Ballistic Missile was terminated 90 seconds
after launch due to propellant slosh. Ever since the launch of the early high-efficiency
rockets, controlling liquid fuel slosh within a launch vehicle has been a major design concern.
Moreover, with today’s large and complex spacecraft, a substantial mass of fuel is necessary
to place them into orbit and to perform orbital maneuvers. The mass of fuel contained in
the tanks of a geosynchronous satellite amounts to approximately 40% of its total mass (Sidi,
1997). When the fuel tanks are only partially filled, large quantities of fuel move inside the
tanks under translational and rotational accelerations and generate the fuel slosh dynamics.
The traditional treatment of liquid slosh control began with the inclusion of physical barriers,
such as baffles and complete compartmentalization, meant to limit the movement of liquid
fuel to small amplitudes of high, negligible frequencies. Later, bladders were added to the
list of ways to limit these motions. These techniques, although helpful in some cases, do not
completely succeed in canceling the sloshing effects. Moreover, these suppression methods
involve adding to the spacecraft structural mass, thereby increasing mission cost.
The effects of baffle positions (and quantities) on sloshing frequency have been studied in the
literature (Biswal et al., 2004). Themathematical techniques used in these studies are based on
the velocity potential function solved using finite-element analysis. Results show that baffles
are more effective when near the free-surface of the fluid. In (Venugopal & Bernstein, 1996),
surface pressure control and surface flap actuators have been proposed for controlling slosh in
rectangular tanks. The feedback controllers are designed using a Linear-Quadratic-Gaussian
(LQG) synthesis. Fluid is assumed to be incompressible, inviscid, and irrotational. Results
show a steady-state slosh amplitude lower than the no-actuator case.
The effect of liquid fuel slosh on spinning spacecraft has also been explored in the
literature (Hubert, 2003, 2004). Different slosh motion types - surface waves, bulk fluid
motion, and vortices - as well as fluid configurations during spinning are defined (Hubert,
2003). The design of control strategies for a launch vehicle with propellant sloshing
has been a topic of extensive research in several works (Blackburn & Vaughan, 1971;
Freudenberg & Morton, 1992; Hubert, 2004). In (Blackburn & Vaughan, 1971), an advanced
linear model of the Saturn V launch vehicle is developed and a linear optimal control law
is proposed to control the vehicle. The work in (Freudenberg & Morton, 1992) studies the
problem of robust control of a launch vehicle subject to aerodynamic, flexible, and sloshmode
instabilities.
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2 Advances in Spacecraft Technologies

It has been demonstrated that pendulum and mass-spring models can approximate
complicated fluid and structural dynamics; such models have formed the basis for many
studies on dynamics and control of space vehicles with fuel slosh (Peterson et al., 1989). There
is an extensive body of literature on the interaction of vehicle dynamics and slosh dynamics
and their control, but this literature treats only the case of small perturbations to the vehicle
dynamics. However, in this chapter the control laws are designed by incorporating the
complete nonlinear translational and rotational vehicle dynamics.
For accelerating space vehicles, several thrust vector control design approaches have
been developed to suppress the fuel slosh dynamics. These approaches have commonly
employed methods of linear control design (Sidi, 1997; Bryson, 1994; Wie, 2008) and
adaptive control (Adler et al., 1991). A number of related papers following a similar
approach are motivated by robotic systems moving liquid filled containers (Feddema et al.,
1997; Grundelius, 2000; Grundelius & Bernhardsson, 1999; Yano, Toda & Terashima, 2001;
Yano, Higashikawa & Terashima, 2001; Yano & Terashima, 2001; Terashima & Schmidt, 1994).
In most of these approaches, suppression of the slosh dynamics inevitably leads to excitation
of the transverse vehicle motion through coupling effects; this is a major drawback which has
not been adequately addressed in the published literature.
In this chapter, a spacecraft with a partially filled spherical fuel tank is considered, and
the lowest frequency slosh mode is included in the dynamic model using pendulum and
mass-spring analogies. A complete set of spacecraft control forces and moments is assumed to
be available to accomplish planar maneuvers. Aerodynamic effects are ignored here, although
they can be easily included in the spacecraft dynamics assuming that they are canceled by the
spacecraft controls. It is also assumed that the spacecraft is in a zero gravity environment,
but this assumption is for convenience only. These simplifying assumptions render the
problem tractable, while still reflecting the important coupling between the unactuated slosh
dynamics and the actuated rigid body motion of the spacecraft. The control objective, as is
typical for spacecraft orbital maneuvering problems, is to control the translational velocity
vector and the attitude of the spacecraft, while attenuating the slosh mode. Subsequently,
mathematical models that reflect all of these assumptions are constructed. These problems are
interesting examples of underactuated control problems for multibody systems. In particular,
the objective is to simultaneously control the rigid body degrees of freedom and the fuel slosh
degree of freedom using only controls that act on the rigid body. Control of the unactuated
fuel slosh degree of freedom must be achieved through the system coupling. Finally, linear
and nonlinear feedback control laws are designed to achieve this control objective.
It is shown that a linear controller, while successful in stabilizing the pitch and slosh dynamics,
fails to control the transverse dynamics of a spacecraft. A Lypunov-based nonlinear feedback
control law is designed to achieve stabilization of the pitch and transverse dynamics as well
as suppression of the slosh mode while the spacecraft accelerates in the axial direction. The
results of this chapter are illustrated through simulation examples.

2. Mathematical model

In this section, we formulate the dynamics of a spacecraft with a spherical fuel tank and
include the lowest frequency slosh mode. We represent the spacecraft as a rigid body
(base body) and the sloshing fuel mass as an internal body, and follow the development
in our previous work (Cho et al., 2000a) to express the equations of motion in terms of
the spacecraft translational velocity vector, the angular velocity, and the internal (shape)
coordinate representing the slosh mode.
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Modeling and Control of Space Vehicles with Fuel Slosh Dynamics 3

To summarize the formulation in (Cho et al., 2000a), let v ∈ ℜ3, ω ∈ ℜ3, and η ∈ ℜ denote the
base body translational velocity vector, the base body angular velocity vector, and the internal
coordinate, respectively. In these coordinates, the Lagrangian has the form L = L(v,ω,η, η̇),
which is SE(3)-invariant in the sense that it does not depend on the base body position and
attitude. The generalized forces and moments on the spacecraft are assumed to consist of
control inputs which can be partitioned into two parts: τt ∈ ℜ3 (typically from thrusters) is
the vector of generalized control forces that act on the base body and τr ∈ ℜ3 (typically from
symmetric rotors, reaction wheels, and thrusters) is the vector of generalized control torques
that act on the base body. We also assume that the internal dissipative forces are derivable
from a Rayleigh dissipation function R. Then, the equations of motion of the spacecraft with
internal dynamics are shown to be given by:

d

dt

∂L

∂v
+ ω̂

∂L

∂v
= τt , (1)

d

dt

∂L

∂ω
+ ω̂

∂L

∂ω
+ v̂

∂L

∂v
= τr , (2)

d

dt

∂L

∂η̇
−

∂L

∂η
+

∂R

∂η̇
= 0, (3)

where â denotes a 3× 3 skew-symmetric matrix formed from a = [a1, a2, a3]
T ∈ ℜ3:

â =

⎡

⎣

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤

⎦ .

Note that equations (1)-(2) are identical to Kirchhoff’s equations (Meirovitch & Kwak, 1989),
which can also be expressed in the form of Euler-Poincaré equations. It must be pointed
out that in the above formulation it is assumed that no control forces or torques exist that
directly control the internal dynamics. The objective is to simultaneously control the rigid
body dynamics and the internal dynamics using only control effectors that act on the rigid
body; the control of internal dynamics must be achieved through the system coupling. In this
regard, equations (1)-(3) model interesting examples of underactuated mechanical systems.
In our previous research (Reyhanoglu et al., 1996, 1999), we have developed theoretical
controllability and stabilizability results for a large class of underactuated mechanical systems
using tools from nonlinear control theory. We have also developed effective nonlinear
control design methodologies (Reyhanoglu et al., 2000) that we applied to several examples
of underactuated mechanical systems, including underactuated space vehicles (Reyhanoglu,
2003; Cho et al., 2000b).

2.1 Pendulum analogy

2.1.1 Spacecraft with throttable side thrusters

The formulation using a pendulum analogy can be summarized as follows. Consider a rigid
spacecraft moving in a fixed plane as indicated in Fig. 1. The important variables are the axial
and transverse components of the velocity of the center of the fuel tank, vx , vz, the attitude
angle θ of the spacecraft with respect to a fixed reference, and the angle ψ of the pendulum
with respect to the spacecraft longitudinal axis, representing the fuel slosh. A thrust F, which
is assumed to act through the spacecraft center of mass along the spacecraft’s longitudinal
axis, a transverse force f , and a pitching moment M are available for control purposes. The
constants in the problem are the spacecraft mass m and moment of inertia I (without fuel), the
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4 Advances in Spacecraft Technologies

Fig. 1. A single slosh pendulum model for a spacecraft with throttable side thrusters.

fuel mass m f and moment of inertia I f (assumed constant), the length a> 0 of the pendulum,
and the distance b between the pendulum point of attachment and the spacecraft center of
mass location along the longitudinal axis; if the pendulum point of attachment is in front of
the spacecraft center of mass then b > 0. The parameters m f , I f and a depend on the shape of
the fuel tank, the characteristics of the fuel and the fill ratio of the fuel tank.
Let î and k̂ denote unit vectors along the spacecraft-fixed longitudinal and transverse axes,
respectively, and denote by (x, z) the inertial position of the center of the fuel tank. The
position vector of the center of mass of the vehicle can then be expressed in the spacecraft-fixed
coordinate frame as

�r = (x− b)î+ zk̂ .

Clearly, the inertial velocity of the vehicle can be computed as

�̇r = (ẋ+ zθ̇)î+ (ż− xθ̇ + bθ̇)k̂

= vx î+ (vz + bθ̇)k̂ , (4)

where we have used the fact that vx = ẋ+ zθ̇ and vz = ż− xθ̇.
Similarly, the position vector of the center of mass of the fuel lump in the spacecraft-fixed
coordinate frame is given by

�r f = (x− acosψ)î+ (z+ asinψ)k̂,

and the inertial velocity of the fuel lump can be computed as

�̇r f = [ẋ+ aψ̇sinψ + θ̇(z+ asinψ)]î+ [ż+ aψ̇cosψ − θ̇(x− acosψ)]k̂

= [vx + a(θ̇ + ψ̇)sinψ]î+ [vz + a(θ̇ + ψ̇)cosψ]k̂ . (5)

The total kinetic energy can now be expressed as

T =
1

2
m�̇r2 +

1

2
m f�̇r

2
f +

1

2
I θ̇2 +

1

2
I f (θ̇ + ψ̇)2

=
1

2
m[v2x + (vz + bθ̇)2] +

1

2
m f [(vx + a(θ̇ + ψ̇)sinψ)2 + (vz + a(θ̇ + ψ̇)cosψ)2]

+
1

2
I θ̇2 +

1

2
I f (θ̇ + ψ̇)2 . (6)
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Fig. 2. A single slosh pendulum model for a spacecraft with a gimballed thrust engine.

Since gravitational effects are ignored, there is no potential energy. Thus, the Lagrangian
equals the kinetic energy, i.e. L = T. Applying equations (1)-(3) with

η = ψ, R =
1

2
ǫψ̇2, v =

⎡

⎣

vx
0
vz

⎤

⎦ , ω =

⎡

⎣

0
θ̇
0

⎤

⎦ , τt =

⎡

⎣

F
0
f

⎤

⎦ , τr =

⎡

⎣

0
M+ f b

0

⎤

⎦ ,

and rearranging, the equations of motion can be obtained as:

(m+m f )(v̇x + θ̇vz) +m f a(θ̈ + ψ̈)sinψ +mbθ̇2 +m f a(θ̇ + ψ̇)2 cosψ = F , (7)

(m+m f )(v̇z − θ̇vx) +m f a(θ̈ + ψ̈)cosψ +mbθ̈ −m f a(θ̇ + ψ̇)2 sinψ = f , (8)

(I +mb2)θ̈ +mb(v̇z − θ̇vx)− ǫψ̇ = M+ b f , (9)

(I f +m f a
2)(θ̈ + ψ̈) +m f a[(v̇x + θ̇vz)sinψ + (v̇z − θ̇vx)cosψ] + ǫψ̇ = 0. (10)

2.1.2 Spacecraft with a gimballed thrust engine

Now consider the single slosh pendulum model for a spacecraft with a gimballed thrust
engine as shown in Fig. 2, where δ denotes the gimbal deflection angle, which is considered
as one of the control inputs. It is clear that, as in the previous case, the total kinetic energy
is given by equation (6) and the Lagrangian equals the kinetic energy. Applying equations
(1)-(3) with

η = ψ, R =
1

2
ǫψ̇2, v=

⎡

⎣

vx
0
vz

⎤

⎦ , ω =

⎡

⎣

0
θ̇
0

⎤

⎦ , τt =

⎡

⎣

F cosδ
0

Fsinδ

⎤

⎦ , τr =

⎡

⎣

0
M+ F(b+ p)sinδ

0

⎤

⎦ ,

and rearranging, the equations of motion can be obtained as:

(m+m f )(v̇x + θ̇vz) +m f a(θ̈ + ψ̈)sinψ +mbθ̇2 +m f a(θ̇ + ψ̇)2 cosψ = Fcosδ , (11)

(m+m f )(v̇z − θ̇vx) +m f a(θ̈ + ψ̈)cosψ +mbθ̈ −m f a(θ̇ + ψ̇)2 sinψ = Fsinδ , (12)

(I +mb2)θ̈ +mb(v̇z − θ̇vx)− ǫψ̇ = M+ F(b+ p)sinδ , (13)

(I f +m f a
2)(θ̈ + ψ̈) +m f a[(v̇x + θ̇vz)sinψ + (v̇z − θ̇vx)cosψ] + ǫψ̇ = 0. (14)
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Fig. 3. A single slosh mass-spring model for a spacecraft with throttable side thrusters.

The control objective is to design feedback controllers so that the controlled spacecraft
accomplishes a given planar maneuver, that is a change in the translational velocity vector
and the attitude of the spacecraft, while attenuating the slosh mode. The work in (Cho et al.,
2000b) considers a constant thrust F > 0 and develops a feedback law (using a backstepping
approach) to stabilize the system (7)-(10) to a relative equilibrium defined by a constant
acceleration in the axial direction. A slightly modified and relatively simpler feedback
controller that uses a Lyapunov approach (without resorting to backstepping) can be found
in (Reyhanoglu, 2003). In the subsequent development, we will develop feedback controllers
to achieve the same control objective using the system (11)-(14).

2.2 Mass-spring analogy

The mass-spring analogy is related to the pendulum analogy, in which the oscillation
frequency of the mass-spring element represents the lowest frequency sloshing mode (Sidi,
1997).
Consider a rigid spacecraft moving on a plane as indicated in Fig. 3, where vx, vz are the axial
and transverse components, respectively, of the velocity of the center of the fuel tank, and θ
denotes the attitude angle of the spacecraft with respect to a fixed reference. The slosh mode
is modeled by a point massm f whose relative position along the body z-axis is denoted by s; a
restoring force −ks acts on the mass whenever the mass is displaced from its neutral position
s = 0. As in the previous model, a thrust F, which is assumed to act through the spacecraft
center of mass along the spacecraft’s longitudinal axis, a transverse force f , and a pitching
moment M are available for control purposes. The constants in the problem are the spacecraft
mass m and moment of inertia I, the fuel mass m f , and the distance b between the body z-axis
and the spacecraft center of mass location along the longitudinal axis. The parameters m f , k
and b depend on the shape of the fuel tank, the characteristics of the fuel and the fill ratio of
the fuel tank.
The position vector of the fuel mass m f in the spacecraft-fixed coordinate frame is given by

�r f = xî+ (z+ s)k̂,

554 Advances in Spacecraft Technologies
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and the inertial velocity of the fuel can be computed as

�̇r f = [ẋ+ (z+ s)θ̇]î+ [ż− xθ̇ + ṡ]k̂

= (vx + sθ̇)î + (vz + ṡ)k̂ . (15)

Thus, under the indicated assumptions, the Lagrangian can be found as

L =
1

2
m�̇r2 +

1

2
m f�̇r

2
f +

1

2
I θ̇2 −

1

2
ks2

=
1

2
m[v2x + (vz + bθ̇)2] +

1

2
m f [(vx + sθ̇)2 + (vz + ṡ)2] +

1

2
I θ̇2 −

1

2
ks2 . (16)

Applying equations (1)-(3) with

η = s, R =
1

2
cṡ2, v =

⎛

⎝

vx
0
vz

⎞

⎠ , ω =

⎛

⎝

0
θ̇
0

⎞

⎠ , τt =

⎛

⎝

F
0
f

⎞

⎠ , τr =

⎛

⎝

0
M+ f b

0

⎞

⎠ ,

the equations of motion can be obtained as

(m+m f )(v̇x + θ̇vz) +m f sθ̈ +mbθ̇2 + 2m f ṡθ̇ = F , (17)

(m+m f )(v̇z − θ̇vx) +mbθ̈ +m f s̈−m f sθ̇
2 = f , (18)

(I +mb2 +m f s
2)θ̈ +m f s(v̇x + θ̇vz) + 2m f sṡθ̇ +mb(v̇z − θ̇vx) = M+ b f , (19)

m f (s̈+ v̇z − θ̇vx − sθ̇2) + ks+ cṡ = 0. (20)

The control objective is again to design feedback controllers so that the controlled spacecraft
accomplishes a given planar maneuver, that is a change in the translational velocity vector
and the attitude of the spacecraft, while suppressing the slosh mode.

3. Feedback control design

In this section, we restrict the development to the single slosh pendulummodel of a spacecraft
with a gimballed thrust engine, i.e. we design feedback controllers for the system (11)-(14)
only. In particular, we study the problem of controlling the system to a relative equilibrium
defined by a constant acceleration in the axial direction.

3.1 Linearization-based controller design

To obtain the linearized equations of motion, assume small gimbal deflection so that cosδ ≈ 1
and sinδ ≈ δ, and we rewrite (11)-(14) as:

(m+m f )ax +m f a(θ̈ + ψ̈)sinψ +mbθ̇2 +m f a(θ̇ + ψ̇)2 cosψ = F , (21)

(m+m f )az +m f a(θ̈ + ψ̈)cosψ +mbθ̈ −m f a(θ̇ + ψ̇)2 sinψ = Fδ , (22)

(I +mb2)θ̈ +mbaz − ǫψ̇ = M+ Flδ , (23)

(I f +m f a
2)(θ̈ + ψ̈) +m f a(ax sinψ + az cosψ) + ǫψ̇ = 0, (24)

where l = b+ p and (ax, az) = (v̇x + θ̇vz, v̇z − θ̇vx) are the axial and transverse components
of the acceleration of the center of the fuel tank. The number of equations of motion can

555Modeling and Control of Space Vehicles with Fuel Slosh Dynamics
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8 Advances in Spacecraft Technologies

be reduced to two by solving equations (21) and (22) for ax and az, and eliminating these
accelerations from equations (23) and (24).

[I +m∗(b2 − abcosψ)]θ̈ −m∗abψ̈cosψ +m∗ab(θ̇ + ψ̇)2 sinψ − ǫψ̇ = M+ b∗Fδ , (25)

[I f +m∗(a2 − abcosψ)]θ̈ + (I f +m∗a2)ψ̈ + (a∗F−m∗abθ̇2)sinψ + ǫψ̇ = −a∗Fδcosψ , (26)

where

m∗ =
mm f

m+m f
, a∗ =

m f a

m+m f
, b∗ =

m f b

m+m f
+ d .

As mentioned previously, without loss of generality, we will assume that the desired
equilibrium is given by:

(θ∗ , θ̇∗,ψ∗, ψ̇∗) = (0,0,0,0) .

Assuming that θ, θ̇, ψ, and ψ̇ are small, the following linearized equations can be obtained:

I1θ̈ − I2ψ̈ − ǫψ̇ = M+ b∗Fδ , (27)

I3θ̈ + I4ψ̈ + a∗Fψ + ǫψ̇ = −a∗Fδ . (28)

where

I1 = I +m∗(b2 − ab) , I2 = m∗ab ,

I3 = I f +m∗(a2 − ab) , I4 = I f +m∗a2 .

For the linearized system (27)-(28), the state variables are the attitude angle θ, the slosh angle
ψ, and their time derivatives. The collection of these state variables is defined as the partial
state vector given by

x = [θ, θ̇, ψ, ψ̇]T .

Let u= [δ, M]T denote the control input vector. Then, the state space equations can be written
as:

ẋ = Ax+ Bu , (29)

where

A =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0

0 0 − a∗ I2F
∆

−
(I2 − I4)ǫ

∆
0 0 0 1

0 0 − a∗ I1F
∆

−
(I1 + I3)ǫ

∆

⎤

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎣

0 0

−
(I2a

∗ − I4b
∗)F

∆

I4
∆

0 0

−
(I1a

∗ + I3b
∗)F

∆
− I3

∆

⎤

⎥

⎥

⎥

⎥

⎦

. (30)

and
∆ = I1 I4 + I2 I3 .

We consider an LQR (Linear Quadratic Regulator) controller of the form

u = −Kx (31)

that minimizes the quadratic cost function

J =
∫

∞

0
(xTQx+ uTRu)dt , (32)

556 Advances in Spacecraft Technologies
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Modeling and Control of Space Vehicles with Fuel Slosh Dynamics 9

where Q is a symmetric positive-semidefinite weighting matrix and R is a positive-definite
weighting matrix.
The optimal control gain matrix K is found by solving the corresponding matrix Riccati
equation (or using MATLAB’s lqr function). This controller is then applied to the actual
nonlinear system (11)-(14). The simulation results show that the linear controller (31) results
in undesirable steady-state errors in transverse velocity (see Figure 4).

3.2 Lyapunov-based controller design

Consider the single slosh pendulum model of a spacecraft with a gimballed thrust engine
shown in Fig. 2. If the thrust F is a positive constant, and if the gimbal deflection angle and
pitching moment are zero, δ = M = 0, then the spacecraft and fuel slosh dynamics have a
relative equilibrium defined by

v∗x(t) =
F

m+m f
t+ vx0 , vz = v∗z ,

θ = θ∗, θ̇ = 0 , ψ = 0 , ψ̇ = 0,

where v∗z and θ∗ are arbitrary constants, and vx0 is the initial axial velocity of the spacecraft.
Note that θ∗ and v∗z are the desired attitude angle and transverse velocity, chosen as zero
here. Now assume the axial acceleration term ax is not significantly affected by small
gimbal deflections, pitch changes and fuel motion (an assumption verified in simulations).
Consequently, equation (11) becomes:

v̇x + θ̇vz =
F

m+m f
. (33)

Substituting this approximation leads to the following equations of motion for the transverse,
pitch and slosh dynamics:

(m+m f )(v̇z − θ̇vx(t)) +m f a(θ̈ + ψ̈)cosψ +mbθ̈ −m f a(θ̇ + ψ̇)2 sinψ = Fδ , (34)

(I +mb2)θ̈ +mb(v̇z − θ̇vx(t))− ǫψ̇ = M+ Flδ , (35)

(I f +m f a
2)(θ̈ + ψ̈) +m f a

F

m+m f
sinψ +m f a(v̇z − θ̇vx(t))cosψ + ǫψ̇ = 0, (36)

where vx(t) is considered as an exogenous input.
Define the error variable

ṽx = vx(t)− v∗x(t) .

Then, the equations of motion can be written in the following form

˙̃vx = −θ̇vz , (37)

v̇z = u1 + θ̇(ṽx + v∗x(t)) , (38)

θ̈ = u2 , (39)

ψ̈ = −u1ccosψ − u2 − dsinψ − eψ̇ , (40)

where

c=
m f a

I f +m f a
2
, d =

Fc

m+m f
, e =

ǫ

I f +m f a
2
,
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10 Advances in Spacecraft Technologies

and (u1, u2) are new control inputs defined as

[

u1
u2

]

=M−1(ψ)

[

F sinδ −m f aψ̈cosψ +m f a(θ̇ + ψ̇)2 sinψ

M+ Fl sinδ + ǫψ̇

]

, (41)

where

M(ψ) =

[

m f acosψ +mb m+m f

I +mb2 mb

]

. (42)

Now, we consider the following candidate Lyapunov function for the system (37)-(40):

V =
r1
2
(ṽ2x + v2z) +

r2
2

θ2 +
r3
2

θ̇2 + r4d(1− cosψ) +
r4
2
(θ̇ + ψ̇)2 , (43)

where r1, r2, r3, and r4 are positive constants. The function V is positive definite in the domain

D = {(ṽx, vz, θ, θ̇, ψ, ψ̇) | − π < ψ < π} .

The time derivative of V along the trajectories of (37)-(40) is

V̇ =[r1vz − r4c(θ̇ + ψ̇)cosψ]u1 + [r1v
∗
x(t)vz + r2θ + r3u2 + r4e(θ̇ + ψ̇)− r4dsinψ]θ̇

− r4e(θ̇ + ψ̇)2 .

(44)

Clearly, the feedback laws

u1 = −l1[r1vz − r4c(θ̇ + ψ̇)cosψ] , (45)

u2 = −l2θ̇ − [
r1
r3

v∗x(t)vz +
r2
r3

θ]−
r4
r3
[e(θ̇ + ψ̇)− dsinψ)] , (46)

where l1 and l2 are positive constants, yield

V̇ = −l1[r1vz − r4c(θ̇ + ψ̇)cosψ]2 − l2θ̇2 − r4e(θ̇ + ψ̇)2 ,

which satisfies V̇ ≤ 0 in D. Using LaSalle’s principle, it is easy to prove asymptotic stability of
the origin of the closed loop defined by the equations (37)-(40) and the feedback control laws
(45)-(46). Note that the positive gains ri, i = 1, 2, 3, 4 and lj, j = 1, 2, can be chosen arbitrarily
to achieve good closed loop responses.

4. Simulations

The feedback control laws developed in the previous sections are implemented here for a
spacecraft. The physical parameters used in the simulations are m = 600kg, I = 720kg/m2 ,
m f = 100kg, I f = 90kg/m2, a = 0.2m, b = 0.3m, p = 0.2m, F = 2300N and ǫ = 0.19kg ·m2/s.
We consider stabilization of the spacecraft in orbital transfer, suppressing the transverse and
pitching motion of the spacecraft and sloshing of fuel while the spacecraft is accelerating. In
other words, the control objective is to stabilize the relative equilibrium corresponding to a
constant axial spacecraft acceleration of 3.286m/s2 and vz = θ = θ̇ = ψ = ψ̇ = 0.
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4.1 Linearization-based controller

In this section, an LQR controller of the form (31) is applied to the complete nonlinear system
(11)-(14). Using the physical parameters given above, the A and B matrices defined by
equation (30) were computed as

A =

⎡

⎢

⎢

⎣

0 1 0 0
0 0 −0.005 0.0002
0 0 0 1
0 0 −0.6987 −0.0023

⎤

⎥

⎥

⎦

,

B =

⎡

⎢

⎢

⎣

0 0
0.7629 0.0014

0 0
−1.4243 −0.0013

⎤

⎥

⎥

⎦

.

Choosing the weighting matrices as

Q =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

,

R=

[

10 0
0 0.01

]

,

the LQR gain matrix for the linear system (29) was found as

K=

[

0.3153 1.2214 −0.3496 −0.2696
0.7627 2.8027 0.6462 0.0764

]

.

This gain matrix yields the following eigenvalues for the closed-loop system matrix A− BK:
(−0.3312± 0.8233 i, −0.3297± 0.3294 i).
Time responses shown in Fig. 4 and Fig. 5 correspond to the initial conditions vx0= 10000m/s,
vz0 = 0, θ0 = 2o, θ̇0 = 0.57o/s, ψ0 = 15o, and ψ̇0 = 0. As can be seen in the figures, the LQR
controller stabilizes the pitch and slosh dynamics, but fails to stabilize the transverse velocity
to zero. The controller results in a steady-state error of vz = −349.1 m/s.

4.2 Lyapunov-based controller

In this section, we demonstrate the effectiveness of the Lyapunov-based controller (45)-(46) by
applying to the complete nonlinear system (11)-(14).
Time responses shown in Fig. 6 and Fig. 7 correspond to the initial conditions vx0= 10000m/s,
vz0 = 350m/s, θ0 = 2o, θ̇0 = 0.57o/s, ψ0 = 30o, and ψ̇0 = 0. As can be seen in the figures, the
transverse velocity, attitude angle and the slosh angle converge to the relative equilibrium at
zero while the axial velocity vx increases and v̇x tends asymptotically to 3.286m/s2 . Note that
there is a trade-off between good responses for the directly actuated degrees of freedom (the
transverse and pitch dynamics) and good responses for the unactuated degree of freedom
(the slosh dynamics); the controller given by (45)-(46) with parameters r1 = 10−7, r2 = 10, r3 =
102, r4 = 10−2, l1 = 103, l2 = 1 represents one example of this balance.
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Fig. 4. Time responses of state variables vx , vz, θ, and ψ (LQR controller).
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Fig. 5. Gimbal deflection angle δ and pitching moment M (LQR controller).
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Fig. 6. Time responses of state variables vx , vz, θ, and ψ (Lyapunov-based controller).
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Fig. 7. Gimbal deflection angle δ and pitching moment M (Lyapunov-based controller).

5. Conclusions

We have shown that a linear controller, while successful in stabilizing the pitch and slosh
dynamics, fails to control the transverse dynamics of a spacecraft. We have designed a
Lyapunov-based nonlinear feedback control law that achieves stabilization of the pitch and
transverse dynamics as well as suppression of the sloshmode, while the spacecraft accelerates
in the axial direction. The effectiveness of this control feedback law has been illustrated
through a simulation example.
The many avenues considered for future research include problems involving
higher-frequency slosh modes, multiple propellant tanks, and three dimensional maneuvers.
Future research also includes designing nonlinear control laws that achieve robustness,
insensitivity to system and control parameters, and improved disturbance rejection. In
particular, we plan to explore the use of sliding mode controllers to accomplish this.

6. References

Adler, J. M., Lee, M. S. & Saugen, J. D. (1991). Adaptive control of propellant slosh for launch
vehicles, SPIE Sensors and Sensor Integration 1480: 11–22.

Biswal, K. C., Bhattacharyya, S. K. & Sinha, P. K. (2004). Dynamic characteristics of liquid
filled rectangular tank with baffles, IE (I) Journal-CV 84: 145–148.

Blackburn, T. R. & Vaughan, D. R. (1971). Application of linear optimal control and
filtering theory to the saturn v launch vehicle, IEEE Transactions on Automatic Control
16(6): 799–806.

Bryson, A. E. (1994). Control of Spacecraft and Aircraft, Princeton University Press.
Cho, S., McClamroch, N. H. & Reyhanoglu, M. (2000a). Dynamics of multibody vehicles

and their formulation as nonlinear control systems, Proceedings of American Control
Conference, pp. 3908–3912.

Cho, S., McClamroch, N. H. & Reyhanoglu, M. (2000b). Feedback control of a space vehicle
with unactuated fuel slosh dynamics, Proceedings of AIAA Guidance, Navigation, and
Control Conference, pp. 354–359.

Feddema, J. T., Dohrmann, C. R., Parker, G. G., Robinett, R. D., Romero, V. J. & Schmitt,
D. J. (1997). Control for slosh-free motion of an open container, IEEE Control Systems

561Modeling and Control of Space Vehicles with Fuel Slosh Dynamics

www.intechopen.com



14 Advances in Spacecraft Technologies

Magazine pp. 29–36.
Freudenberg, J. & Morton, B. (1992). Robust control of a booster vehicle using h∞ and

ssv techniques, Proceedings of the 31st IEEE Conference on Decision and Control,
pp. 2448–2453.

Grundelius, M. (2000). Iterative optimal control of liquid slosh in an industrial packaging
machine, Proceedings of the 39th IEEEConference on Decision and Control, pp. 3427–3432.

Grundelius, M. & Bernhardsson, B. (1999). Control of liquid slosh in an industrial packaging
machine, Proceedings of IEEE International Conference on Control Applications,
pp. 1654–1659.

Hubert, C. (2003). Behavior of Spinning Space Vehicles with Onboard Liquids, NASA/KSC
Contract NAS10-02016.

Hubert, C. (2004). Design and flight performance of a system for rapid attitude maneuvers by
a spinning vehicle, Proceedings of the 27th Annual AAS Guidance and Control Conference.

Meirovitch, L. & Kwak, M. K. (1989). State equations for a spacecraft with maneuvering
flexible appendages in terms of quasi-coordinates, Applied Mechanics Reviews
42(11): 161–170.

Peterson, L. D., Crawley, E. F. & Hansman, R. J. (1989). Nonlinear fluid slosh coupled to the
dynamics of a spacecraft, AIAA Journal 27(9): 1230–1240.

Reyhanoglu, M. (2003). Maneuvering control problems for a spacecraft with unactuated fuel
slosh dynamics, Proceedings of IEEE Conference on Control Applications, pp. 695–699.

Reyhanoglu, M., Cho, S. & McClamroch, N. H. (2000). Discontinuous feedback control of a
special class of underactuated mechanical systems, International Journal of Robust and
Nonlinear Control 10(4): 265–281.

Reyhanoglu, M., van der Schaft, A. J., McClamroch, N. & Kolmanovsky, I. (1996). Nonlinear
control of a class of underactuated systems, Proceedings of IEEE Conference on Decision
and Control, pp. 1682–1687.

Reyhanoglu, M., van der Schaft, A. J., McClamroch, N. & Kolmanovsky, I. (1999). Dynamics
and control of a class of underactuated mechanical systems, IEEE Transactions on
Automatic Control 44(9): 1663–1671.

Sidi, M. J. (1997). Spacecraft Dynamics and Control, Cambridge University Press, New York.
Terashima, K. & Schmidt, G. (1994). Motion control of a cart-based container considering

suppression of liquid oscillations, Proceedings of IEEE International Symposium on
Industrial Electronics, pp. 275–280.

Venugopal, R. & Bernstein, D. S. (1996). State space modeling and active control of slosh,
Proceedings of IEEE International Conference on Control Applications, pp. 1072–1077.

Wie, B. (2008). Space Vehicle Dynamics and Control, AIAA Education Series.
Yano, K., Higashikawa, S. & Terashima, K. (2001). Liquid container transfer control on 3d

transfer path by hybrid shaped approach, Proceedings of IEEE International Conference
on Control Applications, pp. 1168–1173.

Yano, K. & Terashima, K. (2001). Robust liquid container transfer control for complete sloshing
suppression, IEEE Transactions on Control Systems Technology 9(3): 483–493.

Yano, K., Toda, T. & Terashima, K. (2001). Sloshing suppression control of automatic pouring
robot by hybrid shape approach, Proceedings of the 40th IEEE Conference on Decision
and Control, pp. 1328–1333.

562 Advances in Spacecraft Technologies

www.intechopen.com



Advances in Spacecraft Technologies

Edited by Dr Jason Hall

ISBN 978-953-307-551-8

Hard cover, 596 pages

Publisher InTech

Published online 14, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The development and launch of the first artificial satellite Sputnik more than five decades ago propelled both

the scientific and engineering communities to new heights as they worked together to develop novel solutions

to the challenges of spacecraft system design. This symbiotic relationship has brought significant technological

advances that have enabled the design of systems that can withstand the rigors of space while providing

valuable space-based services. With its 26 chapters divided into three sections, this book brings together

critical contributions from renowned international researchers to provide an outstanding survey of recent

advances in spacecraft technologies. The first section includes nine chapters that focus on innovative

hardware technologies while the next section is comprised of seven chapters that center on cutting-edge state

estimation techniques. The final section contains eleven chapters that present a series of novel control

methods for spacecraft orbit and attitude control.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mahmut Reyhanoglu (2011). Modelling and Control of Space Vehicles with Fuel Slosh Dynamics, Advances in

Spacecraft Technologies, Dr Jason Hall (Ed.), ISBN: 978-953-307-551-8, InTech, Available from:

http://www.intechopen.com/books/advances-in-spacecraft-technologies/modelling-and-control-of-space-

vehicles-with-fuel-slosh-dynamics



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


